Ordered Sets (2015)

Problem Set 10 (March 27)

No lectures on Thursday 2nd April and no exercises on Friday 3rd April.

1 Let $\alpha: L \to L'$ be a surjective lattice homomorphism where *L* is a distributive lattice. Show that also L' is distributive.

Solution. The claim follows from the definitions.

2 Let *L* be a distributive lattice with $a, b \in L$. Show that the relation θ determined by

(1)
$$
(x, y) \in \theta \iff \begin{cases} x \lor a \lor b = y \lor a \lor b \\ x \land a \land b = y \land a \land b. \end{cases}
$$

is a congruence of *L*.

Solution. Consider θ defined in (1). It is an equivalence relation. Suppose that $(x, y) \in \theta$, and $z \in L$. Then

$$
(x \vee z) \vee (a \vee b) = (x \vee a \vee b) \vee z = (y \vee a \vee b) \vee z = (y \vee z) \vee (a \vee b)
$$

and, by distributivity,

$$
(x \lor z) \land (a \land b) = (x \land (a \land b)) \lor (z \land (a \land b))
$$

=
$$
(y \land (a \land b)) \lor (z \land (a \land b))
$$

=
$$
(y \lor z) \land (a \land b).
$$

The other case follows by duality.

(In fact, θ *is the smallest congruence containing* (a, b) *.)*

3 The congruence lattice Con(*L*) of a lattice is distributive.

Solution. We need to show that $\theta_1 \cap (\theta_2 \vee \theta_3) \subseteq (\theta_1 \cap \theta_2) \vee (\theta_1 \cap \theta_3)$ for congruences of *L*. Let $(x, y) \in \theta_1 \cap (\theta_2 \vee \theta_3)$. Then there is a sequence

$$
x \wedge y = x_0 \leq_L x_1 \leq_L \cdots \leq_L x_n = x \vee y,
$$

where $(x_i, x_{i+1}) \in \theta_i$ for $i = 2$ or $i = 3$. Since $(x, y) \in \theta_1$, it follows by Theorem 2.31 that also $(x_i, x_{i+1}) \in \theta_1$ for $i = 0, 1, ..., n-1$. The claim follows now by Theorem 2.36 when it is applied to the congruences $\theta_1 \cap \theta_2$ and $\theta_1 \cap \theta_2$. .

4 Let *L* be a locally finite lattice that satisfies the Jordan-Dedekind condition, i.e., for all $x \leq_L y$, the maximal chains $x \to y$ have the same length. Show that there exists a mapping $d: L \to \mathbb{Z}$ that satisfies the condition

$$
x \prec_L y \iff x \prec_L y \text{ and } d(y) = d(x) + 1.
$$

z ∧ *x*

y

x

z ∧ *y*

z

Solution. For $x \leq_L y$, let $m(x, y)$ denote the length of a maximal chain $x \to y$. Let *z* ∈ *L* be a fixed element, and define $d(z) = 0$. For each $x \in L$, define

$$
d(x) = m(z \wedge x, x) - m(z \wedge x, z).
$$

Now,

$$
d(y)-d(x) = m(z \wedge y, y) - m(z \wedge y, z) - m(z \wedge x, x) + m(z \wedge x, z)
$$

and

 $m(z \wedge x, z) - m(z \wedge y, z) + m(z \wedge y, y) = m(z \wedge x, x) + m(x, y).$

Combining these we have $d(y) - d(x) = m(x, y)$. Finally, $x \prec y$ if and only if $x \prec_L y$ and $m(x, y) = 1$.

5 Let *L* be a lattice, and suppose *κ*: *L* → N is a **Kolmogorov measure** on *L*, i.e., for all $x, y \in L$,

$$
\kappa(x \vee y) + \kappa(x \wedge y) = \kappa(x) + \kappa(y).
$$

Show that for all elements $x_1, x_2, \ldots, x_n \in L$, we have

$$
\sum_{i=1}^n \kappa(x_i) = \sum_{j=2}^n \kappa(x_j \vee (\bigwedge_{k=1}^{j-1} x_k)) + \kappa(x_1 \wedge \ldots \wedge x_n).
$$

Solution. We prove the claim by induction. For $n = 2$ it holds by definition. Assume the claim holds for *n*, and add $\kappa(x_{n+1})$ to both sides. The right hand side ends with κ (*x*₁ ∧ *x*₂ ∧ ... ∧ *x*_{*n*}</sub>) + κ (*x*_{*n*+1}) equals, by the definition, with

$$
\kappa(x_{n+1} \vee (x_1 \wedge x_2 \wedge \ldots \wedge x_n)) + \kappa(x_1 \wedge x_2 \wedge \ldots \wedge x_{n+1})
$$

Solved problem. Let *P* be the three element poset where $x < p$ *y* and $x || z$ and $y || z$. Show that on the right there is the largest lattice each element of which is obtained from *x*, *y*, *z* by a finite number of the operations ∨ and ∧. (In general, the largest lattice 'generated' by three incomparable elements is infinite, but the largest distributive lattice generated by incomparable three elements is finite.)

Solution. From the conditions we deduce that $x \wedge z$ is the bottom element and $y \vee z$ is the top element. Also, $y \wedge (x \vee z)$ and $x \vee (y \wedge z)$ are in the interval [x, y]. *Details are called out for the conclusion.*