Ordered Sets (2015)

Problem Set 8 (March 13)

There are no lectures on Tuesday 10th of March.

Let <i>L</i> be a lattice. Show that a subset $P \subseteq L$ is a prime ideal if and only if $L \setminus P$ is a prime filter of <i>L</i> .
Solution . Let $F = L \setminus P$. Assume first that P is a prime ideal. Now $x, y \in F$ implies that $x \wedge y \notin P$, and so $x \wedge y \in F$. Also,
$x \lor y \in F \iff x \lor y \notin P \iff x \notin P \text{ or } y \notin P \iff x \in F \text{ or } y \in F$
Hence F is a prime filter. On the other hand, if F is a prime filter, then the dual argument shows that P is a prime ideal.
Prove Lemma 2.47: A proper subset I of a lattice L is a prime ideal if I is closed under finite joins and
$(2.5') x \land y \in I \iff x \in I \text{ or } y \in I.$
Solution . Suppose that I is a prime ideal. Then it is closed under finite joins, and the implication ' \Longrightarrow ' holds by definition. Also, in each ideal the reverse implication holds, since $x \land y \in \downarrow x$ and $x \land y \in \downarrow y$. Conversely, it is sufficient to show that if $x \in I$ and $y \leq_L x$, then also $y \in I$. This follows from the reverse implication: $x \in I$ implies $y = x \land y \in I$.
Prove Lemma 2.39: Let I_i be a set of ideals of a lattice L for all $i \in A$. Then also $\bigcap_{i \in A} I_i$ is an ideal of L if it is nonempty. In particular, every subset $X \subseteq L$ has the smallest ideal containing X :
$(X] = \{I \mid I \in \mathrm{Id}(L) \text{ and } X \subseteq I\}.$
Solution . The claim follows from the definition of an ideal. \Box
Let L be a lattice that satisfies the ascending chain condition (ACC). Show that for each nonempty subset $A \subseteq L$, there exists a finite subset $F \subseteq A$ such that $\bigvee A = \bigvee F$.
Solution . Let A be a nonempty subset of L , and let

 $x \in A$, also $\bigvee (F \cup \{x\}) \in B$, and thus $z = \bigvee (F \cup \{x\})$, which implies that $x \le_L z$, i.e., z is an upper bound of A. If also y is an upper bound of A, then $z = \bigvee F \le_L y$, since $F \subseteq A$, and so $z = \bigvee A$. Hence $\bigvee A$ exists and it equals $\bigvee F$.

 $B = \{ \bigvee F \mid \emptyset \neq F \subseteq A, F \text{ finite} \}.$

Since L satisfies the ACC, the set B has a maximal element, say $z = \bigvee F$. For each

Solution. Let $\theta_1, \theta_2 \in \text{Con}(L)$. We say that a finite sequence $x_0 \leq_L x_1 \leq_L \ldots \leq_L x_n$ is **good**, and denote it by $x_0 \to x_n$, if $(x_i, x_{i+1}) \in \theta_1 \cup \theta_2$ for all i.

Recall the definition of Ψ :

$$(x, y) \in \Psi \iff$$
 there is a good sequence $x \land y \rightarrow x \lor y$

Now, since θ_1 and θ_2 are congruences, for all z,

(1)
$$(x,y) \in \Psi$$
 with $x \leq_L y \Longrightarrow (x \land z, y \land z) \in \Psi$ and $(x \lor z, y \lor z) \in \Psi$

Indeed, insert $\land z$ (or $\lor z$, correspondingly) to each term in the given good sequence $x \land y \rightarrow x \lor y$ and then observe that $x = x \land y$ and $x \lor y = y$.

Clearly, Ψ is reflexive and symmetric. We need to show that it is transitive. Let $(x, y) \in \Psi$ and $(y, z) \in \Psi$. Then we have some good sequences

$$(3) x \wedge y = x_0 \leq_L x_1 \leq_L \ldots \leq_L x_n = x \vee y,$$

$$(4) y \wedge z = y_0 \leq_L y_1 \leq_L \ldots \leq_L y_m = y \vee z.$$

We have

$$x \wedge y \wedge z = (x \wedge y) \wedge (y \wedge z)$$

$$= x_0 \wedge (y \wedge z) \leq_L \dots \leq_L x_n \wedge (y \wedge z)$$

$$= (x \vee y) \wedge (y \wedge z) = y \wedge z \quad \text{(since } y \wedge z \leq_L y \leq_L x \vee y)$$

and so we have a good sequence $x \land y \land z \rightarrow y \land z$. Also, since $x \land y \leq_L y \lor z$,

$$y \lor z = (x \land y) \lor (y \lor z)$$

= $x_0 \lor (y \lor z) \le_L \dots \le_L x_n \lor (y \lor z)$
= $x \lor y \lor z$

and this gives a good sequence $y \lor z \rightarrow x \lor y \lor z$.

In (4) there is a good sequence $y \land z \to y \lor z$. By combining good sequences, we obtain $x \land y \land z \to x \lor y \lor z$. Denote $a = x \land y \land z$ and $b = x \lor y \lor z$. By (1),

$$x \wedge z = a \vee (x \wedge z) \rightarrow b \vee (x \wedge z) = b$$
.

By (1),

$$x \land z = (x \land z) \land (x \lor z) \rightarrow b \lor (x \lor z) = x \lor z.$$

Hence $(x,z) \in \Psi$. Thus Ψ is transitive.

6 Prove Theorem 2.36.

Solution. Clearly $\theta_1 \cup \theta_2 \subseteq \Psi$. Also, if $\theta_1 \cup \theta_2 \subseteq \rho$ for some $\varrho \in \text{Con}(L)$ then $\Psi \subseteq \rho$. Indeed, if $x \Psi y$ then there is a Ψ -sequence $x \wedge y \to x \vee y$, and hence $(x \wedge y)\rho(x \vee y)$. Since the congruence classes are convex, also $x \rho y$ holds.

We then employ Exercise 7.6. For Exercise 7.6(1), we use the defining sequence of $(x, y) \in \Psi$ by changing each term x_i to $x_i \land (x \lor y)$. We obtain a sequence

$$(x \wedge y) \wedge (x \vee y) = x_0 \wedge (x \vee y) \leq_L \dots \leq_L x_n \wedge (x \vee y)$$

= $(x \vee y) \wedge (x \vee y) = (x \vee y) = (x \wedge y) \vee (x \vee y),$

where the corresponding steps are in $\theta_1 \cup \theta_2$, since $\theta_1, \theta_2 \in \text{Con}(L)$. Therefore we have $(x \wedge y)\Psi(x \vee y)$.

The converse follows from $x \wedge y = (x \wedge y) \wedge (x \vee y)$ and $x \vee y = (x \wedge y) \vee (x \vee y)$. For Exercise 7.6(2), we have

$$x \leq_L y, (x, y) \in \Psi, z \in L \Longrightarrow (x \wedge z) \Psi(y \wedge z) \text{ and } (x \vee z) \Psi(y \vee z).$$

The former condition is given in (1).