Tero Harju
Publications (March 2020)
Co-authors
Azimi Sepinoud
Bell Paul
Berstel Jean
Brijder Robert
Cassaigne Julien
Charlier
´
Emilie
Choffrut Cristian
Culik II Karel
Currie James
Daley Mark
Diekert Volker
Domaratzki Mike
Duval Jean-Pierre
Ehrenfeucht Andrzej
Engelfriet Joost
Ernvall Mari
Hage Jurriaan
Halava Vesa
Hirvensalo Mika
Honkala Iiro
Hoogeboom Hendrik Jan
Huova Mari
Ibarra Oscar
Ilie Lucian
Jonoska Natasha
K
¨
arki Tomi
Karhum
¨
aki Juhani
Keesmaat Niko
Kleijn Jetty
Krob Daniel
Langille Miika
Latteux Michel
Lepist
¨
o Arto
Linna Matti
Lipponen Marjo
Li Chang
M
¨
uller Mike
Margenstern Maurice
Mateescu Alexandru
Nicolas Francois
Niskanen Reino
Nowotka Dirk
Ochem Pascal
Okhotin Alexander
Penttonen Martti
Petre Ion
Petrich Mario
Plandowski Wojtek
Potapov Igor
Prescott David M.
Proskurowski Andrzej
Puzynina Svetlana
Rampersad Narad
Restivo Antonio
Rigo Michel
Rogojin Vladimir
Rozenberg Grzegorz
S
´
e
´
ebold Patrice
Sahla Esa
Salomaa Arto
Shallit Jeffrey
Terlutte Alan
Vesti Jetro
Welzl Emo
Zamboni Luca Q.
ten Pas Paulien
Tero Harju (2020) 2
[1] T. HARJU, A polynomial recognition algorithm for the EDTOL languages, Elektron. Informa-
tionsverarb. Kybernet., EIK 13 (1977), 169 – 177.
(A) Peer-reviewed scientific articles
[2] T. HARJU, A simulation result for auxiliary pushdown automata, J. Comput. Syst. Sci. 19
(1979), 119 – 132. https://doi.org/10.1016/0022-0000(79)90023-0
[3] T. HARJU and M. PENTTONEN, Some decidability problems of sentential forms, Internat. J.
Computer Math. 7 (1979), 95 – 107. https://doi.org/10.1080/00207167908803161
[4] K. CULIK II and T. HARJU, The ω-sequence equivalence problem for DOL systems is de-
cidable, Proc. 13th Annual ACM Symp. on Theory of Comput. (ACM’81, Milwaukee, USA),
(1981), 1 – 6.
[5] K. CULIK II and T. HARJU, Dominoes over a free monoid, Theoret. Comput. Sci. 18 (1982),
279 – 300. https://doi.org/10.1016/0304-3975(82)90070-6
[6] T. HARJU, A note on infinite words obtained by iterating morphisms, Bull. Eur. Assoc. Theor.
Comput. Sci. 19 (1982), 12 – 16.
[7] T. HARJU, On repetition free morphisms, Bull. Eur. Assoc. Theor. Comput. Sci. 19 (1983),
18 – 20.
[8] K. CULIK II and T. HARJU, The ω-sequence problem for DOL systems is decidable,
J. Assoc. Comput. Mach. 31 (1984), 282 – 298. https://doi.org/10.1145/62.2161
[9] T. HARJU and M. LINNA, The equation h(w) = w
n
in binary alphabets, Theoret. Comput. Sci.
33 (1984), 327 – 329. https://doi.org/10.1016/0304-3975(84)90093-8
[10] T. HARJU, On factorizations of words, Bull. Eur. Assoc. Theor. Comput. Sci. 24 (1984), 217.
[11] T. HARJU, P67: A solution to a problem of Karhum
¨
aki, Bull. Eur. Assoc. Theor. Comput. Sci.
24 (1984), 218 – 220.
[12] T. HARJU, On finitely based dominions in semigroups, Ann. Univ. Turkuensis Ser. 186 (1984),
7 – 11.
[13] T. HARJU, On cyclically overlap-free words in binary alphabets, in The Book of L (G. Rozen-
berg and A. Salomaa, eds.), Springer-Verlag, 1985, 123 130. https://doi.org/10.1007/
978-3-642-95486-3 10
[14] T. HARJU and M. LINNA, On the periodicity of morphisms on free monoids, RAIRO Inform.
Th
´
eorique Appl. 20 (1986), 47 – 54. http://eudml.org/doc/92245
[15] T. HARJU, J. KARHUM
¨
AKI and H.C.M. KLEIJN, On morphic generation of regular languages,
Discrete Appl. Math. 15 (1986), 55 – 60. https://doi.org/10.1016/0166-218X(86)90018-1
[16] T. HARJU and J. KARHUM
¨
AKI, On the defect theorem and simplifiability, Semigroup Forum
33 (1986), 199 – 217. https://doi.org/10.1007/BF02573193
Tero Harju (2020) 3
[17] T. HARJU, Ehrenfeuchtin otaksuma ja sen ratkaisu (extended abstract),
Matemaatikkop
¨
aiv
¨
at Turussa 1986 (R. Ernvall, Ed.), 21 – 23 (in Finnish).
[18] T. HARJU and H.C.M. KLEIJN, Cardinality problems of compositions of morphisms and
inverse morphisms, Math. System Theory 22 (1989), 151 159. https://doi.org/10.1007/
BF02088295
[19] K. CULIK II and T. HARJU, Dominoes and the regularity of DNA splicing languages, 16th
Internat. Colloq. Automata, Languages and Programming (ICALP’89, Stresa, Italy), Lecture
Notes in Comput. Sci. 372 (1989), 222 – 233. https://doi.org/10.1007/BFb0035763
[20] T. HARJU and J. KARHUM
¨
AKI, Decidability of the multiplicity equivalence of multitape finite
automata, Proc. 22nd ACM Symp. on Theory of Comput. (ACM’90, Baltimore, USA) (1990),
477 – 481.
[21] T. HARJU and H.C.M. KLEIJN, Decidability problems for unary output sequential transducers,
Discrete Appl. Math. 32 (1991), 131 – 139. https://doi.org/10.1016/0166-218X(91)90096-F
[22] K. CULIK II and T. HARJU, Splicing semigroups of dominoes and DNA, Discrete Appl. Math.
31 (1991), 261 – 277. https://doi.org/10.1016/0166-218X(91)90054-Z
[23] T. HARJU and J. KARHUM
¨
AKI, The equivalence problem of multitape finite automata, Theoret.
Comput. Sci. 78 (1991), 347 – 355. https://doi.org/10.1016/0304-3975(91)90356-7
[24] T. HARJU, H.C.M. KLEIJN, and M. LATTEUX, Compositional representation of rational func-
tions, RAIRO Inform. Th
´
eorique et Appl. 26 (1992), 243 255. http://www.numdam.org/item/
ITA 1992 26 3 243 0
[25] T. HARJU, H.C.M. KLEIJN, and M. LATTEUX, Deterministic sequential functions, Acta Infor-
mat. 29 (1992), 545 – 554. https://doi.org/10.1007/BF01185560 %
[26] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Permutable transformation semigroups,
Semigroup Forum 47 (1993), 123 – 125. https://doi.org/10.1007/BF02573748
[27] T. HARJU and H.C.M. KLEIJN, Morphisms and rational transducers, Column in Formal Lan-
guage Theory (A. Salomaa, ed.) Bull. Eur. Assoc. Theor. Comput. Sci. 51 (1993), 168 – 180.
[28] T. HARJU and G. ROZENBERG, Reductions for primitive 2-structures, Fundamenta Informat.
20 (1994), 133 – 144. https://doi.org/10.3233/FI-1994-201235
[29] T. HARJU, N.W. KEESMAAT, and H.C.M. KLEIJN, The intersection problem for alphabetic
vector monoids, RAIRO Inform. Th
´
eorique et Appl. 28 (1994), 295 301. https://doi.org/10.
1051/ita/1994283-402951
[30] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Incremental construction of 2-structures,
Discrete Math. 128 (1994), 113 – 141. https://doi.org/10.1016/0012-365X(94)90107-4
[31] T. HARJU, H.C.M. KLEIJN, M. LATTEUX, and A. TERLUTTE, Representation of rational
functions with prefix and suffix codings, Theoret. Comput. Sci. 134 (1994), 403 414.
https://doi.org/10.1016/0304-3975(94)90245-3
Tero Harju (2020) 4
[32] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Quotients and plane trees of group la-
beled 2-structures, in Proc. Graph Grammars and Their Applications to Computer Science
(GraGra’94, Williamsburg, USA) (1994), 247 – 251.
[33] T. HARJU, H.J. HOOGEBOOM, and H.C.M. KLEIJN, Identities and transductions, Lecture
Notes in Comput. Sci. 812 (1994), 140 – 144. https://doi.org/10.1007/3-540-58131-6 43
[34] T. HARJU and G. ROZENBERG, Decomposition of infinite labeled 2-structures, Lecture Notes
in Comput. Sci. 812 (1994), 145 – 158. https://doi.org/10.1007/3-540-58131-6 44
[35] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Theory of 2-structures, 24th Internat.
Colloq. Automata, Languages and Programming (ICALP’95, Szeged, Hungary), Lecture Notes
in Comput. Sci. 841 (1995), 1 – 14 . https://doi.org/10.1007/3-540-60084-1 58
[36] T. HARJU, J. KARHUM
¨
AKI, and W. PLANDOWSKI, Compactness of systems of equations
in semigroups, 24th Internat. Colloq. Automata, Languages and Programming (ICALP’95,
Szeged, Hungary), Lecture Notes in Comput. Sci. 841 (1995), 443 452. https://doi.org/10.
1007/3-540-60084-1 95
[37] J. ENGELFRIET, T. HARJU, A. PROSKUROWSKI, and G. ROZENBERG, Characterization and
complexity of uniformly nonprimitive labeled 2-structures, Theoret. Comput. Sci. 154 (1996),
247 – 282. https://doi.org/10.1016/0304-3975(94)00272-X
[38] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Group based graph transformations and
hierarchical representations of graphs, Proc. 5th Int. Workshop on Graph Grammars and their
Application to Computer Science (J. Cuny et al., eds.), Lecture Notes in Comput. Sci. 1073
(1996), 502 - 520. https://doi.org/10.1007/3-540-61228-9 108
[39] T. HARJU, M. LIPPONEN, and A. MATEESCU, Flatwords and Post Correspondence problem,
Theoret. Comput. Sci. 161 (1996), 93 – 108. https://doi.org/10.1016/0304-3975(95)00092-5
[40] T. HARJU, J. KARHUM
¨
AKI, and D. KROB, Remarks on generalized Post Correspondence
problem, 13th Annual Symp. Theoret. Aspects of Computer Science (STACS’96, Greno-
ble, France), Lecture Notes in Comput. Sci. 1046 (1996), 39 48. https://doi.org/10.1007/
3-540-60922-9 4
[41] V. HALAVA, T. HARJU, and L. ILIE, A geometric problem of zigzags. Inform. Process. Lett.
62 (1997), 1 – 4. https://doi.org/10.1016/S0020-0190(97)00042-2
[42] T. HARJU, J. KARHUM
¨
AKI, and W. PLANDOWSKI, Compactness of systems of equations
in semigroups, Internat. J. Algebra Comput. 7 (1997), 457 470. https://doi.org/10.1007/
3-540-63246-8
16
[43] C. CHOFFRUT, T. HARJU, and J. KARHUM
¨
AKI, A note on decidability questions on presenta-
tions of word semigroups, Theoret. Comput. Sci. 183 (1997), 83 92. https://doi.org/10.1016/
S0304-3975(96)00311-8
Tero Harju (2020) 5
[44] T. HARJU, J. KARHUM
¨
AKI, and M. PETRICH, Compactness of systems of equations on
completely regular semigroups, Structures in logic and computer science (J. Mycielski et
al., eds.), Lecture Notes in Comput. Sci. 1261 (1997), 268 280. https://doi.org/10.1007/
3-540-63246-8 16
[45] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Invariants of inversive 2-structures on
groups of labels, Math. Structures Comput. Sci. 7 (1997), 303 327. https://doi.org/10.1017/
S0960129597002260
[46] T. HARJU and L. ILIE, Languages obtained from infinite words, RAIRO Inform. Th
´
eorique
Appl. 31 (1997), 445 – 455.
[47] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, 2-Structures – A Framework for Decom-
position and Transformation of Graphs, Chapter 6 in Handbook of Graph Grammars and Com-
puting by Graph Transformations, Vol. I. Foundations (G. Rozenberg, ed.), World Scientific,
1997, pp. 401 – 478.
[48] T. HARJU and J. KARHUM
¨
AKI, Morphisms, Chapter 7 in Handbook of Formal Languages, Vol
1. Word, Language, Grammar (G. Rozenberg and A. Salomaa, eds.), Springer-Verlag, 1997, pp.
439 – 510. https://doi.org/10.1007/978-3-642-59136-5 7
[49] J. HAGE and T. HARJU, Acyclicity of switching classes. European J. Combin. 19 (1998), 321
327. https://doi.org/10.1006/eujc.1997.0191
[50] T. HARJU and L. ILIE, On quasi orders of words and the confluence property, Theoret. Comput.
Sci. 200 (1998), 205 – 224. https://doi.org/10.1016/S0304-3975(97)00259-4
[51] A. EHRENFEUCHT, T. HARJU, P. TEN PAS, and G. ROZENBERG, Permutations, parenthesis
words, and Schr
¨
oder numbers, Discrete Math. 190 (1998), 259 264. https://doi.org/10.1016/
S0012-365X(98)00155-1
[52] T. HARJU, A. MATEESCU, and A. SALOMAA, Shuffle on trajectories: the Sch
¨
utzenberger
product and related operations, 23rd Internat. Symposium Math. Foundations Computer Sci-
ence (MFCS’98, Brno 1998; L. Brim et al., eds.), Lecture Notes in Comput. Sci. 1450 (1998),
503 – 511. https://doi.org/10.1007/BFb0055800
[53] V. HALAVA and T. HARJU, Undecidability in integer weighted finite automata, Fundamenta
Informat. 38 (1999), 189 – 200. https://doi.org/10.3233/FI-1999-381215
[54] V. HALAVA and T. HARJU, Undecidability of the equivalence of finite substitutions on reg-
ular languages, Theoret. Informatics Appl. 33 (1999), 117 124. https://doi.org/10.1051/ita:
1999109
[55] J. CASSAIGNE, T. HARJU, and J. KARHUM
¨
AKI, On the decidability of the freeness of ma-
trix semigroups, Internat. J. Algebra Comput. 9 (1999), 295 305. https://doi.org/10.1142/
S0218196799000199
Tero Harju (2020) 6
[56] T. HARJU, V. HALAVA, and M. HIRVENSALO, Generalized PCP is decidable for marked
morphisms, Proc. Internat. Symp. on Foundations in Computer Science (FCT’99, Iasi, Ro-
mania; G. Ciobanu et al., eds.), Lecture Notes in Comput. Sci. 1684 (1999), 304 315.
https://doi.org/10.1007/3-540-48321-7 25
[57] V. HALAVA and T. HARJU, Languages accepted by integer weighted finite automata, in Jewels
are Forever (J. Karhum
¨
aki et al., eds), Springer-Verlag, 1999, pp.123 134. https://doi.org/10.
1007/978-3-642-60207-8 11
[58] T. HARJU, Switching of directed graphs, Proc. 7th Nordic Combinatorial Conference (T. Harju
and I. Honkala, Eds.), 1999, 31 – 37.
[59] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, The Theory of 2-Structures.
A Framework for Decomposition and Transformation of Graphs, World Scientific, 1999, xvi +
291 pages.
[60] T. HARJU and I. HONKALA (eds.), Proceedings of the 7th Nordic Combinatorial Conference,
Painosalama, Turku 1999, ii + 85 pages.
[61] V. HALAVA, T. HARJU, and L. ILIE, Periods and binary words, J. Combin. Theory Ser.A 89
(2000), 298 – 303. https://doi.org/10.1006/jcta.1999.3014
[62] A. EHRENFEUCHT, J. HAGE, T. HARJU, and G. ROZENBERG, Complexity issues in switching
classes, Theory and Application of Graph Transformations, TAGT’98 (H. Ehrig et al., eds.),
Lecture Notes in Comput. Sci. 1764 (2000), 59 – 70.
[63] J. HAGE and T. HARJU, The size of switching classes with skew gains, Discrete Math. 215
(2000), 81 – 92. https://doi.org/10.1016/S0012-365X(99)00243-5
[64] A. EHRENFEUCHT, J. HAGE, T. HARJU, and G. ROZENBERG, Pancyclicity in switching
classes, Inform. Process. Lett. 73 (2000), 153 156. https://doi.org/10.1016/S0020-0190(00)
00020-X
[65] V. HALAVA, T. HARJU, and M. HIRVENSALO, Generalized Post Correspondence Problem for
marked morphisms, Internat. J. Algebra Comput. 10 (2000), 757 – 772. https://doi.org/10.1142/
S0218196700000376
[66] V. HALAVA and T. HARJU, Mortality in matrix semigroups, Amer. Math. Monthly 108 (2001),
649 – 653. https://doi.org/10.2307/2695274
[67] T. HARJU and L. ILIE, Forbidden subsequences and permutations sortable on two parallel
stacks, in Where Mathematics, Computer science, Linguistics, and Biology Meet (C. Martin-
Vide and V. Mitrana, eds.), Kluwer Acad. Publ., Dordrecht, 2001, 267 – 275. https://doi.org/10.
1007/978-94-015-9634-3 24
[68] T. HARJU, O. IBARRA, J. KARHUM
¨
AKI, and A. SALOMAA, Decision questions concern-
ing semilinearity, morphisms and commutation of languages, 28th Internat. Colloq. Au-
tomata, Languages and Programming (ICALP’01, Crete, Greece; F. Orejas, P. G. Spirakis,
Tero Harju (2020) 7
J. van Leeuwen, eds.), Lecture Notes in Comput. Sci. 2076 (2001), 579 590. https://doi.org/
10.1007/3-540-48224-5 48
[69] V. HALAVA and T. HARJU, Some new results on Post Correspondence Problem and its gen-
eralizations, Column in Formal Language Theory (A. Salomaa, ed.) Bull. Eur. Assoc. Theor.
Comput. Sci. 73 (2001), 131 – 141.
[70] T. HARJU, I. PETRE, and G. ROZENBERG, Tutorial on DNA computing and graph transfor-
mation Computational nature of gene assembly in ciliates, Internat. Conference on Graph
Transformations (ICGT’02, Barcelona; A. Corradini et al., Eds.), Lecture Notes in Comput.
Sci. 2505 (2002), 430 – 434. https://doi.org/10.1007/3-540-45832-8 31
[71] V. HALAVA, T. HARJU, and M. HIRVENSALO, Binary (generalized) Post Correspondence
Problem, Theoret. Comput. Sci. 276 (2002), 183 204. https://doi.org/10.1016/S0304-3975(01)
00157-8
[72] V. HALAVA and T. HARJU, An undecidability result concerning periodic morphisms, Proc.
5th Internat. Conf. on Developments in Language Theory (DLT 2001, Wien), Lecture Notes in
Comput. Sci. 2295 (2002), 304 – 310. https://doi.org/10.1007/3-540-46011-X 26
[73] A. EHRENFEUCHT, T. HARJU and G. ROZENBERG, Gene assembly through cyclic graph
decomposition, Theoret. Comput. Sci. 281 (2002), 325 349. https://doi.org/10.1016/
S0304-3975(02)00019-1
[74] V. HALAVA, T. HARJU, M. HIRVENSALO, and J. KARHUM
¨
AKI, (G)PCP for words of length
two (extended abstract), Proceedings of 9-
`
eme Conf
´
erence Internat. Journ
´
ees Montoises
d’Informatique Th
´
eorique, 2002, 6 pages.
[75] A. EHRENFEUCHT, T. HARJU, I. PETRE, and G. ROZENBERG, Characterizing the micronu-
clear gene patterns in ciliates, Theory of Comput. Syst. 35 (2002), 501 – 519. https://doi.org/10.
1007/s00224-002-1043-9
[76] T. HARJU, O. IBARRA, J. KARHUM
¨
AKI, and A. SALOMAA, Some decision problems con-
cerning semilinearity and commutatio, J. Comput. Syst. Sci. 65 (2002), 278 294. https:
//doi.org/10.1006/jcss.2002.1836
[77] T. HARJU and D. NOWOTKA, Density of critical factorizations, Theoret. Informatics Appl. 36
(2002), 315 – 327. https://doi.org/10.1051/ita:2002016
[78] T. HARJU, Decision questions on integer matrices, Proc. 5th Internat. Conf. on Developments
in Language Theory (DLT 2001, Wien), Lecture Notes in Comput. Sci. 2295 (2002), 57 68.
https://doi.org/10.1007/3-540-46011-X 5
[79] J. HAGE, T. HARJU, and E. WELZL, Euler graphs, triangle-free graphs and bipartite graphs
in switching classes, Internat. Conference on Graph Transformations (ICGT’02, Barcelona;
A. Corradini et al., eds.), Lecture Notes in Comput. Sci. 2505 (2002), 148 – 160. https://doi.org/
10.1007/3-540-45832-8 13
Tero Harju (2020) 8
[80] V. HALAVA and T. HARJU, Infinite solutions of marked Post Correspondence Problem, in For-
mal and Natural Computing. Essays dedicated to Grzegorz Rozenberg (W. Brauer et al., eds),
Lecture Notes in Comput. Sci. 2300 (2002), 57 – 68. https://doi.org/10.1007/3-540-45711-9 4
[81] T. HARJU, J. KARHUM
¨
AKI, and W. PLANDOWSKI, Independent Systems of Equations,
Chapter 14 in M. Lothaire, Algebraic Combinatorics of Words (J. Berstel and D. Perrin, eds.),
Cambridge University Press, 2002, pp. 443 – 472.
[82] A. EHRENFEUCHT, T. HARJU, I. PETRE, D.M. PRESCOTT, and G. ROZENBERG, Formal sys-
tems for gene assembly in ciliates, Theoret. Comput. Sci. 292 (2003), 199 219. https:
//doi.org/10.1016/S0304-3975(01)00223-7
[83] T. HARJU and D. NOWOTKA, About Duval’s conjecture, Proc. 7th International Conference
on Developments in Language Theory (DLT’03, Szeged, Hungary), Lecture Notes in Comput.
Sci. 2710 (2003), 316 – 324. https://doi.org/10.1007/3-540-45007-6 25
[84] T. HARJU and G. ROZENBERG, Computational processes in living cells: gene assembly in
ciliates, Developments in Language Theory (DLT 2002, Kioto; M. Ito and M. Toyama, eds.),
Lecture Notes in Comput. Sci. 2450 (2003), 1 – 20. https://doi.org/10.1007/3-540-45005-X 1
[85] V. HALAVA, T. HARJU, H.J. HOOGEBOOM, and M. LATTEUX, Languages defined by gener-
alized equality sets, 14th Internat. Symp. on Fundamentals of Computation Theory (FCT’03,
Malm
¨
o, Sweden, 2003; A. Lingas and B. J. Nilsson, eds.), Lecture Notes in Comput. Sci. 2751
(2003), 355 – 363. https://doi.org/10.1007/978-3-540-45077-1 33
[86] T. HARJU and D. NOWOTKA, On the independence of equations in three variables, Theoret.
Comput. Sci. 307 (2003), 139 – 172. https://doi.org/10.1016/S0304-3975(03)00098-7
[87] V. HALAVA, T. HARJU, and J. KARHUM
¨
AKI, Decidability of the binary infinite Post Cor-
respondence Problem, Discrete Appl. Math. 130 (2003), 521 526. https://doi.org/10.1016/
S0166-218X(03)00330-5
[88] J. HAGE, T. HARJU, and E. WELZL, Euler graphs, triangle-free graphs and bipartite graphs in
switching classes, Fundamenta Informat. 58 (2003), 23 – 37.
[89] T. HARJU and D. NOWOTKA, About Duval extensions, Proc. 4th Internat. Conference on Com-
binatorics on Words (T. Harju, J. Karhum
¨
aki, Eds.) (2003), 392 – 397.
[90] T. HARJU and D. NOWOTKA, Periodicity and unbordered segments of words, Column in For-
mal Language Theory (A. Salomaa, ed.) Bull. Eur. Assoc. Theor. Comput. Sci. 80 (2003),
162 – 167.
[91] T. HARJU, I. PETRE, and G. ROZENBERG, Gene assembly in ciliates: Molecular operations,
Column in Natural Computing (G. Rozenberg, ed.) Bull. Eur. Assoc. Theor. Comput. Sci. 81
(2003), 236 – 249. Reprinted in [112].
[92] T. HARJU, I. PETRE, and G. ROZENBERG, Tutorial on DNA computing and graph trans-
formation, Internat. Conference on Graph Transformations (ICGT’04, Rome; G. Engels et
Tero Harju (2020) 9
al., Eds.), Lecture Notes in Comput. Sci. 3256 (2004), 434 436. https://doi.org/10.1007/
978-3-540-30203-2 31
[93] T. HARJU, I. PETRE, and G. ROZENBERG, Gene assembly in ciliates, in Roadmap Report of
MolCoNet - A Thematic Network on Molecular Computing (European Union, IST-00-5-2B)
(2004), pp. 105 – 132.
[94] T. HARJU, I. PETRE, and G. ROZENBERG, Gene assembly in ciliates: Formal frameworks,
Column in Natural Computing (G. Rozenberg, ed.) Bull. Eur. Assoc. Theor. Comput. Sci. 82
(2004), 227 – 241. Reprinted in [113].
[95] A. EHRENFEUCHT, T. HARJU, I. PETRE, D.M. PRESCOTT, and G. ROZENBERG,
Computation in Living Cell. Gene Assembly in Ciliates, Springer-Verlag, 2004, xviii + 201
pages.
[96] T. HARJU and J. KARHUM
¨
AKI (eds.), Proceedings of the 4th International Conference on
Combinatorics on Words (WORDS’03), TUCS, Painosalama, Turku 2003, vi + 420 pages.
[97] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Transitivity of local complementation
and switching on graphs, Discrete Math. 278 (2004), 45 60. https://doi.org/10.1016/j.disc.
2003.04.001
[98] A. EHRENFEUCHT, J. HAGE, T. HARJU, and G. ROZENBERG, Embedding in switching
classes with skew gains, Internat. Conference on Graph Transformations (ICGT’04, Rome;
G. Engels et al., eds.), Lecture Notes in Comput. Sci. 3256 (2004), 257 270. https://doi.org/
10.1007/978-3-540-30203-2 19
[99] T. HARJU and D. NOWOTKA, Periodicity and unbordered words, 21st Annual Symp. The-
oret. Aspects of Computer Science (STACS 2004, Montpellier, France; V. Diekert and
M. Habib, eds.), Lecture Notes in Comput. Sci. 2996 (2004), 294 304. https://doi.org/10.
1007/978-3-540-24749-4 26
[100] T. HARJU and D. NOWOTKA, Minimal Duval extensions, Internat. J. Foundations of Comput.
Sci. 15 (2004), 349 – 354. https://doi.org/10.1142/S0129054104002467
[101] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Zebra factorisations in free semigroups,
Semigroup Forum 68 (2004), 365 – 372. https://doi.org/10.1007/s00233-003-0030-z
[102] J. HAGE and T. HARJU, A characterization of acyclic switching classes using forbid-
den subgraphs, SIAM J. Discrete Math. 18 (2004), 159 176. https://doi.org/10.1137/
S0895480100381890
[103] T. HARJU and D. NOWOTKA, Border correlation of binary words, J. Combin. Theory, Ser. A
108 (2004), 331 – 341. https://doi.org/10.1016/j.jcta.2004.07.009
[104] V. HALAVA, T. HARJU, H.J. HOOGEBOOM, and M. LATTEUX, Valence languages generated
by equality sets, J. Autom. Lang. Comb. 9 (2004), 399 – 406.
Tero Harju (2020) 10
[105] V. HALAVA and T. HARJU, Undecidability in matrices over Laurent polynomials, Adv. Applied
Math. 33 (2004), 747 – 752. https://doi.org/10.1016/j.aam.2004.04.002
[106] T. HARJU and J. KARHUM
¨
AKI, Many aspects of the defect effect, Theoret. Comput. Sci. 324
(2004), 35 – 54. https://doi.org/10.1016/j.tcs.2004.03.051
[107] T. HARJU and D. NOWOTKA, The equation x
i
= y
j
z
k
in a free semigroup, Semigroup Forum
68 (2004), 488 – 490. https://doi.org/10.1007/s00233-003-0028-6
[108] T. HARJU, I. PETRE, and G. ROZENBERG, Formal properties of gene assembly: equivalence
problem for overlap graphs, in Aspects of Molecular Computing - Essays dedicated to Tom
Head on the occasion of his 70th birthday (N.Jonoska et al., eds.), Lecture Notes in Comput.
Sci. 2950 Festschrift (2004), 202 – 212. https://doi.org/10.1007/978-3-540-24635-0
14
[109] T. HARJU, Combinatorics on words, in Formal Languages and Applications (C. Mart
´
ın-Vide
et al., eds.), Series: Studies in Fuzziness and Soft Computing, Vol. 148, Springer-Verlag, 2004,
381 – 392. https://doi.org/10.1007/978-3-540-39886-8 19
[110] A. EHRENFEUCHT, T. HARJU, I. PETRE, D.M. PRESCOTT, and G. ROZENBERG, Modelling
gene assembly in ciliates, in Modelling in Molecular Biology (G. Ciobanu and G. Rozenberg,
eds.), Natural Computing Series, Springer-Verlag, 2004, 105 204. https://doi.org/10.1007/
978-3-642-18734-6 5
[111] V. HALAVA and T. HARJU, Post Correspondence Problem recent results, in Current Trends
in Theoretical Computer Science: The Challenge of the New Century (vol.1) (Gh. P
˘
aun et al.,
eds.), World Scientific, 2004, 511 – 532. https://doi.org/10.1142/9789812562494 0062
[112] T. HARJU, I. PETRE, and G. ROZENBERG, Gene assembly in ciliates, Part I. Molecular oper-
ations, in Current Trends in Theoretical Computer Science: The Challenge of the New Cen-
tury (vol.2) (Gh. P
˘
aun et al., eds.), World Scientific, 2004, 527 541. https://doi.org/10.1142/
9789812562494 0029
[113] T. HARJU, I. PETRE, and G. ROZENBERG, Gene assembly in ciliates, Part II. Operations for
gene assembly, in Current Trends in Theoretical Computer Science: The Challenge of the New
Century (vol.2) (Gh. P
˘
aun et al., eds.), World Scientific, 2004, 543 557. https://doi.org/10.
1142/9789812562494 0030
[114] T. HARJU, I. PETRE, and G. ROZENBERG, Two models for gene assembly in ciliates, in Theory
is Forever (J. Karhum
¨
aki et al., eds.), Lecture Notes in Comput. Sci. 3113 (2004), 89 101.
https://doi.org/10.1007/978-3-540-27812-2 9
[115] T. HARJU and D. NOWOTKA, On the equation x
k
= z
k
1
1
z
k
2
2
· · · z
k
n
n
in a free semigroup, Theo-
ret. Comput. Sci. 330 (2005), 117 – 121. https://doi.org/10.1016/j.tcs.2004.09.012
[116] T. HARJU, C. LI, I. PETRE, and G. ROZENBERG, Parallelism in gene assembly, Proc. 10th
Internat. Meeting on DNA Based Computers (DNA10, Milan; C. Ferretti et al, eds.), Lecture
Notes in Comput. Sci. 3384 (2005), 138 – 148. http://dx.doi.org/10.1007/s11047-005-4462-0
Tero Harju (2020) 11
[117] T. HARJU and M. MARGENSTERN, Splicing systems for universal Turing machines, Proc. 10th
Internat. Meeting on DNA Based Computers (DNA10, Milan; C. Ferretti et al., eds), Lecture
Notes in Comput. Sci. 3384 (2005), 151 – 160. https://doi.org/10.1007/11493785 13
[118] V. HALAVA, T. HARJU and M. LATTEUX, Equality sets of prefix morphisms and regular star
languages, Inform. Process. Lett. 94 (2005), 151 154. https://doi.org/10.1016/j.ipl.2005.01.014
[119] T. HARJU and D. NOWOTKA, Counting bordered and primitive words with a fixed weight,
Theoret. Comput. Sci. 340 (2005) , 273 – 279. https://doi.org/10.1016/j.tcs.2005.03.040
[120] V. HALAVA, T. HARJU, H.J. HOOGEBOOM, and M. LATTEUX, Equality sets for recursively
enumerable languages, Theoret. Informatics Appl. 39 (2005), 661 675. https://doi.org/10.
1051/ita:2005035
[121] T. HARJU, A. LEPIST
¨
O, and D. NOWOTKA, A characterization of periodicity of bi-infinite
words, Theoret. Comput. Sci. 347 (2005), 419 – 422. https://doi.org/10.1016/j.tcs.2004.08.017
[122] T. HARJU, I. PETRE, V. ROGOJIN, and G. ROZENBERG, Simple operations for gene assembly,
DNA11 (London, Ontario) (2005); Lecture Notes in Comput. Sci. 3892 (2006), 96 111. http:
//dx.doi.org/10.1007/11753681 8
[123] T. HARJU, A combinatorial view on gene assembly, in Recent Results in Natural Computing,
(M. P
´
erez Jim
´
enez et al., eds.), Kronos Publishers, Sevilla, 2005, 79 – 104.
[124] T. HARJU, Combinatorial models of gene assembly, Proc. Computability in Europe, CiE 2005,
Amsterdam Lecture Notes in Comput. Sci. 3526 (2005), 188 195. https://doi.org/10.1007/
11494645 23
[125] V. HALAVA, T. HARJU and M. LATTEUX, Representation of regular languages by equality sets,
Bull. Eur. Assoc. Theor. Comput. Sci. 86 (2005), 224 – 228.
[126] T. HARJU, Characterization of regularity, Proc. FSMNLP 2005 (A. Yli-Jyr
¨
a et al., Eds.), Lec-
ture Notes in Artificial Int. 4002 (2006), 1 – 8. https://doi.org/10.1007/11780885 1
[127] T. HARJU and D. NOWOTKA, Binary words with few squares, Bull. Eur. Assoc. Theor. Comput.
Sci. 89 (2006), 164 – 166.
[128] T. HARJU, J. KARHUM
¨
AKI and A. RESTIVO (eds.), Combinatorics on Words, Special issue of
Theoret. Comput. Sci. 339 Issue 1, 2005, (pp. 1 – 165).
[129] V. HALAVA, T. HARJU, and M. HIRVENSALO, Positivity of second order linear recurrent se-
quences, Discrete Appl. Math. 154 (2006), 447 451. https://doi.org/10.1016/j.dam.2005.10.
009
[130] V. HALAVA, T. HARJU, and J. KARHUM
¨
AKI, Undecidability in ω-regular languages, Funda-
menta Informat. 73 (2006), 119 – 125.
[131] T. HARJU and D. NOWOTKA, On unique factorizations of primitive words, Theoret. Comput.
Sci. 356 (2006), 186 – 189. http://dx.doi.org/10.1016/j.tcs.2006.01.031
Tero Harju (2020) 12
[132] T. HARJU, I. PETRE, and G. ROZENBERG, Modelling simple operations for gene assembly,
Natural Computing Series, Springer-Verlag, in “Nanotechnology: Science and Computation”
(Chen, J. et al., eds), Springer-Verlag 2006, 361 – 376. https://doi.org/10.1007/3-540-30296-4
23
[133] A. EHRENFEUCHT, J. HAGE, T. HARJU, and G. ROZENBERG, The embedding problem for
switching classes of graphs, Fundamenta Informat. 74 (2006), 115 – 134.
[134] T. HARJU, I. PETRE, C. LI, and G. ROZENBERG, Parallelism in gene assembly, Natural
Computing An Internat. Journal (2006) 5 (2006), 203 223. https://doi.org/10.1007/
s11047-005-4462-0
[135] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Embedding linear orders in grids, Acta
Informat. 42 (2006), 419 – 428. https://doi.org/10.1007/s00236-005-0001-9
[136] T. HARJU and D. NOWOTKA, Periods in extensions of words, Acta Informat. 43 (2006), 165 –
171. http://dx.doi.org/10.1007/s00236-006-0014-z
[137] T. HARJU and J. KARHUM
¨
AKI (eds.), Proceedings of the Workshop on Fibonacci Words 2006,
TUCS, Painosalama, Turku 2007.
[138] T. HARJU, J. KARHUM
¨
AKI and A. LEPIST
¨
O (eds.), Proceedings of Developments in Language
Theory. 11th International Conference, Lecture Notes in Comput. Sci. 4588, Springer–Verlag
2007.
[139] V. HALAVA and T. HARJU, Undecidability of infinite Post Correspondence Problem for in-
stances of size 9, Theoret. Informatics Appl. 40 (2006), 551 – 557. http://dx.doi.org/10.1051/ita:
2006039
[140] J. HAGE and T. HARJU, On involutions arising from graphs, in Algorithmic Bioprocesses,
(Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E., eds) Springer–Verlag, 2009, pp.
623 – 630. http://www.springer.com/computer/foundations/book/978-3-540-88868-0
[141] A. EHRENFEUCHT, T. HARJU, and G. ROZENBERG, Finite metrics in switching classes, Dis-
crete Appl. Math. 155 (2007), 68 – 73. http://dx.doi.org/10.1016/j.dam.2006.04.041
[142] V. HALAVA, T. HARJU, and J. KARHUM
¨
AKI, Structure of infinite solutions of marked and
binary Post Correspondence problems, Theory of Comput. Syst. 40 (2007) 43 54. http://dx.
doi.org/10.1007/s00224-005-1222-6
[143] T. HARJU, C. LI, I. PETRE, and G. ROZENBERG, Complexity measures for gene as-
sembly, Lecture Notes in Comput. Sci. 4366 (2007), 42 60. https://doi.org/10.1007/
978-3-540-71037-0 4
[144] V. HALAVA, T. HARJU, J. KARHUM
¨
AKI and M. LATTEUX, Extensions of the decidability of
the marked PCP to instances with unique blocks, Theoret. Comput. Sci. 380 (2007), 355 – 362.
https://doi.org/10.1016/j.tcs.2007.03.024
Tero Harju (2020) 13
[145] T. HARJU and D. NOWOTKA, Periodicity and unbordered words: a proof of the extended Duval
conjecture, J. Assoc. Comput. Mach. 54 (2007). https://doi.org/10.1145/1255443.1255448
[146] V. HALAVA, T. HARJU, and M. HIRVENSALO, Undecidability bounds for integer matrices us-
ing Claus instances, Internat. J. Foundations of Comput. Sci. 18 (2007), 931 948. https:
//doi.org/10.1142/S0129054107005066
[147] V. HALAVA, T. HARJU, and T. K
¨
ARKI, Relational codes of words, Theoret. Comput. Sci. 389
(2007), 237 – 249. https://doi.org/10.1016/j.tcs.2007.09.011
[148] V. HALAVA and T. HARJU, On Markov’s undecidability theorem for integer matrices, Semi-
group Forum 75 (2007), 173 – 180. https://doi.org/10.1007/s00233-007-0714-x
[149] J. HAGE and T. HARJU, Towards a characterization of bipartite switching classes by means of
forbidden subgraphs, Discussiones Mathematicae Graph Theory 27 (2007), 471 483. http:
//dx.doi.org/10.7151/dmgt.1374
[150] V. HALAVA, T. HARJU, and T. K
¨
ARKI, Defect theorem with compatibility relations, Semigroup
Forum 76 (2008), 1 – 24. http://dx.doi.org/10.1007/s00233-007-9013-9
[151] J.-P. DUVAL, T. HARJU, and D. NOWOTKA, Unbordered Factors and Lyndon Words, Discrete
Math. 308 (2008), 2261 – 2264. http://dx.doi.org/10.1016/j.disc.2006.09.054
[152] T. HARJU, C. LI, and I. PETRE, Parallel complexity of signed graphs for gene assembly in
ciliates, Soft Computing 12 (2008), 731 – 737. http://dx.doi.org/10.1007/s00500-007-0233-4
[153] V. HALAVA, T. HARJU, and T. K
¨
ARKI, Interaction properties of relational words, Discrete
Math. Theoret. Comput. Sci. 10 (2008), 87 – 112.
[154] V. HALAVA, T. HARJU, M. HIRVENSALO, and J. KARHUM
¨
AKI, Post Correspondence Prob-
lem for short words, Inform. Process. Lett. 108 (2008), 115 118. http://dx.doi.org/10.1016/j.
ipl.2008.04.013
[155] V. HALAVA, T. HARJU, and T. K
¨
ARKI, Square free partial words, Inform. Process. Lett. 108
(2008), 290 – 292. http://dx.doi.org/10.1016/j.ipl.2008.06.001
[156] T. HARJU, I. PETRE, V. ROGOJIN, and G. ROZENBERG, Patterns of simple gene assembly in
ciliates Discrete Appl. Math. 156 (2008), 2581 2597. http://dx.doi.org/10.1016/j.dam.2007.
09.026
[157] T. HARJU, C. LI, and I. PETRE, Graph theoretic approach to parallel gene assembly, Discrete
Appl. Math. 156 (2008), 3416 – 3429. http://dx.doi.org/10.1016/j.dam.2008.01.022
[158] T. HARJU and D. NOWOTKA, Bordered conjugates of words over large alphabets, Electronic
J. Combin 15(1) N41 (2008), 7 pages (electronic). https://doi.org/10.37236/916
[159] P. BELL, V. HALAVA, T. HARJU, J. KARHUM
¨
AKI, and I. POTAPOV, Matrix equations and
Hilbert’s tenth problem, Internat. J. Algebra and Computation 18 (2008), 1 11. https:
//doi.org/10.1142/S0218196708004925
Tero Harju (2020) 14
[160] T. HARJU, Graph transformations related to gene assembly, Proc. of NCGT (Leicester 2008):
Workshop on Natural Computing and Graph Transformations (I. Petre and G.Rozenberg, Eds),
5 – 10. (2008).
[161] T. HARJU and J. KARHUM
¨
AKI (eds.), Development of Language Theory, Special issue of In-
ternat. J. Foundations of Comput. Sci. 19 Issue 3 2008, (pp. 495 – 690).
[162] J. BERSTEL, T. HARJU and J. KARHUM
¨
AKI (eds.), Fibonacci Words, Special issue of RAIRO
Inform. Th
´
eor. Appl. 42 Issue 4 2008, (pp. 657 – 762).
[163] T. HARJU, A. OKHOTIN, G. ROZENBERG, and A. SALOMAA (eds.), A Bird’s Eye View of The-
ory, Special issue of Theoret. Comput. Sci. 410 Issues 30–32, 2009, (pp. 2785 – 3034).
[164] T. HARJU, Post Correspondence Problem and small dimensional matrices, Lecture Notes in
Comput. Sci. 5583 (2009), 39 – 46. http://dx.doi.org/10.1007/978-3-642-02737-6 3
[165] V. HALAVA, T. HARJU, T. K
¨
ARKI, and P. S
´
E
´
EBOLD, Overlap-freeness in infinite partial words,
Theoret. Comput. Sci. 410 (2009), 943 – 948. http://dx.doi.org/10.1016/j.tcs.2008.12.041
[166] V. HALAVA, T. HARJU, and T. K
¨
ARKI, The theorem of Fine and Wilf for relational periods,
RAIRO Inform. Th
´
eor. Appl. 40 (2009), 209 – 220. http://dx.doi.org/10.1051/ita:2008025
[167] T. HARJU and D. NOWOTKA, Cyclically repetition-free words on small alphabets, Inform. Pro-
cess. Lett. 110 (2010), 591 – 595. http://dx.doi.org/10.1016/j.ipl.2010.05.005
[168] V. HALAVA, T. HARJU, and T. K
¨
ARKI, On the number of squares in partial words, Theoret.
Informatics Appl. 44 (2010), 125 – 138. http://dx.doi.org/10.1051/ita/2010008
[169] V. DIEKERT, T. HARJU and D. NOWOTKA, Weinbaum factorizations of primitive words (Rus-
sian), Izvestiya Vuzov. Matematika 2010 (1), 21-33. Translation: Russian Mathematics (Iz VUZ)
54 (1) (2010), 16-25. http://dx.doi.org/10.3103/S1066369X10010032
[170] V. HALAVA, T. HARJU, T. K
¨
ARKI, and M. RIGO, On the periodicity of morphic words, Lecture
Notes in Comput. Sci. 6224 (DLT, London, Ontario) (2010), 209 – 217.
https://doi.org/10.1007/978-3-642-14455-4 20
[171] T. HARJU, Square-free walks on labelled graphs, http://arxiv.org/abs/1106.4106
[172] T. HARJU, Weinbaum factorizations (extended abstract), Oberwolfach Reports No. 37/2010
(1), 2212-2213. http://dx.doi.org/10.4171/OWR/2010/37
[173] T. HARJU, T. K
¨
ARKI, and D. NOWOTKA The number of positions starting a square in binary
words, Electronic J. Combin 18(1) P6 (2011), 10 pages (electronic). https://doi.org/10.37236/
493
[174]
´
E. CHARLIER, M. DOMARATZKI, T. HARJU, and J. SHALLIT, Finite orbits of language op-
erations, Lecture Notes in Comput. Sci. 6638 (2011), 204 215. http://dx.doi.org/10.1007/
978-3-642-21254-3 15
Tero Harju (2020) 15
[175] T. HARJU and T. K
¨
ARKI, On the number of frames in binary words, Theoret. Comput. Sci. 412
(2011), 5276 – 5284. http://dx.doi.org/10.1016/j.tcs.2011.05.032
[176] S. AZIMI, T. HARJU, M. LANGILLE, V. ROGOJIN, and I. PETRE, Directed overlap-inclusion
graphs as representations of ciliate genes, Fundamenta Informat. 110 (2011), 29 44. https:
//doi.org/10.3233/FI-2011-526
[177] V. HALAVA, T. HARJU, and T. K
¨
ARKI, A new proof for the decidability of D0L ultimate peri-
odicity, EPTCS 63: Proc. WORDS’2011, 147 – 152. https://arxiv.org/abs/1108.3631
[178] T. HARJU, Square-free words obtained from prefixes by permutations, Theoret. Comput. Sci.
(2012) 429 (2012), 128 – 133. https://doi.org/10.1016/j.tcs.2011.12.031
[179] R. BRIJDER, T. HARJU, and H.J. HOOGEBOOM, Pivots, determinants, and perfect matchings
of graphs, Theoret. Comput. Sci. 454 (2012), 64 – 71. https://doi.org/10.1016/j.tcs.2012.02.031
[180] S. AZIMI, T. HARJU, M. LANGILLE, and I. PETRE, Simple gene assembly as a rewriting of
directed overlap-inclusion graphs, Theoret. Comput. Sci. 454 (2012), 30 – 37.
https://doi.org/10.1016/j.tcs.2012.04.018
[181] T. HARJU, Kuratowski closure operations on languages, in Proceedings of RuFiDim II, (Halava,
Karhum
¨
aki, Matiyasevich, eds.) 2012, pp 5 – 10.
[182] T. HARJU and M. M
¨
ULLER, Square-free words generated by applying permutations to a prefix,
in Proceedings of RuFiDim II, (Halava, Karhum
¨
aki, Matiyasevich, eds.) 2012, pp 86 – 91.
[183] R. BRIJDER, M. DALEY, T. HARJU, N. JONOSKA, I. PETRE, and G. ROZENBERG, Com-
putational Gene Assembly in Ciliates, Chapter in the Handbook of Molecular Computing,
Vol. II, (Th.B
¨
ack, J.Kok and G.Rozenberg, eds.), Springer-Verlag, 2012, pp 1233 1280.
http://www.springer.com/computer/foundations/book/978-3-540-92911-6
[184]
´
E. CHARLIER, M. DOMARATZKI, T. HARJU, and J. SHALLIT, Composition and Orbits of
Language Operations: Finiteness and Upper Bounds, Int. J. Comput. Math. 90 (2013), 1171
1196. http://dx.doi.org/10.1080/00207160.2012.681305
[185] T. HARJU, A note on square-free shuffles of words, Lecture Notes in Comput. Sci. 8079 (2013),
154 – 160. https://doi.org/10.1007/978-3-642-40579-2
17
[186] V. HALAVA and T. HARJU, New proof for the undecidability of the Circular PCP, Acta Infor-
matica 50 (2013), 331 – 341. https://doi.org/10.1007/s00236-013-0183-5
[187] V. HALAVA and T. HARJU, Word problem for deterministic and reversible semi-Thue systems.
Semigroup Forum 88 (2014), 468 – 478. http://dx.doi.org/10.1007/s00233-013-9550-3
[188] T. HARJU and T. K
¨
ARKI, Minimal Similarity Relations for Square–Free Words, in Discrete
Mathematics and Computer Science. In Memoriam of Alexandru Mateescu (1952-2005), (Eds.
Gh. Paun, G. Rozenberg, A. Salomaa) Editura Academiei, Bucuresti (The Publishing House of
the Romanian Academy, Bucharest), 2014 pp. 193 – 200
Tero Harju (2020) 16
[189] T. HARJU, M. HUOVA, and L.Q. ZAMBONI, On generating binary words palindromically, J.
Combin. Theory Ser.A 129 (2015), 142 – 159. http://dx.doi.org/10.1016/j.jcta.2014.10.003
[190] T. HARJU and M. M
¨
ULLER, A note on short palindromes in square-free words. Theoret. Com-
put. Sci. 562 (2015), 658 – 659. http://dx.doi.org/10.1016/j.tcs.2014.10.040
[191] V. HALAVA, T. HARJU, R. NISKANEN and I. POTAPOV, Weighted automata on infinite words
in the context of Attacker-Defender games. Lecture Notes in Comput. Sci. (CiE 2015) 9136
(2015), 206 – 215. http://dx.doi.org/10.1007/978-3-319-20028-6 21
[192] V. HALAVA, T. HARJU, and M. HUOVA, On n-permutation Post Correspondence Problem
Theoret. Comput. Sci. 601 (2015), 15 – 20. http://dx.doi.org/10.1016/j.tcs.2015.07.021
[193]
´
E. CHARLIER, T. HARJU, S. PUZYNINA and L.Q. ZAMBONI, Abelian bordered factors and
periodicity, European J. Combin. 51 (2016), 407 – 418. http://dx.doi.org/10.1016/j.ejc.2015.07.
003
[194] T. HARJU and M. M
¨
ULLER, Square-free shuffles of words, Theoret. Comput. Sci. 601 (2015),
29 – 38. http://dx.doi.org/10.1016/j.tcs.2015.07.024
[195] T. HARJU, J. VESTI, and L.Q. ZAMBONI, On a question of Hof, Knill and Simon on palin-
dromic substitutive systems, Monatshefte Math. 179 (2016), 379 388. http://dx.doi.org/10.
1007/s00605-015-0828-2
[196] V. HALAVA, T. HARJU and T. K
¨
ARKI, Similarity relations on words, Chapter in Combina-
torics, Words and Symbolic Dynamics (V. Bert
´
e and M. Rigo, eds.), Cambridge University
Press 2016, pp. 183–220.
[197] V. HALAVA, T. HARJU, R. NISKANENand I. POTAPOV, Weighted automata on infinite words
in the context of Attacker-Defender games, Information and Computation 255 (2017), 27 – 44.
http://dx.doi.org/10.1016/j.ic.2017.05.001
[198] V. HALAVA, T. HARJU, and E. SAHLA, A New Proof for the Undecidability of the Bi-Infinite
Post’s Correspondence Problem, Fundamenta Informat. 154 (2017), 167 176. http://dx.doi.
org/10.3233/FI-2017-1558
[199] V. HALAVAand T. HARJU, Walks on Tilings of Polygons, Theoret. Comput. Sci. 701 (2017),
120 – 124. http://dx.doi.org/10.1016/j.tcs.2017.02.034
[200] V. HALAVA, T. HARJU, and E. SAHLA, On Fixed Points of Rational Transductions, Theoret.
Comput. Sci. 732 (2018), 85 – 88. https://doi.org/10.1016/j.tcs.2018.04.030
[201] T. HARJU, On Square-Free Arithmetic Progressions in Infinite Words, Theoret. Comput. Sci.
770, 95 – 100. https://doi.org/10.1016/j.tcs.2018.09.032
[202] J. CURRIE, T. HARJU, P. OCHEM, and N. RAMPERSAD, Some further results on squarefree
arithmetic progressions in infinite words, Theoret. Comput. Sci. 799, 140–148. https://doi.org/
10.1016/j.tcs.2019.10.006 https://arxiv.org/abs/1901.06351
Tero Harju (2020) 17
[203] T. HARJU and J. KARHUM
¨
AKI, Transducers and Rational Transductions, Chapter 3 in Hand-
book of AutoMathA (J.-E. Pin, ed.), to appear.
[204] J. CASSAIGNE, V. HALAVA, T. HARJU, and F. NICOLAS, Tighter undecidability bounds for
matrix mortality, zero-in-the-corner problems, and more, submitted.
http://arxiv.org/abs/1404.0644
(G) Thesis
[205] T. HARJU, Simulation and Representation of Automata Using Auxiliary Tape Notation, Doc-
toral Dissertation, Department of Mathematics, University of Turku, 1979.
Special volume
VESA HALAVA, JUHANI KARHUM
¨
AKI, DIRK NOWOTKA, GRZEGORZ ROZENBERG (eds), Words,
Graphs, Automata, and Languages; Special Issue Honoring the 60th Birthday of Professor Tero Harju.
Fundamenta Informaticae 116, Numbers 1–4, 2012.
Lecture notes available online: Latest editions http://users.utu.fi/harju
T. HARJU, Graph Theory (2012)
T. HARJU, Ordered Sets (2012)
T. HARJU, Combinatorial Enumeration (2011)
T. HARJU, Semigroups (2017)
T. HARJU, Geometria (2015) in Finnish
T. HARJU, Logiikka (2009) in Finnish
T. HARJU, Automaatit, Formaaaliset kielet ja Laskettavuus (1998) in Finnish
T. HARJU, Combinatorial Structures in Graph Theory (2019)