Ordered Sets (2015)

Problem Set 7 (March 6)

Let *L* be a finite lattice, and *L'* any lattice. Suppose $\alpha, \beta: L \to L'$ are lattice homomorphisms satisfying $\alpha(x) = \beta(x)$ for all join-irreducible elements $x \in L$. Show that $\alpha = \beta$.

Solution. Let $x \neq 0_L$. Then $x = x_1 \lor x_2 \lor ... \lor x_n$ for some join-irreducible elements x_i (by the previous exercises). Hence

$$\alpha(x) = \alpha(x_1) \vee \alpha(x_2) \vee \ldots \vee \alpha(x_n) = \beta(x_1) \vee \beta(x_2) \vee \ldots \vee \beta(x_n) = \beta(x).$$

Let *P* be a poset and *L* a lattice. Assume that there are isotone mappings $\alpha: P \to L$ and $\beta: L \to P$ such that $\beta\alpha: P \to P$ is the identity map. Show that also *P* is a lattice.

Solution. The claim follows when we show that $\beta(\alpha(x) \vee \alpha(y))$ is the least upper bound of $x, y \in P$.

It is an upper bound: $\alpha(x) \vee \alpha(y)$ exists in the lattice L, and, for all x and y, we have that $x = \beta(\alpha(x)) \leq_P \beta(\alpha(x) \vee \alpha(y))$, since β is an isotone mapping. Similarly, $y \leq_P \beta(\alpha(x) \vee \alpha(y))$.

Least upper bound: Assume that $z \geq_P x$ and $z \geq_P y$. Hence $\alpha(z) \geq_L \alpha(x)$ and $\alpha(z) \geq_L \alpha(y)$, since α is isotone. So $\alpha(z) \geq_L \alpha(x) \vee \alpha(y)$. Also β is isotone, and hence $\beta \alpha(z) \geq_P \beta(\alpha(z) \vee \alpha(y))$. From $\beta \alpha = \iota$, we obtain $z = \beta \alpha(z) \geq_P \beta(\alpha(x) \vee \alpha(y))$. The claim follows from this.

Let *L* be an infinite well-founded lattice (i.e., it satisfies the descending chain condition). Show that each element $x \in L$ is a join $x = \bigvee A_x$ for some finite set A_x of join-irreducible elements.

Solution. Assume the claim does not hold. Let $x \in L$ be a minimal element that is not a join of finitely many join-irreducible elements. In particular, x is not join-irreducible. Hence $x = \bigvee A$ for some finite set $A \subseteq \bigcup x \setminus \{x\}$. By the minimality of x, each $y \in A$ is a join $y = \bigvee A_y$ of finitely many join-irreducible elements. But then also $x = \bigvee (\bigcup_{y \in A} A_y)$; a contradiction.

For which lattices L does there exist a surjective homomorphism $\alpha \colon M_5 \to L$, where M_5 is the 5-element lattice on page 50?

Solution. Adopt the notation of M_5 (p. 50). Assume that α is not injective. If $\alpha(b) = \alpha(c)$ then $\alpha(a) = \alpha(b \wedge c) = \alpha(b) \wedge \alpha(c) = \alpha(b)$ and similarly $\alpha(e) = \alpha(b)$, and we conclude that L is a singleton lattice. The same is true for all other of noninjective cases. Conclude that the only required lattices are M_5 and the singleton lattice. \square

Solution Consider the lattice on the right, and let $\theta \in \text{Con}(L)$ be such that $a\theta b$. Show that also $c\theta d$ holds.

Solution. We have

$$a\theta b \implies 0 = (a \land e)\theta(b \land e) = e \implies c = (0 \lor c)\theta(e \lor c) = d$$

- **6** Let *θ* be an equivalence relation of a lattice *L*. Then $\theta \in Con(L)$, if the following two conditions are satisfied:
- (1) $x \theta y \iff (x \wedge y)\theta(x \vee y),$
- (2) $x \theta y, x \leq_L y, z \in L \Longrightarrow (x \vee z)\theta(y \vee z) \text{ and } (x \wedge z)\theta(y \wedge z).$

Solution. (A) We show first that

$$x \le_L y, (x, y) \in \theta$$
 and $a, b \in [x, y]_L \Longrightarrow (a, b) \in \theta$.

Indeed, $a \wedge b = (a \wedge b) \vee x$ and $(a \wedge b) \vee y = y$, and so $a \wedge b = (a \wedge b) \vee x \theta(a \wedge b) \vee y = y$, i.e, $(a \wedge b)\theta y$. Here $a \wedge b \leq_L y$, and so (2) ensures (put $x = a \wedge b$ and $z = a \vee b$) that

$$((a \land b) \land (a \lor b))\theta(y \land (a \lor b)),$$

and hence $(a \wedge b)\theta(a \vee b)$, wherefrom it follows that $a\theta b$ by (1).

(B) We show then that θ is a congruence: Assume that $x\theta y$.

$$x\theta y \stackrel{(1)}{\Longrightarrow} (x \wedge y)\theta(x \vee y) \stackrel{(2)}{\Longrightarrow} ((x \wedge y) \vee z)\theta((x \vee y) \vee z),$$

where

$$x \lor z, \ y \lor z \in [(x \land y) \lor z, (x \lor y) \lor z]_L$$

Therefore $(x \lor z)\theta(y \lor z)$ for all $z \in L$ by the first part (A) of the proof.

$$x\theta y \stackrel{(1)}{\Longrightarrow} (x \wedge y)\theta(x \vee y) \stackrel{(2)}{\Longrightarrow} ((x \wedge y) \wedge z)\theta((x \vee y) \wedge z),$$

where

$$x \wedge z, \ y \wedge z \in [(x \wedge y) \wedge z, (x \vee y) \wedge z]_L$$

Therefore also $(x \land z)\theta(y \land z)$ for all $z \in L$ by the first part (A) of the proof.

Solved problem. We prove Dedekind's law for subgroups: if H_1, H_2, H_3 are subgroups of G and $H_1 \subseteq H_2$ then

$$H_1(H_2 \cap H_3) = H_2 \cap H_1H_3$$
.

Solution Assume $g = g_1g_2$ with $g_1 \in H_1 \subseteq H_2$ and $g_2 \in H_2 \cap H_3$. Then clearly $g \in H_2 \cap H_1H_3$.

In the other direction, let $g = g_1g_2 \in H_2$ with $g_1 \in H_1 \subseteq H_2$ and $g_2 \in H_3$. Then $g_1 \in H_2$ and $g_2 = g_1^{-1}g \in H_2$ and so $g_2 \in H_2 \cap H_3$. Hence $g \in H_1(H_2 \cap H_3)$ as required.