Ordered Sets (2015)

Problem Set 6 (Feb 20 at 14:00)

1 Let *L* be a lattice. Show that every closed interval $[x, y]$ with $x \leq L y$ forms a sublattice.

Solution. Let $a, b \in [x, y]$. Now, $a \leq_L y$ and $b \leq_L y$, and hence $a \vee b \leq_L y$, and \Box similarly $x \leq_L a \wedge b$.

2 A subset $A \subseteq X$ is **cofinite** if its complement if finite. Show that the set of cofinite subsets of a set *X* is a lattice under inclusion.

Solution. Straightforward.

3 Let *L* be any lattice. Show that

$$
x \wedge (y \vee z) \geq_L (x \wedge y) \vee (x \wedge z)
$$

for all $x, y, z \in L$.

Solution. Indeed,

$$
x \wedge (y \vee z) \ge_L x \wedge y \qquad \text{(since } y \vee z \ge_L y)
$$

$$
x \wedge (y \vee z) \ge_L x \wedge z \qquad \text{(since } y \vee z \ge_L z)
$$

4 Let *L* be any lattice. Show that

$$
x \leq_L y \implies x \vee (y \wedge z) \leq_L y \wedge (x \vee z)
$$

for all $x, y, z \in L$.

Solution. Suppose that $x \leq_L y$. Then $x \leq_L y \land (x \lor z)$ and also $y \land z \leq_L y \land (x \lor z)$, since z ≤_L $x \vee z$. \Box

5 Show that the direct product of two lattices is a lattice.

Solution. Let L_1 and L_2 be lattices. Then $L_1 \times L_2$ is a poset, and

$$
(x_1, y_1) \wedge (x_2, y_2) = (x_1 \wedge x_2, y_1 \wedge y_2)
$$
 and $(x_1, y_1) \vee (x_2, y_2) = (x_1 \vee x_2, y_1 \vee y_2).$

6 Let *L* be a lattice. An element $x \in L$ is **join-irreducible** if $x = \bigvee A$ for a finite subset *A* implies that $x \in A$. (Similarly, *x* is **meet-irreducile** if $x = \bigwedge A$ implies that $x \in A$.)

Suppose that *L* is finite.

(a) Show that an element $x \neq 0_L$ is join-irreducible if and only if there exists a unique *y* ∈ *L* such that *y* \prec _{*L*} *x*.

 \Box

(Analogous statement holds for the meet-irreducible elements: An element $x \neq 0$ 1*L* is meet-irreducible if and only if there exists a unique *y* ∈ *L* such that *x* ≺*^L y*.)

(b) Show that for each $x \in L$ with $x \neq 0_L$ there are join-irreducible elements $x_i \in \downarrow x$ with

$$
x = x_1 \vee x_2 \vee \ldots \vee x_n.
$$

Solution. (a) Since *L* is finite, the minimum element 0_L exists in *L*. Moreover, $0_L = \bigvee \emptyset$. Hence 0_L is not join-irreducible. For each $x \neq 0_L$, there exists at least one element *y* \in *L* with *y* \prec *x*.

Assume that the set $A(x) = \{y \mid y \prec x\}$ has at least two elements. Then $x = \bigvee A(x)$ and $x \notin A(x)$. Hence *x* is not join-irreducible.

Conversely, let there be a unique *y* with *y* \prec *x*, and let *x* = $\bigvee A$ for a subset *A* \subseteq *L*. If *x* ∉ *A*, then *A* ⊆ ↓*y*, and hence $\sqrt{A} = y$; a contradiction.

(b) Suppose *x* is a smallest counter-example, i.e., *x* is not a join of join-irreducible elements, but each $y \lt_l x$ is such a join. In particular, x is not join-irreducible. Let $y_i \prec_L x$ for $i = 1, 2, ..., k$. By assumption, each y_i is a join of join-irreducible elements, and since $x = y_1 \vee y_2 \vee \ldots \vee y_k$, the claim follows.