
Ordered Sets

Problem Set 1 (Jan 16, 2015)

1 (a) Let P = (X ,R) be a poset. Show that also (X ,R−1) is a poset.

(b) Let (X ,R) and (X ,S) be posets. Is the union (X ,R∪ S) necessarily a poset?

Solution. (a) Clear (b) No. Transitivity may fail: (x , y) ∈ R and (y, z) ∈ S does not

imply that (x , z) ∈ R∪ S. �

2 Let Sn denote the set of all permutations (bijections) α on {1,2, . . . , n}. A pair

(i, j) is an inversion in α ∈ Sn if i < j and α(i) > α( j). For instance, let

α =

�

1 2 3 4

2 3 1 4

�

∈ S4

which means that α(1) = 2, α(2) = 3 and so forth. The inversions of α are (1,2)

and (1,3). Define the relation≤ on Sn by setting α ≤ β if and only if all inversions

of α are inversions of β . Show that ≤ is a partial order on Sn.

Solution. Clear from the definition of partial orders �

3 Let X be a finite set of n elements. Count the number of different

(a) relations R ⊆ X × X , (b) reflexive relations on X .

Solution. (a) A relation R is a subset of the set X ×X . There are n2 pairs (x , y), and

hence the number relations is 2n2

, the number of subsets of pairs of elements of X .

(b) The reflexive relations are those subsets of X ×X that contain the identity relation

ιX = {(x , x)|x ∈ X }. There are n2−n pairs (x , y)with x 6= y, and thus 2n2−n = 2n(n−1)

subsets of X×X that do not intersect with ιX . This is the number of reflexive relations:

add ιX to each such relation. �

4 Let P be a poset, and denote {x} simply by x . Show that

(a) x lu = xu , (b) xul = x l , (c) x lul = x l .

Solution. Now, y ∈ x lu if and only if y ≥P z for all z with z ≤P x , i.e., if and only if

y ≥P x . The case (b) is dual to (a). The case (c) follows from these: x lul = xul = x l.

�

5 Let E2(N) be the family of all 2-subsets ofN, i.e., subsets {x , y} ⊂ Nwhere x 6= y.

Consider any partition {Z1, Z2, . . . , Zn} of E2(N) to n subsets for n≥ 1. Show that

there exists an infinite subset S ⊆ N such that E2(S) ⊆ Zk for some k.

Solution. Denote x0 = 0. There exists an integer r0 ≤ n such that Zr0
has infinitely

many 2-subsets containing 0. Let S0 = {y | {x0, y} ∈ Zr0
}. Assume that Si−1 has

been already defined, and let x i =min(Si−1). There are infinitely many 2-subsets of

Si−1 containing x i, and hence there exists an index ri be such that Zri
has infinitely

many of 2-subsets {x i, y} with y ∈ Si−1. Let

Si = {y ∈ Si−1 | {x i, y} ∈ Zri
} .
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Hence this set is infinite. We obtain sequences x0, x1, . . . and r0, r1, . . . , where ri ≤ n.

Now, there exists an index k such that k = ri for infinitely many i, say rt1
, rt2

, . . . so

that Zk = Zrt1
= Zrt2

= . . . . It follows that {x ti
, x t j
} belongs to Zk for all i 6= j. �

6 A topology on a set X consists of a set T of subsets, called open sets, that satisfy:

(i) ;, X ∈ T ;

(ii) if Ai ∈ T for all i ∈ I then also
⋃

i∈I

Ai ∈ T ;

(iii) if A, B ∈ T then also A∩ B ∈ T .

Let X be a finite set. Show that there is a bijective correspondence between the

topologies on X and the quasi-orders on X .

Solution. A quasi-order≤ on X defines a topology, where the open sets are the down-

sets ↓A for A ⊆ X . This mapping of quasi-orders to topologies is injective which is

seen by considering the principal down-sets ↓x .

Conversely, a topology on X defines a quasi-order ≤ by

y ≤T x ⇐⇒ every open set that contains x also contains y.

Now, for all open sets A of T , we have, by definition,

x ∈ A and y ≤T x =⇒ y ∈ A ,

and hence A is a down-set in the quasi-order. This proves that the correspondence is

1-to-1. �

Solved problem. Let X be a finite set of n elements. Count the number of different

symmetric relations on X .

Solution In a symmetric relation R, x 6= y corresponds to the set {x , y}; so that

{(x , y), (y, x)} ⊆ R or {(x , y), (y, x)} ∩ R = ;. There are
�

n
2

�

2-element subsets of X ,

and R can contain any choice of those. Hence there are 2(
n
2) symmetric relations that

do not contain any diagonal pairs (x , x). To each such relation one can add a choice

of the pairs from ιX . There are 2n ways to choose those pairs. The total number of

symmetric relations is thus 2(
n
2) · 2n = 2(

n
2)+n. �


