
Ordered Sets

Problem Set 3 (Jan 30, 2015)

1 Let P and Q be locally finite posets, and assume the mapping ϕ : P → Q preserves

the cover relation: i.e., if x ≺P y then ϕ(x)≺Q ϕ(y). Show that ϕ is isotone.

Solution. We prove the claim by induction on the size s(x , y) of the intervals [x , y]P
that x ≤P y implies ϕ(x) ≤Q ϕ(y). If s(x , y) = 2, then the claim follows from the

assumption. Suppose that s(x , y) ≥ 3. Hence there is an element z with x <P z <P y.

Now s(x , z) < s(x , y) and s(z, y) < s(x , y), and so the induction hypothesis gives

ϕ(x)≤Q ϕ(z) and ϕ(z) ≤Q ϕ(y). Therefore also ϕ(x) ≤Q ϕ(y). �

2 (Part of Theorem 1.40) Prove that if P is partially well-ordered then in every

infinite sequence x1, x2, . . . in P there are elements x i and x j such that x i ≤P x j

with i < j.

Solution. Let x1, x2, . . . be such that x i �P x j for all i < j, i.e., for all i < j, either

x i >P x j or x i ‖ x j. Let

M = {x i : x i ‖ x j for all j > i} .

Then M is an antichain and thus finite by FAC. Let m be the maximum index such

that xm ∈ M . Hence, for each i > m, there exists j with j > i such that x i ≥P x j.

This gives an infinite descending chain; a contradiction. �

3 Let P be a finite poset such that the greatest lower bound exists for each pair

x , y ∈ P. Show that, if P has a top element, also the least upper bound exists for

all elements x and y.

Solution. It follows by induction that every subset A ⊆ P has the greatest lower

bound. Then for all x , y ∈ P, consider A = {x , y}u = {z | x ≤P z, y ≤P z}. Here A

is nonempty since P has the (unique) maximum element. Now the greatest lower

bound of the set A is the least upper bound of x and y. �

An isotone mapping α: P → P is called a retraction of the poset P, if α2 = α, i.e.,

α(α(x)) = α(x) for all x ∈ P. Then we say that the subposet α(P) is a retract of P.

4 Show that an isotone mapping α: P → P is a retraction if and only if its restriction

β = α ↾α(P) to the image α(P) is the identity mapping.

Solution. Assume that α2 = α, and let y ∈ α(P), say α(x) = y or some x ∈ P. Then

β(y) = α(α(x)) = α(x) = y. Hence β is the identity.

Conversely, suppose β is the identity function. Then α(α(x)) = β(α(x)) = α(x) for

all x ∈ P. �

5 Assume every isotone mapping α: P → P of the poset P has a fixed point (i.e.,

α(x) = x for some x ∈ P), and let Q be a retract of P. Show that every isotone

mapping β : Q→Q has a fixed point.

Solution. Let α: P →Q be a retraction of P onto Q (= α(P)), and let β : Q→ Q be

isotone. Then βα: P → Q is an isotone mapping (of P), and by assumption it has a

fixed point x . Obviously x ∈ Q, and thus, by the previous exercise, α(x) = x . Now,

α(x) = x = βα(x), and thus α(x) is a fixed point of β . �
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6 Let P be a finite poset. A mapping r : P → {1,2, . . . , n} is a rank function on P if

it satisfies:

(1) r(x) = 1 if x is a minimal element of P;

(2) r(x) = n if x is a maximal element of P;

(3) r(y) = r(x) + 1 if x ≺P y.

We say that P is graded of rank n if all maximal chains of P have length n. (The

length |C | of a chain C is the number of its elements.)

Show that a finite poset P is graded of rank n if and only if it has a rank function

r : P → {1,2, . . . , n}.

Solution. Suppose P is graded of rank n. For x ∈ P, let Cx be a maximal chain

containing x , and define r(x) = |{y ∈ Cx | y <P x}|. We show first that r(x) is well

defined, i.e., it does not depend on the choice of Cx . Indeed, let C and C ′ be any two

maximal chains containing x , and consider the disjoint unions

C = CL ∪ {x} ∪ CU and C ′ = C ′
L
∪ {x} ∪ C ′

U

for CL = {y ∈ C | y <P x} and C ′L = {y ∈ C ′ | y <P x}. Also C ′L ∪ {x} ∪ CU is a

chain containing x and thus |C ′L| ≤ |CL|. By symmetry, there is equality here, and also

|C ′
U
| ≤ |CU |. This shows that r is well defined, and it follows from the maximality of

the chains that r is rank function.

In converse, let r : P → {1,2, . . . , n} be a rank function, and x1 <P . . . <P xm a

maximal chain. Then necessarily x1 is a minimal element and xm is a maximal el-

ement, and x i ≺P x i+1 for i = 1,2, . . . , m − 1. Now, r(x1) = 1 and r(xm) = n, and

r(x i+1) = r(x i) + 1 for i = 1,2, . . . , m− 1. Hence m = n, and this proves the claim.

�

Solved problem. Assume that α: P → P is an isotone mapping of the poset P of n

elements. Show that the composition αn! is a retraction of P.

Solution Since |P|= n, for each x ∈ P, among x ,α(x), . . . ,αn(x) there is a repeated

element: αr(x)(x) = αs(x)(x) with t(x) = s(x)− r(x)> 0 . Now αs(x)+ j(x) = αr(x)+ j

for all j ≥ 0, and thus for all j ≥ r(x), we have

α j(x) = α( j−r(x))+r(x)(x) = α( j−r(x))+s(x)(x) = α j+t(x)(x).

Therefore each α j(x) for j ≥ r(x) is t(x)-periodic: α j(x) = α j+k·t(x)(x) for all k ≥ 0.

Consider then y = αn!(x). By the above, αi+k·t(x)(x) = y for some i ≤ n and all

k ≥ 0. Consequently, when k = n!/t(x), then

αn!(y) = α
n!+i+t(x) n!

t(x) (x) = αi+m·t(x)(x) = y,

where m = n!(1+ 1/t(x)). The claim follows from this. (We need the bound n! to

ensure that we have an integer in each possible n!/t(x).) �


