Ordered Sets (2015)

Problem Set 8 (March 13)

There are no lectures on Tuesday 10th of March.

1 Let *L* be a lattice. Show that a subset $P \subseteq L$ is a prime ideal if and only if $L \setminus P$ is a prime filter of *L*.

Solution. Let $F = L \setminus P$.

Assume first that *P* is a prime ideal. Now $x, y \in F$ implies that $x \wedge y \notin P$, and so *x* \land *y* ∈ *F*. Also,

$$
x \lor y \in F \iff x \lor y \notin P \iff x \notin P \text{ or } y \notin P \iff x \in F \text{ or } y \in F
$$

Hence *F* is a prime filter.

On the other hand, if *F* is a prime filter, then the dual argument shows that *P* is a \Box prime ideal. \Box

2 Prove Lemma 2.47: A proper subset *I* of a lattice *L* is a prime ideal if *I* is closed under finite joins and

$$
(2.5') \t x \land y \in I \iff x \in I \text{ or } y \in I.
$$

Solution. Suppose that *I* is a prime ideal. Then it is closed under finite joins, and the implication \rightarrow ' holds by definition. Also, in each ideal the reverse implication holds, since $x \land y \in \downarrow x$ and $x \land y \in \downarrow y$.

Conversely, it is sufficient to show that if $x \in I$ and $y \leq_L x$, then also $y \in I$. This follows from the reverse implication: $x \in I$ implies $y = x \land y \in I$.

3 Prove Lemma 2.39: Let *I_i* be a set of ideals of a lattice *L* for all $i \in A$. Then also T *i*∈*A Ii* is an ideal of *L* if it is nonempty. In particular, every subset *X* ⊆ *L* has the smallest ideal containing *X*:

$$
(X] = \{I \mid I \in \text{Id}(L) \text{ and } X \subseteq I\}.
$$

Solution. The claim follows from the definition of an ideal.

4 Let *L* be a lattice that satisfies the ascending chain condition (ACC). Show that $\bigvee A = \bigvee F$. for each nonempty subset $A \subseteq L$, there exists a finite subset $F \subseteq A$ such that

Solution. Let *A* be a nonempty subset of *L*, and let

$$
B = \{ \bigvee F \mid \emptyset \neq F \subseteq A, F \text{ finite} \}.
$$

Since *L* satisfies the ACC, the set *B* has a maximal element, say $z = \sqrt{F}$. For each *x* ∈ *A*, also \bigvee (*F* ∪ {*x*}) ∈ *B*, and thus *z* = \bigvee (*F* ∪ {*x*}), which implies that *x* ≤_{*L*} *z*, i.e., *z* is an upper bound of *A*. If also *y* is an upper bound of *A*, then $z = \sqrt{F} \leq_L y$, since *F* ⊆ *A*, and so $z = √A$. Hence $√A$ exists and it equals $√A$ *F*. □

5 Consider Theorem 2.36. Show that the relation *Ψ* is an equivalence relation.

Solution. Let $\theta_1, \theta_2 \in \text{Con}(L)$. We say that a finite sequence $x_0 \leq_L x_1 \leq_L \ldots \leq_L x_n$ is **good**, and denote it by $x_0 \rightarrow x_n$, if $(x_i, x_{i+1}) \in \theta_1 \cup \theta_2$ for all *i*.

Recall the definition of *Ψ*:

 $(x, y) \in \Psi \iff \text{there is a good sequence } x \land y \to x \lor y$

Now, since θ_1 and θ_2 are congruences, for all *z*,

(1)
$$
(x, y) \in \Psi
$$
 with $x \leq_L y \implies (x \land z, y \land z) \in \Psi$ and $(x \lor z, y \lor z) \in \Psi$

Indeed, insert ∧*z* (or ∨*z*, correspondingly) to each term in the given good sequence $x \wedge y \rightarrow x \vee y$ and then observe that $x = x \wedge y$ and $x \vee y = y$.

Clearly, *Ψ* is reflexive and symmetric. We need to show that it is transitive. Let $(x, y) \in \Psi$ and $(y, z) \in \Psi$. Then we have some good sequences

(3)
$$
x \wedge y = x_0 \leq_L x_1 \leq_L \ldots \leq_L x_n = x \vee y,
$$

(4)
$$
y \wedge z = y_0 \leq_L y_1 \leq_L \ldots \leq_L y_m = y \vee z.
$$

We have

$$
x \wedge y \wedge z = (x \wedge y) \wedge (y \wedge z)
$$

= $x_0 \wedge (y \wedge z) \leq_L \dots \leq_L x_n \wedge (y \wedge z)$
= $(x \vee y) \wedge (y \wedge z) = y \wedge z$ (since $y \wedge z \leq_L y \leq_L x \vee y$)

and so we have a good sequence $x \wedge y \wedge z \rightarrow y \wedge z$. Also, since $x \wedge y \leq_L y \vee z$,

$$
y \vee z = (x \wedge y) \vee (y \vee z)
$$

= $x_0 \vee (y \vee z) \leq_L ... \leq_L x_n \vee (y \vee z)$
= $x \vee y \vee z$

and this gives a good sequence $y \lor z \rightarrow x \lor y \lor z$. In (4) there is a good sequence *y* ∧ *z* → *y* ∨ *z*. By combining good sequences, we obtain *x* ∧ *y* ∧ *z* → *x* ∨ *y* ∨ *z*. Denote $a = x \land y \land z$ and $b = x \lor y \lor z$. By (1),

$$
x \wedge z = a \vee (x \wedge z) \rightarrow b \vee (x \wedge z) = b.
$$

By (1),

$$
x \wedge z = (x \wedge z) \wedge (x \vee z) \rightarrow b \vee (x \vee z) = x \vee z.
$$

Hence $(x, z) \in \Psi$. Thus Ψ is transitive.

6 Prove Theorem 2.36.

Solution. Clearly $\theta_1 \cup \theta_2 \subseteq \Psi$. Also, if $\theta_1 \cup \theta_2 \subseteq \rho$ for some $\varrho \in \text{Con}(L)$ then $\Psi \subseteq \rho$. Indeed, if $x \Psi y$ then there is a Ψ -sequence $x \wedge y \rightarrow x \vee y$, and hence $(x \wedge y) \rho(x \vee y)$. Since the congruence classes are convex, also *xρy* holds.

We then employ Exercise 7.6. For Exercise 7.6(1), we use the defining sequence of (x, y) ∈ Ψ by changing each term x_i to x_i ∧ ($x \lor y$). We obtain a sequence

$$
(x \wedge y) \wedge (x \vee y) = x_0 \wedge (x \vee y) \leq_L \dots \leq_L x_n \wedge (x \vee y)
$$

=
$$
(x \vee y) \wedge (x \vee y) = (x \vee y) = (x \wedge y) \vee (x \vee y),
$$

where the corresponding steps are in $\theta_1 \cup \theta_2$, since $\theta_1, \theta_2 \in \text{Con}(L)$. Therefore we have (*x* ∧ *y*)*Ψ*(*x* ∨ *y*).

The converse follows from $x \wedge y = (x \wedge y) \wedge (x \vee y)$ and $x \vee y = (x \wedge y) \vee (x \vee y)$. For Exercise 7.6(2), we have

$$
x \leq_L y
$$
, $(x, y) \in \Psi$, $z \in L \implies (x \wedge z) \Psi(y \wedge z)$ and $(x \vee z) \Psi(y \vee z)$.

The former condition is given in (1). \Box