Ordered Sets

Problem Set 3 (Jan 30, 2015)

1 Let *P* and *Q* be locally finite posets, and assume the mapping $\varphi : P \to Q$ preserves the cover relation: i.e., if $x \prec_P y$ then $\varphi(x) \prec_Q \varphi(y)$. Show that φ is isotone.

Solution. We prove the claim by induction on the size s(x, y) of the intervals $[x, y]_p$ that $x \leq_p y$ implies $\varphi(x) \leq_Q \varphi(y)$. If s(x, y) = 2, then the claim follows from the assumption. Suppose that $s(x, y) \geq 3$. Hence there is an element z with $x <_p z <_p y$. Now s(x, z) < s(x, y) and s(z, y) < s(x, y), and so the induction hypothesis gives $\varphi(x) \leq_Q \varphi(z)$ and $\varphi(z) \leq_Q \varphi(y)$. Therefore also $\varphi(x) \leq_Q \varphi(y)$.

2 (Part of Theorem 1.40) Prove that if *P* is partially well-ordered then in every infinite sequence x_1, x_2, \ldots in *P* there are elements x_i and x_j such that $x_i \leq_P x_j$ with i < j.

Solution. Let $x_1, x_2, ...$ be such that $x_i \not\leq_P x_j$ for all i < j, i.e., for all i < j, either $x_i >_P x_j$ or $x_i \parallel x_j$. Let

$$M = \{x_i : x_i || x_i \text{ for all } j > i\}.$$

Then *M* is an antichain and thus finite by FAC. Let *m* be the maximum index such that $x_m \in M$. Hence, for each i > m, there exists *j* with j > i such that $x_i \ge_P x_j$. This gives an infinite descending chain; a contradiction.

3 Let *P* be a finite poset such that the greatest lower bound exists for each pair $x, y \in P$. Show that, if *P* has a top element, also the least upper bound exists for all elements *x* and *y*.

Solution. It follows by induction that every subset $A \subseteq P$ has the greatest lower bound. Then for all $x, y \in P$, consider $A = \{x, y\}^u = \{z \mid x \leq_p z, y \leq_p z\}$. Here *A* is nonempty since *P* has the (unique) maximum element. Now the greatest lower bound of the set *A* is the least upper bound of *x* and *y*.

An isotone mapping $\alpha: P \to P$ is called a **retraction** of the poset *P*, if $\alpha^2 = \alpha$, i.e., $\alpha(\alpha(x)) = \alpha(x)$ for all $x \in P$. Then we say that the subposet $\alpha(P)$ is a **retract** of *P*.

4 Show that an isotone mapping $\alpha: P \to P$ is a retraction if and only if its restriction $\beta = \alpha \upharpoonright \alpha(P)$ to the image $\alpha(P)$ is the identity mapping.

Solution. Assume that $\alpha^2 = \alpha$, and let $y \in \alpha(P)$, say $\alpha(x) = y$ or some $x \in P$. Then $\beta(y) = \alpha(\alpha(x)) = \alpha(x) = y$. Hence β is the identity.

Conversely, suppose β is the identity function. Then $\alpha(\alpha(x)) = \beta(\alpha(x)) = \alpha(x)$ for all $x \in P$.

5 Assume every isotone mapping $\alpha: P \to P$ of the poset *P* has a fixed point (i.e., $\alpha(x) = x$ for some $x \in P$), and let *Q* be a retract of *P*. Show that every isotone mapping $\beta: Q \to Q$ has a fixed point.

Solution. Let $\alpha: P \to Q$ be a retraction of *P* onto $Q (= \alpha(P))$, and let $\beta: Q \to Q$ be isotone. Then $\beta \alpha: P \to Q$ is an isotone mapping (of *P*), and by assumption it has a fixed point *x*. Obviously $x \in Q$, and thus, by the previous exercise, $\alpha(x) = x$. Now, $\alpha(x) = x = \beta \alpha(x)$, and thus $\alpha(x)$ is a fixed point of β .

- **6** Let *P* be a finite poset. A mapping $r: P \rightarrow \{1, 2, ..., n\}$ is a **rank function** on *P* if it satisfies:
 - (1) r(x) = 1 if x is a minimal element of P;
 - (2) r(x) = n if x is a maximal element of P;
 - (3) r(y) = r(x) + 1 if $x \prec_p y$.

We say that *P* is **graded of rank** *n* if all maximal chains of *P* have length *n*. (The *length* |C| of a chain *C* is the number of its elements.)

Show that a finite poset *P* is graded of rank *n* if and only if it has a rank function $r: P \rightarrow \{1, 2, ..., n\}$.

Solution. Suppose *P* is graded of rank *n*. For $x \in P$, let C_x be a maximal chain containing *x*, and define $r(x) = |\{y \in C_x \mid y <_P x\}|$. We show first that r(x) is well defined, i.e., it does not depend on the choice of C_x . Indeed, let *C* and *C'* be any two maximal chains containing *x*, and consider the disjoint unions

$$C = C_L \cup \{x\} \cup C_U$$
 and $C' = C'_L \cup \{x\} \cup C'_U$

for $C_L = \{y \in C \mid y <_P x\}$ and $C'_L = \{y \in C' \mid y <_P x\}$. Also $C'_L \cup \{x\} \cup C_U$ is a chain containing *x* and thus $|C'_L| \le |C_L|$. By symmetry, there is equality here, and also $|C'_U| \le |C_U|$. This shows that *r* is well defined, and it follows from the maximality of the chains that *r* is rank function.

In converse, let $r: P \to \{1, 2, ..., n\}$ be a rank function, and $x_1 <_P ... <_P x_m$ a maximal chain. Then necessarily x_1 is a minimal element and x_m is a maximal element, and $x_i \prec_P x_{i+1}$ for i = 1, 2, ..., m-1. Now, $r(x_1) = 1$ and $r(x_m) = n$, and $r(x_{i+1}) = r(x_i) + 1$ for i = 1, 2, ..., m-1. Hence m = n, and this proves the claim.

Solved problem. Assume that $\alpha: P \to P$ is an isotone mapping of the poset *P* of *n* elements. Show that the composition $\alpha^{n!}$ is a retraction of *P*.

Solution Since |P| = n, for each $x \in P$, among $x, a(x), ..., a^n(x)$ there is a repeated element: $a^{r(x)}(x) = a^{s(x)}(x)$ with t(x) = s(x) - r(x) > 0. Now $a^{s(x)+j}(x) = a^{r(x)+j}$ for all $j \ge 0$, and thus for all $j \ge r(x)$, we have

$$\alpha^{j}(x) = \alpha^{(j-r(x))+r(x)}(x) = \alpha^{(j-r(x))+s(x)}(x) = \alpha^{j+t(x)}(x).$$

Therefore each $\alpha^{j}(x)$ for $j \ge r(x)$ is t(x)-periodic: $\alpha^{j}(x) = \alpha^{j+k \cdot t(x)}(x)$ for all $k \ge 0$. Consider then $y = \alpha^{n!}(x)$. By the above, $\alpha^{i+k \cdot t(x)}(x) = y$ for some $i \le n$ and all $k \ge 0$. Consequently, when k = n!/t(x), then

$$\alpha^{n!}(y) = \alpha^{n! + i + t(x)\frac{n!}{t(x)}}(x) = \alpha^{i + m \cdot t(x)}(x) = y,$$

where m = n!(1 + 1/t(x)). The claim follows from this. (We need the bound n! to ensure that we have an integer in each possible n!/t(x).)