Ordered Sets

Problem Set 1 (Jan 16, 2015)

- 1 (a) Let P = (X, R) be a poset. Show that also (X, R^{-1}) is a poset.
 - (b) Let (X,R) and (X,S) be posets. Is the union $(X,R \cup S)$ necessarily a poset?
- **2** Let S_n denote the set of all permutations (bijections) α on $\{1,2,\ldots,n\}$. A pair (i, j) is an **inversion** in $\alpha \in S_n$ if i < j and $\alpha(i) > \alpha(j)$. For instance, let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \in S_4$$

which means that $\alpha(1) = 2$, $\alpha(2) = 3$ and so forth. The inversions of α are (1,2)and (1,3). Define the relation \leq on S_n by setting $\alpha \leq \beta$ if and only if all inversions of α are inversions of β . Show that \leq is a partial order on S_n .

- **3** Let *X* be a finite set of *n* elements. Count the number of different (a) relations $R \subseteq X \times X$, (b) reflexive relations on X.
- 4 Let P be a poset, and denote $\{x\}$ simply by x. Show that (a) $x^{lu} = x^u$, (b) $x^{ul} = x^l$, (c) $x^{lul} = x^l$.
- **5** Let $\mathbb{E}_2(\mathbb{N})$ be the family of all **2-subsets** of \mathbb{N} , i.e., subsets $\{x,y\} \subset \mathbb{N}$ where $x \neq y$. Consider any partition $\{Z_1, Z_2, \dots, Z_n\}$ of $\mathbb{E}_2(\mathbb{N})$ to n subsets for $n \ge 1$. Show that there exists an infinite subset $S \subseteq \mathbb{N}$ such that $\mathbb{E}_2(S) \subseteq Z_k$ for some k.
- **6** A **topology** on a set X consists of a set \mathcal{T} of subsets, called **open sets**, that satisfy:

 - $$\begin{split} &\text{(ii)} \quad \text{if } A_i \in \mathcal{T} \text{ for all } i \in I \text{ then also} \bigcup_{i \in I} A_i \in \mathcal{T}; \\ &\text{(iii)} \quad \text{if } A, B \in \mathcal{T} \text{ then also } A \cap B \in \mathcal{T}. \end{split}$$

Let X be a finite set. Show that there is a bijective correspondence between the topologies on X and the quasi-orders on X.

Solved problem. Let *X* be a finite set of *n* elements. Count the number of different symmetric relations on X.

Solution In a symmetric relation R, $x \neq y$ corresponds to the set $\{x,y\}$; so that $\{(x,y),(y,x)\}\subseteq R$ or $\{(x,y),(y,x)\}\cap R=\emptyset$. There are $\binom{n}{2}$ 2-element subsets of X, and R can contain any choice of those. Hence there are $2^{\binom{n}{2}}$ symmetric relations that do not contain any diagonal pairs (x, x). To each such relation one can add a choice of the pairs from ι_X . There are 2^n ways to choose those pairs. The total number of symmetric relations is thus $2^{\binom{n}{2}} \cdot 2^n = 2^{\binom{n}{2}+n}$.