Harju: Spring 2015

WELL QUASI-ORDERS

A quasi-order (reflexive and transitive) P is a well quasi-order (WQO) if every infinite sequence $x_1, x_2, ...$ has $x_n \leq_P x_m$ for some n < m.

Theorem. A quasi-order P is a WQO iff each infinite sequence x_1, x_2, \ldots has an infinite ascending subsequence $x_{i_1} \leq_P x_{i_2} \leq_P \ldots$ Proof. As in Theorem 1.40.

THEOREM

If *P* and *Q* are WQOs, so is the direct product $P \times Q$.

Proof. Consider an infinite sequence $(x_1, y_1), (x_2, y_2)...$ in $P \times Q$. Hence there exists an ascending chain $x_{i_1} \leq_P x_{i_2} \leq_P ...$ Applying the well quasi-order Q to the sequence $y_{i_1}, y_{i_2}, ...$, we obtain an infinite ascending subsequence $y_{j_1} \leq_Q y_{j_2} \leq_Q ...$ of this one. Hence

$$(x_{j_1}, y_{j_1}) \leq_{P \times Q} (x_{j_2}, y_{j_2}) \leq_{P \times Q} \dots$$

is as required.

DICKSON'S THEOREM (1913)

Let $n \ge 1$ and let $x_1, x_2, ...$ be an infinite sequence from \mathbb{N}^n . Then $x_i \le x_j$ for some i < j.

Proof Done!

With a little bit of work we can derive Hilbert's basis theorem. And then you go to Gröbner bases, and possibly never come back.