
Ordered Sets (2015)

Problem Set 8 (March 13)

There are no lectures on Tuesday 10th of March.

1 Let L be a lattice. Show that a subset P ⊆ L is a prime ideal if and only if L \ P is

a prime filter of L.

Solution. Let F = L \ P.

Assume first that P is a prime ideal. Now x , y ∈ F implies that x ∧ y /∈ P, and so

x ∧ y ∈ F . Also,

x ∨ y ∈ F ⇐⇒ x ∨ y /∈ P ⇐⇒ x /∈ P or y /∈ P ⇐⇒ x ∈ F or y ∈ F

Hence F is a prime filter.

On the other hand, if F is a prime filter, then the dual argument shows that P is a

prime ideal. �

2 Prove Lemma 2.47: A proper subset I of a lattice L is a prime ideal if I is closed

under finite joins and

(2.5’) x ∧ y ∈ I ⇐⇒ x ∈ I or y ∈ I .

Solution. Suppose that I is a prime ideal. Then it is closed under finite joins, and

the implication ‘=⇒ ’ holds by definition. Also, in each ideal the reverse implication

holds, since x ∧ y ∈ ↓x and x ∧ y ∈ ↓ y.

Conversely, it is sufficient to show that if x ∈ I and y ≤L x , then also y ∈ I . This

follows from the reverse implication: x ∈ I implies y = x ∧ y ∈ I . �

3 Prove Lemma 2.39: Let Ii be a set of ideals of a lattice L for all i ∈ A. Then also
⋂

i∈A Ii is an ideal of L if it is nonempty. In particular, every subset X ⊆ L has the

smallest ideal containing X :

(X ] = {I | I ∈ Id(L) and X ⊆ I} .

Solution. The claim follows from the definition of an ideal. �

4 Let L be a lattice that satisfies the ascending chain condition (ACC). Show that

for each nonempty subset A ⊆ L, there exists a finite subset F ⊆ A such that
∨

A=
∨

F .

Solution. Let A be a nonempty subset of L, and let

B = {
∨

F | ; 6= F ⊆ A, F finite} .

Since L satisfies the ACC, the set B has a maximal element, say z =
∨

F . For each

x ∈ A, also
∨

(F ∪{x}) ∈ B, and thus z =
∨

(F ∪{x}), which implies that x ≤L z, i.e.,

z is an upper bound of A. If also y is an upper bound of A, then z =
∨

F ≤L y, since

F ⊆ A, and so z =
∨

A. Hence
∨

A exists and it equals
∨

F . �

5 Consider Theorem 2.36. Show that the relation Ψ is an equivalence relation.
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Solution. Let θ1,θ2 ∈ Con(L). We say that a finite sequence x0 ≤L x1 ≤L . . . ≤L xn

is good, and denote it by x0→ xn, if (x i, x i+1) ∈ θ1 ∪ θ2 for all i .

Recall the definition of Ψ:

(x , y) ∈ Ψ ⇐⇒ there is a good sequence x ∧ y → x ∨ y

Now, since θ1 and θ2 are congruences, for all z,

(1) (x , y) ∈ Ψ with x ≤L y =⇒ (x ∧ z, y ∧ z) ∈ Ψ and (x ∨ z, y ∨ z) ∈ Ψ

Indeed, insert ∧z (or ∨z, correspondingly) to each term in the given good sequence

x ∧ y → x ∨ y and then observe that x = x ∧ y and x ∨ y = y.

Clearly, Ψ is reflexive and symmetric. We need to show that it is transitive.

Let (x , y) ∈ Ψ and (y, z) ∈ Ψ. Then we have some good sequences

x ∧ y = x0 ≤L x1 ≤L . . . ≤L xn = x ∨ y ,(3)

y ∧ z = y0 ≤L y1 ≤L . . . ≤L ym = y ∨ z .(4)

We have

x ∧ y ∧ z = (x ∧ y)∧ (y ∧ z)

= x0 ∧ (y ∧ z) ≤L . . . ≤L xn ∧ (y ∧ z)

= (x ∨ y)∧ (y ∧ z) = y ∧ z (since y ∧ z ≤L y ≤L x ∨ y)

and so we have a good sequence x ∧ y ∧ z→ y ∧ z.

Also, since x ∧ y ≤L y ∨ z,

y ∨ z = (x ∧ y)∨ (y ∨ z)

= x0 ∨ (y ∨ z) ≤L . . . ≤L xn ∨ (y ∨ z)

= x ∨ y ∨ z

and this gives a good sequence y ∨ z→ x ∨ y ∨ z.

In (4) there is a good sequence y ∧ z → y ∨ z. By combining good sequences, we

obtain x ∧ y ∧ z→ x ∨ y ∨ z. Denote a = x ∧ y ∧ z and b = x ∨ y ∨ z. By (1),

x ∧ z = a ∨ (x ∧ z)→ b ∨ (x ∧ z) = b .

By (1),

x ∧ z = (x ∧ z)∧ (x ∨ z)→ b ∨ (x ∨ z) = x ∨ z.

Hence (x , z) ∈ Ψ. Thus Ψ is transitive. �

6 Prove Theorem 2.36.

Solution. Clearly θ1∪θ2 ⊆ Ψ. Also, if θ1∪θ2 ⊆ ρ for some ̺ ∈ Con(L) then Ψ ⊆ ρ.

Indeed, if x Ψ y then there is a Ψ-sequence x∧ y → x∨ y, and hence (x∧ y)ρ(x∨ y).

Since the congruence classes are convex, also xρ y holds.
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We then employ Exercise 7.6. For Exercise 7.6(1), we use the defining sequence of

(x , y) ∈ Ψ by changing each term x i to x i ∧ (x ∨ y). We obtain a sequence

(x ∧ y)∧ (x ∨ y) = x0 ∧ (x ∨ y) ≤L · · · ≤L xn ∧ (x ∨ y)

= (x ∨ y) ∧ (x ∨ y) = (x ∨ y) = (x ∧ y)∨ (x ∨ y),

where the corresponding steps are in θ1 ∪ θ2, since θ1,θ2 ∈ Con(L). Therefore we

have (x ∧ y)Ψ(x ∨ y).

The converse follows from x ∧ y = (x ∧ y)∧ (x ∨ y) and x ∨ y = (x ∧ y)∨ (x ∨ y).

For Exercise 7.6(2), we have

x ≤L y, (x , y) ∈ Ψ, z ∈ L =⇒ (x ∧ z)Ψ (y ∧ z) and (x ∨ z)Ψ (y ∨ z) .

The former condition is given in (1). �


