Ordered Sets (2015)

Problem Set 11 (April 10)

1 Find a complete countably infinite lattice that is not algebraic.

Solution. Consider *L* with $0 \prec x \prec 1$ plus $0 \prec x_1 \prec x_2 \prec \ldots \prec_L 1$. Then *x* is not compact, and not a join of compact elements. (Uncountable lattices: real interval $[0,1]$.)

2 Prove Lemma 3.30: If *x* and *y* are compact elements in *L*, then so is their join *x* ∨ *y*. The meet of two compact elements need not be compact.

Solution. Let *x* ∨ *y* \leq_L $\bigvee A$ for a subset *A* ⊆ *L*. Then there are finite subsets *F*₀ and *F*₁ of *A* such that $x \leq L \sqrt{F_0}$ and $y \leq L \sqrt{F_1}$. It then follows that $x \vee y \leq L \sqrt{(F_0 \cup F_1)}$. $\overline{\Box}$

3 Show that if the lattice *L* has the bottom element 0, then $Id(L)$ is algebraic. What are the compact elements of Id(*L*)?

Solution. Notice that Id(*L*) is complete, since $0 \in L$. Also, $I = \bigvee_{x \in I} (x)$ for each ideal *I*, and hence $Id(L)$ is generated by the principal ideals.

We show that each principal ideal $(x] \in \text{Id}(L)$ is compact. Suppose that that $(x] \leq_L$ W *j*∈*J Ij* for some index set *J*. Then, by Lemma 2.41, there are finitely many elements $x_1, x_2, \ldots, x_n \in \bigcup_{j \in J} I_j$ such that $x \leq_L x_1 \vee x_2 \vee \ldots \vee x_n$. Hence there exists a finite $J_0 \subseteq J$ such that $x_1, \ldots, x_n \in \bigcup_{j \in J_0} I_j \subseteq \bigvee_{j \in J_0} I_j$, and so $(x] \subseteq \bigvee_{j \in J_0} I_j$.

We show then that each compact element is a principal ideal. Let *I* be compact. Then $I = \bigvee_{x \in I} (x)$ implies that there exists $x_1, \ldots, x_n \in I$ with $I \subseteq \bigvee_{i=1}^n (x_i) = \left(\bigvee_{i=1}^n x_i\right]$, where $\bigvee_{i=1}^{n} x_i \in I$. Therefore $I = (\bigvee_{i=1}^{n} x_i]$. — Первый процесс в серверності процесс в серверності процесс в серверності процесс в серверності процесс в с
Процесс в серверності процесс в серверності процесс в серверності процесс в серверності процесс в серверності

4 Let *L* be a complete lattice. Show that an element $c \in L$ is compact if and only if, for all directed subsets *D*,

$$
c \leq_L \bigvee D \implies c \leq_L a \text{ for some } a \in D.
$$

Solution. If *c* is compact, then $c \leq_L \bigvee D$ implies $c \leq_L \bigvee F$ for some finite subset $F \subseteq D$. Since *D* is directed, the claim follows.

In the converse direction, suppose $c \leq_L \bigvee\!\! A$ for a subset A . Now,

$$
c \leq_L \bigvee A = \bigvee \{ \bigvee F \mid F \subseteq A, \ |F| < \infty \}
$$

Here the set $\{\bigvee F \mid F \subseteq A, |F| < \infty\}$ is directed. Hence $c \leq_L \bigvee F$ for some finite *F* ⊆ *A*.

5 Prove that $C: 2^X \rightarrow 2^X$ is a closure operation if and only if it satisfies the single condition

$$
A \subseteq C(B) \iff C(A) \subseteq C(B).
$$

Solution. Suppose first that *C* is a closure operation. Then (i)

$$
A \subseteq C(B) \stackrel{(C3)}{\Longrightarrow} C(A) \subseteq C^2(B) \stackrel{(C2)}{=} C(B),
$$

and, conversely,

$$
C(A) \subseteq C(B) \stackrel{(C1)}{\Longrightarrow} A \subseteq C(B).
$$

Suppose *C* satisfies the single condition. We derive the axioms of the closure operations. Then

$$
C(A) \subseteq C(A) \implies A \subseteq C(A) \qquad \text{so } (C1),
$$

\n
$$
C(A) \subseteq C(A) \implies C^2(A) \subseteq C(A),
$$

\n
$$
C^2(A) \subseteq C^2(A) \implies C(A) \subseteq C^2(A) \qquad \text{so } (C2),
$$

\n
$$
A \subseteq B \implies C(A) \subseteq C^2(B) = C(B) \qquad \text{so } (C3).
$$

 \Box

6 Let *L* be an algebraic lattice. Denote by *K* the set of all compact elements of *L*. Show that the operation *C* defined by

$$
C(A) = \{x \in K \mid x \leq_L \bigvee A\}
$$

is an algebraic closure operation on the set *K*.

Solution. First of all *C* is a closure operation:

$$
A \subseteq C(B) \iff C(A) \subseteq C(B).
$$

Indeed, $x \leq_L \bigvee B$ for all $x \in A$ if and only if $\bigvee A \leq_L \bigvee B$. It is algebraic: Let *x* ∈ *C*(*A*)∩ *K*. Then *x* ≤_{*L*} ∨*A* and there exists finite *F*_{*x*} ⊂ *A* such that $x \leq_L \bigvee F_x$. Therefore $x \in C(F_x)$, as required.