Ordered Sets (2015)

Problem Set 11 (April 10)

1 Find a complete countably infinite lattice that is not algebraic.

Prove Lemma 3.30: If $x \lor y$. The meet of tw	f x and y are compact elements in L , then so is their join o compact elements need not be compact.
Show that if the lattice are the compact eleme	e L has the bottom element 0, then $Id(L)$ is algebraic. What ents of $Id(L)$?
Let <i>L</i> be a complete la for all directed subsets	ttice. Show that an element $c \in L$ is compact if and only if, s D ,
C ≤	$c_L \bigvee D \implies c \leq_L a$ for some $a \in D$.
Prove that $C: 2^X \to 2^Y$ condition	^X is a closure operation if and only if it satisfies the single
	$A \subseteq C(B) \iff C(A) \subseteq C(B).$
Let L be an algebraic Show that the operation	lattice. Denote by K the set of all compact elements of L . on C defined by
	$C(A) = \{ x \in K \mid x \leq_L \bigvee A \}$
is an algebraic closure	operation on the set <i>K</i> .