Ordered Sets (2015)

Problem Set 9 (March 20)

No lectures on Thursday 2nd April and no exercises on Friday 3rd April.

- Let *P* be a poset, Show that $D(P) = \{ \downarrow A \mid A \subseteq P \}$ is a distributive lattice w.r.t. inclusion.
- **2** Let *L* be a lattice. Show that *L* is modular if and only if, for all $x, y, z \in L$,

$$\begin{cases}
y \leq_L x \\
x \wedge z = y \wedge z \\
x \vee z = y \vee z
\end{cases} \implies x = y.$$

3 Let *L* be a lattice together with a **valuation** $v: L \to \mathbb{R}$ satisfying

$$\nu(x) + \nu(y) = \nu(x \vee y) + \nu(x \wedge y).$$

Suppose v is order preserving, i.e., $x <_L y \implies v(x) < v(y)$. Show that L is modular.

f 4 Show that a lattice L is modular if and only if it satisfies the rule

$$x \land (y \lor z) = x \land ((y \land (x \lor z)) \lor z)$$

for all elements $x, y, z \in L$.

- Let *L* be a modular lattice, and let $a \in L$. Let $x_1 \le_L x_2 \le_L ...$ be an ascending chain in *L* of infinitely many elements. Show that also one of the sequences $a \lor x_i$, for i = 1, 2, ..., or $a \land x_i$, for i = 1, 2, ... is infinite ascending.
- Consider the proof of Theorem 3.10. Show that $u \leq_L a \leq_L v$ (and similarly, $u \leq_L b \leq_L v$ and $u \leq_L c \leq_L v$.)