Ordered Sets (2015)

Problem Set 10 (March 27)

No lectures on Thursday 2nd April and no exercises on Friday 3rd April.

1 Let $\alpha: L \to L'$ be a surjective lattice homomorphism where *L* is a distributive lattice. Show that also *L'* is distributive.

2 Let *L* be a distributive lattice with $a, b \in L$. Show that the relation θ determined by

(1)
$$(x,y) \in \theta \iff \begin{cases} x \lor a \lor b = y \lor a \lor b \\ x \land a \land b = y \land a \land b. \end{cases}$$

is a congruence of *L*.

3

The congruence lattice Con(L) of a lattice is distributive.

4 Let *L* be a locally finite lattice that satisfies the Jordan-Dedekind condition, i.e., for all $x \leq_L y$, the maximal chains $x \to y$ have the same length. Show that there exists a mapping $d: L \to \mathbb{Z}$ that satisfies the condition

$$x \prec_L y \iff x <_L y$$
 and $d(y) = d(x) + 1$.

5 Let *L* be a lattice, and suppose $\kappa : L \to \mathbb{N}$ is a **Kolmogorov measure** on *L*, i.e., for all $x, y \in L$,

$$\kappa(x \lor y) + \kappa(x \land y) = \kappa(x) + \kappa(y).$$

Show that for all elements $x_1, x_2, \ldots, x_n \in L$, we have

$$\sum_{i=1}^{n} \kappa(x_i) = \sum_{j=2}^{n} \kappa(x_j \vee (\bigwedge_{k=1}^{j-1} x_k)) + \kappa(x_1 \wedge \ldots \wedge x_n).$$

Solved problem. Let *P* be the three element poset where $x <_P y$ and x || z and y || z. Show that on the right there is the largest lattice each element of which is obtained from x, y, z by a finite number of the operations \lor and \land . (In general, the largest lattice 'generated' by three incomparable elements is infinite, but the largest distributive lattice generated by incomparable three elements is finite.)

Solution. From the conditions we deduce that $x \land z$ is the bottom element and $y \lor z$ is the top element. Also, $y \land (x \lor z)$ and $x \lor (y \land z)$ are in the interval [x, y]. *Details are called out for the conclusion.*