Ordered Sets (2015)

Problem Set 6 (Feb 20 at 14:00)

First midterm on Monday 23rd up to lattices.No lectures or exercises during 24-27 of February.

1 Let *L* be a lattice. Show that every closed interval [x, y] with $x <_L y$ forms a sublattice.

Solution. Let $a, b \in [x, y]$. Now, $a \leq_L y$ and $b \leq_L y$, and hence $a \lor b \leq_L y$, and similarly $x \leq_L a \land b$.

2 A subset $A \subseteq X$ is **cofinite** if its complement if finite. Show that the set of cofinite subsets of a set *X* is a lattice under inclusion.

Solution. Straightforward.

3 Let *L* be any lattice. Show that

$$x \wedge (y \vee z) \ge_L (x \wedge y) \vee (x \wedge z)$$

for all $x, y, z \in L$.

Solution. Indeed,

$$x \land (y \lor z) \ge_L x \land y \qquad (since \ y \lor z \ge_L y) \\ x \land (y \lor z) \ge_L x \land z \qquad (since \ y \lor z \ge_L z)$$

4 Let *L* be any lattice. Show that

$$x \leq_L y \implies x \lor (y \land z) \leq_L y \land (x \lor z)$$

for all $x, y, z \in L$.

Solution. Suppose that $x \leq_L y$. Then $x \leq_L y \wedge (x \vee z)$ and also $y \wedge z \leq_L y \wedge (x \vee z)$, since $z \leq_L x \vee z$.

5 Show that the direct product of two lattices is a lattice.

Solution. Let L_1 and L_2 be lattices. Then $L_1 \times L_2$ is a poset, and

$$(x_1, y_1) \land (x_2, y_2) = (x_1 \land x_2, y_1 \land y_2)$$
 and $(x_1, y_1) \lor (x_2, y_2) = (x_1 \lor x_2, y_1 \lor y_2).$

6 Let *L* be a lattice. An element $x \in L$ is **join-irreducible** if $x = \bigvee A$ for a finite subset *A* implies that $x \in A$. (Similarly, *x* is **meet-irreducile** if $x = \bigwedge A$ implies that $x \in A$.)

Suppose that *L* is finite.

(a) Show that an element $x \neq 0_L$ is join-irreducible if and only if there exists a unique $y \in L$ such that $y \prec_L x$.

(Analogous statement holds for the meet-irreducible elements: An element $x \neq 1_L$ is meet-irreducible if and only if there exists a unique $y \in L$ such that $x \prec_L y$.)

(b) Show that for each $x \in L$ with $x \neq 0_L$ there are join-irreducible elements $x_i \in \downarrow x$ with

$$x = x_1 \lor x_2 \lor \ldots \lor x_n.$$

Solution. (a) Since *L* is finite, the minimum element 0_L exists in *L*. Moreover, $0_L = \bigvee \emptyset$. Hence 0_L is not join-irreducible. For each $x \neq 0_L$, there exists at least one element $y \in L$ with $y \prec x$.

Assume that the set $A(x) = \{y \mid y \prec x\}$ has at least two elements. Then $x = \bigvee A(x)$ and $x \notin A(x)$. Hence *x* is not join-irreducible.

Conversely, let there be a unique *y* with $y \prec x$, and let $x = \bigvee A$ for a subset $A \subseteq L$. If $x \notin A$, then $A \subseteq \downarrow y$, and hence $\bigvee A = y$; a contradiction.

(b) Suppose *x* is a smallest counter-example, i.e., *x* is not a join of join-irreducible elements, but each $y <_L x$ is such a join. In particular, *x* is not join-irreducible. Let $y_i \prec_L x$ for i = 1, 2, ..., k. By assumption, each y_i is a join of join-irreducible elements, and since $x = y_1 \lor y_2 \lor ... \lor y_k$, the claim follows.