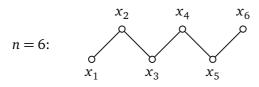
Ordered Sets

Problem Set 4 (14:00! Feb 6, 2015)

- (a) For positive integers r and s, denote R(s,t) = (s-1)(t-1)+1. Show that if a poset P has at least R(s,t) elements then it has height $h(P) \ge s$ or width $w(P) \ge t$.
 - **(b)** Show that there is a poset P of R(s,t)-1 elements that has h(P) < s and w(P) < t.
- Let *P* be a finite poset. Show that there are equally many antichains in *P* as there are isotone mappings $\varphi: P \to \mathbf{C}_2$, where \mathbf{C}_2 is the two-element chain on $\{0, 1\}$.
- **3** A finite poset *P* is a **fence**, if $P = \{x_1, x_2, ..., x_n\}$ such that

$$x_{2i+1} <_P x_{2i}$$
 and $x_{2i-1} <_P x_{2i}$

for all i = 1, 2, ..., and otherwise the elements are incomparable.



Show that every isotone mapping $\varphi: P \to P$ of a fence has a fixed point.

Let P be a finite poset, and let $\mathcal{A}(P)$ be the poset of its antichains ordered as follows:

$$A \leq_{\mathcal{A}} B \iff (\forall x \in A)(\exists y \in B) : x \leq_{p} y$$
.

Show that $\mathcal{A}(P)$ is isomorphic to the poset of down-sets

$$\mathcal{D}(P) = \{ \downarrow A \mid A \subseteq P, A \neq \emptyset \}$$

ordered by inclusion.

- Prove the claim of Example 1.52: Let S be a subset of pairs of incomparable elements. If S contains no alternating cycles, then the transitive closure $(P \cup S)^+$ is antisymmetric.
- Determine the width and height of the divisor poset T_{24} . Find also all partitions of T_{24} into $w(T_{24})$ chains.