Ordered Sets

Problem Set 1 (Jan 16, 2015)

1 (a) Let P = (X, R) be a poset. Show that also (X, R^{-1}) is a poset.

(b) Let (X, R) and (X, S) be posets. Is the union $(X, R \cup S)$ necessarily a poset?

Solution. (a) Clear (b) No. Transitivity may fail: $(x, y) \in R$ and $(y, z) \in S$ does not imply that $(x, z) \in R \cup S$.

2 Let S_n denote the set of all permutations (bijections) α on $\{1, 2, ..., n\}$. A pair (i, j) is an **inversion** in $\alpha \in S_n$ if i < j and $\alpha(i) > \alpha(j)$. For instance, let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \in S_4$$

which means that $\alpha(1) = 2$, $\alpha(2) = 3$ and so forth. The inversions of α are (1,2) and (1,3). Define the relation \leq on S_n by setting $\alpha \leq \beta$ if and only if all inversions of α are inversions of β . Show that \leq is a partial order on S_n .

Solution. Clear from the definition of partial orders

3 Let *X* be a finite set of *n* elements. Count the number of different (a) relations $R \subseteq X \times X$, (b) reflexive relations on *X*.

Solution. (a) A relation *R* is a subset of the set $X \times X$. There are n^2 pairs (x, y), and hence the number relations is 2^{n^2} , the number of subsets of pairs of elements of *X*.

(b) The reflexive relations are those subsets of $X \times X$ that contain the identity relation $\iota_X = \{(x, x) | x \in X\}$. There are $n^2 - n$ pairs (x, y) with $x \neq y$, and thus $2^{n^2 - n} = 2^{n(n-1)}$ subsets of $X \times X$ that do <u>not</u> intersect with ι_X . This is the number of reflexive relations: add ι_X to each such relation.

4 Let *P* be a poset, and denote $\{x\}$ simply by *x*. Show that (a) $x^{lu} = x^{u}$, (b) $x^{ul} = x^{l}$, (c) $x^{lul} = x^{l}$.

Solution. Now, $y \in x^{\text{lu}}$ if and only if $y \ge_P z$ for all z with $z \le_P x$, i.e., if and only if $y \ge_P x$. The case (b) is dual to (a). The case (c) follows from these: $x^{\text{lul}} = x^{\text{ul}} = x^{\text{l}}$.

5 Let $\mathbb{E}_2(\mathbb{N})$ be the family of all **2-subsets** of \mathbb{N} , i.e., subsets $\{x, y\} \subset \mathbb{N}$ where $x \neq y$. Consider any partition $\{Z_1, Z_2, \dots, Z_n\}$ of $\mathbb{E}_2(\mathbb{N})$ to *n* subsets for $n \ge 1$. Show that there exists an infinite subset $S \subseteq \mathbb{N}$ such that $\mathbb{E}_2(S) \subseteq Z_k$ for some *k*.

Solution. Denote $x_0 = 0$. There exists an integer $r_0 \le n$ such that Z_{r_0} has infinitely many 2-subsets containing 0. Let $S_0 = \{y \mid \{x_0, y\} \in Z_{r_0}\}$. Assume that S_{i-1} has been already defined, and let $x_i = \min(S_{i-1})$. There are infinitely many 2-subsets of S_{i-1} containing x_i , and hence there exists an index r_i be such that Z_{r_i} has infinitely many of 2-subsets $\{x_i, y\}$ with $y \in S_{i-1}$. Let

$$S_i = \{ y \in S_{i-1} \mid \{ x_i, y \} \in Z_{r_i} \}.$$

Hence this set is infinite. We obtain sequences x_0, x_1, \ldots and r_0, r_1, \ldots , where $r_i \le n$. Now, there exists an index k such that $k = r_i$ for infinitely many i, say r_{t_1}, r_{t_2}, \ldots so that $Z_k = Z_{r_{t_1}} = Z_{r_{t_2}} = \ldots$. It follows that $\{x_{t_i}, x_{t_j}\}$ belongs to Z_k for all $i \ne j$. \Box

6 A **topology** on a set *X* consists of a set \mathcal{T} of subsets, called **open sets**, that satisfy:

(i) \emptyset , $X \in \mathcal{T}$; (ii) if $A_i \in \mathcal{T}$ for all $i \in I$ then also $\bigcup_{i \in I} A_i \in \mathcal{T}$; (iii) if $A, B \in \mathcal{T}$ then also $A \cap B \in \mathcal{T}$.

Let X be a finite set. Show that there is a bijective correspondence between the topologies on *X* and the quasi-orders on *X*.

Solution. A quasi-order \leq on *X* defines a topology, where the open sets are the downsets $\downarrow A$ for $A \subseteq X$. This mapping of quasi-orders to topologies is injective which is seen by considering the principal down-sets $\downarrow x$.

Conversely, a topology on *X* defines a quasi-order \leq by

 $y \leq_{\mathcal{T}} x \iff$ every open set that contains *x* also contains *y*.

Now, for all open sets *A* of \mathcal{T} , we have, by definition,

$$x \in A$$
 and $y \leq_{\mathscr{T}} x \implies y \in A$,

and hence A is a down-set in the quasi-order. This proves that the correspondence is 1-to-1. $\hfill \Box$

Solved problem. Let *X* be a finite set of *n* elements. Count the number of different symmetric relations on *X*.

Solution In a symmetric relation R, $x \neq y$ corresponds to the set $\{x, y\}$; so that $\{(x, y), (y, x)\} \subseteq R$ or $\{(x, y), (y, x)\} \cap R = \emptyset$. There are $\binom{n}{2}$ 2-element subsets of X, and R can contain any choice of those. Hence there are $2^{\binom{n}{2}}$ symmetric relations that do not contain any diagonal pairs (x, x). To each such relation one can add a choice of the pairs from ι_X . There are 2^n ways to choose those pairs. The total number of symmetric relations is thus $2^{\binom{n}{2}} \cdot 2^n = 2^{\binom{n}{2}+n}$.