WELL QUASI-ORDERS

^A quasi-order (reflexive and transitive) *^P* is ^a well quasi-order (WQO) if every infinite sequence $x_1, x_2,...$ has $x_n \leq_P x_m$ for some *ⁿ < ^m*.

Theorem. ^A quasi-order *^P* is ^a WQO iff each infinite sequence x_1, x_2, \ldots has an infinite ascending subsequence $x_{i_1} \leq_P x_{i_2} \leq_P \ldots$ Proof. As in Theorem 1.40.

THEOREM

If *^P* and *^Q* are WQOs, so is the direct product *^P* [×] *^Q*.

Proof. Consider an infinite sequence (x_1, y_1) , (x_2, y_2) ... in $P \times Q$. Hence there exists an ascending chain $x_{i_1} \leq_P x_{i_2} \leq_P \ldots$ Applying the well quasi-order *Q* to the sequence y_{i_1}, y_{i_2}, \ldots , we obtain an infinite ascending subsequence $y_{j_1} \leq_Q y_{j_2} \leq_Q \ldots$ of this one. Hence

$$
(x_{j_1}, y_{j_1}) \leq_{P\times Q} (x_{j_2}, y_{j_2}) \leq_{P\times Q} \ldots
$$

is as required.

DICKSON'S THEOREM (1913)

Let *n* ≥ 1 and let *x*₁, *x*₂,... be an infinite sequence from \mathbb{N}^n . Then $x_i \leq x_j$ for some $i < j$.

Proof Done!

With a little bit of work we can derive Hilbert's basis theorem. And then you go to Gröbner bases, and possibly never come back.