Ordered Sets (2015)

Problem Set 10 (March 27)

No lectures on Thursday 2nd April and no exercises on Friday 3rd April.

Let $\alpha: L \to L'$ be a surjective lattice homomorphism where L is a distributive lattice. Show that also L' is distributive.

Solution. The claim follows from the definitions.

Let *L* be a distributive lattice with $a, b \in L$. Show that the relation θ determined by

(1)
$$(x,y) \in \theta \iff \begin{cases} x \lor a \lor b = y \lor a \lor b \\ x \land a \land b = y \land a \land b. \end{cases}$$

is a congruence of L.

Solution. Consider θ defined in (1). It is an equivalence relation. Suppose that $(x, y) \in \theta$, and $z \in L$. Then

$$(x \lor z) \lor (a \lor b) = (x \lor a \lor b) \lor z = (y \lor a \lor b) \lor z = (y \lor z) \lor (a \lor b)$$

and, by distributivity,

$$(x \lor z) \land (a \land b) = (x \land (a \land b)) \lor (z \land (a \land b))$$
$$= (y \land (a \land b)) \lor (z \land (a \land b))$$
$$= (y \lor z) \land (a \land b).$$

The other case follows by duality. (In fact, θ is the smallest congruence containing (a, b).)

 $\fbox{3}$ The congruence lattice Con(L) of a lattice is distributive.

Solution. We need to show that $\theta_1 \cap (\theta_2 \vee \theta_3) \subseteq (\theta_1 \cap \theta_2) \vee (\theta_1 \cap \theta_3)$ for congruences of *L*. Let $(x, y) \in \theta_1 \cap (\theta_2 \vee \theta_3)$. Then there is a sequence

$$x \wedge y = x_0 \leq_L x_1 \leq_L \cdots \leq_L x_n = x \vee y$$
,

where $(x_i, x_{i+1}) \in \theta_i$ for i = 2 or i = 3. Since $(x, y) \in \theta_1$, it follows by Theorem 2.31 that also $(x_i, x_{i+1}) \in \theta_1$ for $i = 0, 1, \dots, n-1$. The claim follows now by Theorem 2.36 when it is applied to the congruences $\theta_1 \cap \theta_2$ and $\theta_1 \cap \theta_2$.

Let *L* be a locally finite lattice that satisfies the Jordan-Dedekind condition, i.e., for all $x \le_L y$, the maximal chains $x \to y$ have the same length. Show that there exists a mapping $d: L \to \mathbb{Z}$ that satisfies the condition

$$x \prec_L y \iff x <_L y \text{ and } d(y) = d(x) + 1.$$

Solution. For $x \le_L y$, let m(x, y) denote the length of a maximal chain $x \to y$. Let $z \in L$ be a fixed element, and define d(z) = 0. For each $x \in L$, define

$$d(x) = m(z \wedge x, x) - m(z \wedge x, z).$$

Now,

$$d(y)-d(x) = m(z \wedge y, y) - m(z \wedge y, z) - m(z \wedge x, x) + m(z \wedge x, z)$$

and

$$m(z \wedge x, z) - m(z \wedge y, z) + m(z \wedge y, y) = m(z \wedge x, x) + m(x, y).$$

Let *L* be a lattice, and suppose $\kappa: L \to \mathbb{N}$ is a **Kolmogorov measure** on *L*, i.e., for all $x, y \in L$,

$$\kappa(x \vee y) + \kappa(x \wedge y) = \kappa(x) + \kappa(y).$$

Show that for all elements $x_1, x_2, ..., x_n \in L$, we have

$$\sum_{i=1}^{n} \kappa(x_i) = \sum_{j=2}^{n} \kappa(x_j \vee (\bigwedge_{k=1}^{j-1} x_k)) + \kappa(x_1 \wedge \ldots \wedge x_n).$$

Solution. We prove the claim by induction. For n = 2 it holds by definition. Assume the claim holds for n, and add $\kappa(x_{n+1})$ to both sides. The right hand side ends with $\kappa(x_1 \land x_2 \land \ldots \land x_n) + \kappa(x_{n+1})$ equals, by the definition, with

$$\kappa(x_{n+1} \vee (x_1 \wedge x_2 \wedge \ldots \wedge x_n)) + \kappa(x_1 \wedge x_2 \wedge \ldots \wedge x_{n+1})$$

proving the claim.

Solved problem. Let P be the three element poset where $x <_P y$ and $x \parallel z$ and $y \parallel z$. Show that on the right there is the largest lattice each element of which is obtained from x,y,z by a finite number of the operations \vee and \wedge . (In general, the largest lattice 'generated' by three incomparable elements is infinite, but the largest distributive lattice generated by incomparable three elements is finite.)

Solution. From the conditions we deduce that $x \wedge z$ is the bottom element and $y \vee z$ is the top element. Also, $y \wedge (x \vee z)$ and $x \vee (y \wedge z)$ are in the interval [x, y]. *Details are called out for the conclusion.*