
Ordered Sets (2015)

Problem Set 11 (April 10)

1 Find a complete countably infinite lattice that is not algebraic.

Solution. Consider L with 0 ≺ x ≺ 1 plus 0 ≺ x1 ≺ x2 ≺ . . . <L 1. Then x is not

compact, and not a join of compact elements.

(Uncountable lattices: real interval [0,1].) �

2 Prove Lemma 3.30: If x and y are compact elements in L, then so is their join

x ∨ y. The meet of two compact elements need not be compact.

Solution. Let x ∨ y ≤L

∨

A for a subset A⊆ L. Then there are finite subsets F0 and

F1 of A such that x ≤L

∨

F0 and y ≤L

∨

F1. It then follows that x ∨ y ≤L

∨

(F0∪ F1).

�

3 Show that if the lattice L has the bottom element 0, then Id(L) is algebraic. What

are the compact elements of Id(L)?

Solution. Notice that Id(L) is complete, since 0 ∈ L. Also, I =
∨

x∈I(x] for each

ideal I , and hence Id(L) is generated by the principal ideals.

We show that each principal ideal (x] ∈ Id(L) is compact. Suppose that that (x] ≤L
∨

j∈J I j for some index set J . Then, by Lemma 2.41, there are finitely many elements

x1, x2, . . . , xn ∈
⋃

j∈J I j such that x ≤L x1 ∨ x2 ∨ . . . ∨ xn. Hence there exists a finite

J0 ⊆ J such that x1, . . . , xn ∈
⋃

j∈J0
I j ⊆
∨

j∈J0
I j , and so (x] ⊆

∨

j∈J0
I j .

We show then that each compact element is a principal ideal. Let I be compact. Then

I =
∨

x∈I (x] implies that there exists x1, . . . , xn ∈ I with I ⊆
∨

n
i=1
(x i] =
�∨

n
i=1

x i

�

,

where
∨

n
i=1

x i ∈ I . Therefore I =
�∨

n
i=1

x i

�

. �

4 Let L be a complete lattice. Show that an element c ∈ L is compact if and only if,

for all directed subsets D,

c ≤L

∨

D =⇒ c ≤L a for some a ∈ D.

Solution. If c is compact, then c ≤L

∨

D implies c ≤L

∨

F for some finite subset

F ⊆ D. Since D is directed, the claim follows.

In the converse direction, suppose c ≤L

∨

A for a subset A. Now,

c ≤L

∨

A=
∨
�
∨

F | F ⊆ A, |F | <∞
	

Here the set {
∨

F | F ⊆ A, |F | <∞
	

is directed. Hence c ≤L

∨

F for some finite

F ⊆ A. �

5 Prove that C : 2X → 2X is a closure operation if and only if it satisfies the single

condition

A⊆ C(B) ⇐⇒ C(A) ⊆ C(B) .



2

Solution. Suppose first that C is a closure operation. Then (i)

A⊆ C(B)
(C3)
=⇒ C(A) ⊆ C2(B)

(C2)
= C(B) ,

and, conversely,

C(A) ⊆ C(B)
(C1)
=⇒ A⊆ C(B) .

Suppose C satisfies the single condition. We derive the axioms of the closure opera-

tions. Then

C(A) ⊆ C(A) =⇒ A⊆ C(A) so (C1),

C(A) ⊆ C(A) =⇒ C2(A) ⊆ C(A) ,

C2(A) ⊆ C2(A) =⇒ C(A) ⊆ C2(A) so (C2),

A⊆ B =⇒ C(A) ⊆ C2(B) = C(B) so (C3).

�

6 Let L be an algebraic lattice. Denote by K the set of all compact elements of L.

Show that the operation C defined by

C(A) = {x ∈ K | x ≤L

∨

A}

is an algebraic closure operation on the set K .

Solution. First of all C is a closure operation:

A⊆ C(B) ⇐⇒ C(A) ⊆ C(B) .

Indeed, x ≤L

∨

B for all x ∈ A if and only if
∨

A≤L

∨

B.

It is algebraic: Let x ∈ C(A)∩ K . Then x ≤L

∨

A and there exists finite Fx ⊂ A such

that x ≤L

∨

Fx . Therefore x ∈ C(Fx ), as required. �


