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Different classes of dynamical systems have different natural
definitions of integrability.

For example, a property of the equation:

• sets of ODE’s: sufficient number of conserved quantities

• evolution equations: linearization trough a Lax pair

• almost all systems: symmetries

• 2D-lattice P∆E’s: consistent extension to 3D.

or a property of its solutions

• absence of nasty singularities (Painlevé property)

• O∆E’s: low growth of complexity (Nevanlinna theory)

• soliton systems: the existence of multisoliton solutions

Here: The existence of multisoliton solutions
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Hirota’s bilinear formalism

The form of a PDE appearing in a physical problem is usually
not in the best form for the subsequent mathematical analysis.

Hirota (1971): The best dependent variables are those in which
the soliton solutions appear as a finite sum of exponentials.

ISTM on KdV says

u = 2∂2
x log det M,

where the entries of M are polynomials of exponentials eax+bt .

Hirota: Let us define a new dependent variable F by

u = 2∂2
x log F . (1)

With F it should be easy to construct soliton solutions.
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Bilinear form for KdV
How do soliton equations look in terms of F?

Example: KdV
uxxx + 6uux + ut = 0. (2)

The first two terms should have the same number of
derivatives, so introduce v by

u = ∂x v . (3)

After this (2) can be written as

∂x [vxxx + 3v2
x + vt ] = 0,

which can be integrated to the potential KdV.

vxxx + 3v2
x + vt = 0, (4)
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Now substituting
v = α∂ log F ,

into vxxx + 3v2
x + vt = 0 results with

F 2 × (something quadratic) + 3α(2− α)(2FF ′′ − F ′2)F ′2 = 0.

Thus we get a quadratic equation if we choose α = 2:

FxxxxF − 4FxxxFx + 3F 2
xx + FxtF − FxFt = 0.

This can be written as

(D4
x + DxDt)F · F = 0,

where the Hirota’s derivative operator D is defined by

Dn
x f · g = (∂x1 − ∂x2)

nf (x1)g(x2)
∣∣
x2=x1=x

≡ ∂n
y f (x + y)g(x − y)

∣∣
y=0.

Jarmo Hietarinta Bilinear method



Constructing multisoliton solutions
Searching for integrable equations

The KP-DS combination

Hirota’s bilinear formalism
Bilinear forms
Soliton solutions

Now substituting
v = α∂ log F ,

into vxxx + 3v2
x + vt = 0 results with

F 2 × (something quadratic) + 3α(2− α)(2FF ′′ − F ′2)F ′2 = 0.

Thus we get a quadratic equation if we choose α = 2:

FxxxxF − 4FxxxFx + 3F 2
xx + FxtF − FxFt = 0.

This can be written as

(D4
x + DxDt)F · F = 0,

where the Hirota’s derivative operator D is defined by

Dn
x f · g = (∂x1 − ∂x2)

nf (x1)g(x2)
∣∣
x2=x1=x

≡ ∂n
y f (x + y)g(x − y)

∣∣
y=0.

Jarmo Hietarinta Bilinear method



Constructing multisoliton solutions
Searching for integrable equations

The KP-DS combination

Hirota’s bilinear formalism
Bilinear forms
Soliton solutions

Now substituting
v = α∂ log F ,

into vxxx + 3v2
x + vt = 0 results with

F 2 × (something quadratic) + 3α(2− α)(2FF ′′ − F ′2)F ′2 = 0.

Thus we get a quadratic equation if we choose α = 2:

FxxxxF − 4FxxxFx + 3F 2
xx + FxtF − FxFt = 0.

This can be written as

(D4
x + DxDt)F · F = 0,

where the Hirota’s derivative operator D is defined by

Dn
x f · g = (∂x1 − ∂x2)

nf (x1)g(x2)
∣∣
x2=x1=x

≡ ∂n
y f (x + y)g(x − y)

∣∣
y=0.

Jarmo Hietarinta Bilinear method



Constructing multisoliton solutions
Searching for integrable equations

The KP-DS combination

Hirota’s bilinear formalism
Bilinear forms
Soliton solutions

We say that an equation is in the Hirota bilinear form is all its
derivatives appear trough Hirota’s D-operator, defined before

Dn
x f ·g = (∂x1−∂x2)

nf (x1)g(x2)
∣∣
x2=x1=x .

Thus D operates on a product of two functions like the Leibniz
rule, except for a crucial sign difference. For example

Dx f ·g = fxg − fgx ,

DxDt f ·g = fgxt − fxgt − ftgx + fgxt

P(D)f ·g = P(−D)g ·f .

For later use note also that

P(D)f ·1 = P(∂)f ,

P(D)epx ·eqx = P(p − q)e(p+q)x

Jarmo Hietarinta Bilinear method
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Bilinear form of KP

Another example: the Kadomtsev-Petviashvili equation:

∂x [uxxx + 6uxu − 4ut ] + 3σuyy = 0.

Substitution u = 2∂2
x log F yields

∂2
x

{
F−2[(D4

x + 3σD2
y − 4DxDt)F · F ]

}
= 0,

Thus the bilinear form of KP is

(D4
x + 3σD2

y − 4DxDt)F · F = 0.
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The Hirota-Satsuma shallow water-wave equation

uxxt + 3uut − 3uxvt − ux = ut , vx = −u, (5)

becomes with (1) and one integration

(D3
x Dt − D2

x − DtDx)F · F = 0, (6)

which actually has an integrable (2 + 1)-dimensional extension

(D3
x Dt + aD2

x + DtDy )F · F = 0. (7)

The Sawada-Kotera equation (SK)

uxxxxx + 15uuxxx + 15uxuxx + 45u2ux + ut = 0, (8)

bilinearizing with (1) and one integration to

(D6
x + DxDt)F · F = 0, (9)

with the integrable (2 + 1)-dimensional extension

(D6
x + 5D3

x Dt − 5D2
t + DxDy )F · F = 0. (10)
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Soliton solutions
Consider the general class of equations

P(Dx , Dy , . . . )F · F = 0.

How to construct soliton solutions?

The trivial (vacuum) solution u = 0 corresponds to F = 1.

Therefore we assume P(0, 0, . . . ) = 0.

Soliton solutions are built perturbatively on top of this vacuum.

F = 1 + ε f1 + ε2 f2 + ε3 f3 + · · ·

Note also the gauge invariance of bilinear equations:

P(D)(eκF · eκG) = e2κP(D)F ·G, if κ = ~c · ~x .
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For the 1SS try
F = 1 + ε f1. (11)

This implies

P(Dx , . . . ){1·1 + ε 1·f1 + ε f1 ·1 + ε2 f1 ·f1} = 0.

The term of order ε0 vanishes (0SS).

Since P is even next order yields

P(∂x , ∂y , . . . )f1 = 0. (12)

which is solved by

f1 = eη, η = px + qy + ωt + · · ·+ const, (13)

where the parameters p, q, . . . satisfy the dispersion relation

P(p, q, . . . ) = 0. (14)

Then order ε2 term vanishes: P(~D)eη ·eη = e2ηP(~p − ~p) = 0.
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The solution

F = 1 + eη, η = ~x · ~p + η0, P(~pi) = 0,

corresponds to a soliton:

u = 2∂2
x (log(F ))

=
2p2eη

(1 + eη)2 =
p2/2

cosh(1
2η)2
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Ansatz for the two-soliton solution (perturbatively!):

F = 1 + ε (eη1 + eη2) + ε2A12eη1+η2 , ηi = ~x · ~pi + η0
i ,

Substituting this into the equation gives:

P(D){ 1 · 1 + 1 · eη1 + 1 · eη2 + A12 1 · eη1+η2 +

eη1 · 1 + eη1 · eη1 + eη1 · eη2 + A12 eη1 · eη1+η2 +

eη2 · 1 + eη2 · eη1 + eη2 · eη2 + A12 eη2 · eη1+η2 +

A12eη1+η2 · 1 + A12eη1+η2 · eη1 + A12eη1+η2 · eη2 + A2
12eη1+η2 · eη1+η2 } = 0.

Here most terms vanish due to P(0) = 0 or DR. The underlined
terms combine as 2A12P(~p1 + ~p2) + 2P(~p1 − ~p2) = 0, thus

A12 = −P(~p1 − ~p2)

P(~p1 + ~p2)
. (15)

Example, KdV: η = px + ωt + η0, and DR ω = −p3:

A12 = −(p1 − p2)
4 + (p1 − p2)(ω1 − ω2)

(p1 + p2)4 + (p1 + p2)(ω1 + ω2)
=

(p1 − p2)
2

(p1 + p2)2 .
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Substituting this into the equation gives:

P(D){ 1 · 1 + 1 · eη1 + 1 · eη2 + A12 1 · eη1+η2 +

eη1 · 1 + eη1 · eη1 + eη1 · eη2 + A12 eη1 · eη1+η2 +

eη2 · 1 + eη2 · eη1 + eη2 · eη2 + A12 eη2 · eη1+η2 +

A12eη1+η2 · 1 + A12eη1+η2 · eη1 + A12eη1+η2 · eη2 + A2
12eη1+η2 · eη1+η2 } = 0.

Here most terms vanish due to P(0) = 0 or DR.

The underlined
terms combine as 2A12P(~p1 + ~p2) + 2P(~p1 − ~p2) = 0, thus

A12 = −P(~p1 − ~p2)

P(~p1 + ~p2)
. (15)

Example, KdV: η = px + ωt + η0, and DR ω = −p3:

A12 = −(p1 − p2)
4 + (p1 − p2)(ω1 − ω2)

(p1 + p2)4 + (p1 + p2)(ω1 + ω2)
=

(p1 − p2)
2

(p1 + p2)2 .
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Figure: Scattering of Korteweg–de Vries solitons. On the left a profile
view, on the right the locations of the maxima, along with the free
soliton trajectory as a dotted line. (p1 = 1

2 , p2 = 1.)
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Result: Any equation of type

P(~Dx)F · F = 0

has two-soliton solutions

F = 1 + eη1 + eη2 + A12eη1+η2 , where Aij = −
P(pi − pj , . . . )

P(pi + pj , . . . )

and the parameters satisfy the dispersion relation P(pi) = 0.

This is a level of partial integrability: we can have elastic
scattering of two solitons, for any dispersion relation, if the
nonlinearity is suitable.

Clearly all of these equations cannot be integrable.
What distinguished integrable equations?
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Hirota integrability:

If the 1SS is given by

F = 1 + εeη, ηi = ~x · ~pi + η0
i , P(~pi) = 0,

then there should be an NSS of the form

F = 1 + ε

N∑
j=1

eηj + (finite number of h.o. terms)

without any further conditions on the parameters ~pi of the
individual solitons.

Almost all equations has multisoliton solutions for some
restricted set of parameters, it does not imply integrability.
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Apply this principle to the three-soliton solution:

F3SS =1 + ε (eη1 + eη2 + eη3)

+ ε2 (
A12eη1+η2 + A23eη2+η3 + A31eη3+η1

)
+ ε3A123eη1+η2+η3

What is A123?

Condition on NSS: If any soliton goes far away, the rest should
look like the (N-1)SS.

“Going away” means either eηk → 0 or eηk →∞

Result:
A123 = A12A23A13.

No freedom left: parameters restricted only by the DR,
phase factors given already.

Existence of a 3SS is a condition on the equation, i.e., on P !
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Substituting F3SS in P(D)F · F = 0 yields the
“three-soliton-condition”∑

σi=±
P(σ1~p1 + σ2~p2 + σ3~p3)P(σ1~p1 − σ2~p2)

×P(σ2~p2 − σ3~p3)P(σ1~p1 − σ3~p3) = 0.

or∑
σi=±

P(σ1~p1 + σ2~p2 + σ3~p3)

P(σ1~p1 + σ2~p2)P(σ2~p2 + σ3~p3)P(σ1~p1 + σ3~p3)
= 0. (16)

This can be taken as a search problem:

Find all polynomials P, such that (16) holds
on the affine variety {(~p1, ~p2, ~p3)|P(~pi) = 0}.
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Use the 3-soliton condition as a indicator of integrability.
We are only interested in polynomials P that have a nonlinear
irreducible factor.

Complete set of solutions is (JH, J. Math. Phys. (1987-1988)):

(D4
x − 4DxDt + 3D2

y )F · F = 0, (17)

(D3
x Dt + aD2

x + DtDy )F · F = 0, (18)

(D4
x − DxD3

t + aD2
x + bDxDt + cD2

t )F · F = 0, (19)

(D6
x + 5D3

x Dt − 5D2
t + DxDy )F · F = 0. (20)

and their reductions.

These equations also have 4SS and pass the Painlevé test.

(19) was new, it is non-evolutionary and its Lax pair is unknown.
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Other types of soliton equations
The modified KdV equation (mKdV)

uxxx + ε6u2ux + ut = 0, (21)

with traveling wave solutions

u = ±p
cosh(px−p3t+c)

, if ε = 1, u = ±p
sinh(px−p3t+c)

, if ε = −1.

We consider only ε = +1.

Make the equation scale invariant with

u = ∂x w , (22)

after which we get from (21)

∂x [wxxx + 2w3
x + wt ] = 0,

integrate once to get the potential mKdV equation.
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In this case a good substitution is given by

w = 2 arctan(G/F ), i.e., u = 2
DxG · F
F 2 + G2 , (23)

and then the potential mKdV becomes

(F 2 + G2)[(D3
x + Dt)G · F ]

+3(DxF ·G)[D2
x (F · F + G ·G)] = 0 . (24)

Two unknowns F , G means we can have two equations:{
(D3

x + Dt + 3λDx)(G · F ) = 0,

(D2
x + λ)(F · F + G ·G) = 0,

where λ is an arbitrary function of x , t .
Vacuum solution F = 1, G = 0 works iff λ = 0.
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For the sine-Gordon (sG) equation

φxx − φtt = sin φ, (25)

the substitution
φ = 4 arctan(G/F ), (26)

yields

[(D2
x − D2

t − 1)G · F ](F 2 −G2)

−FG[(D2
x − D2

t )(F · F −G ·G)] = 0.

There is again some ambiguity in splitting this equation,
because the term λFG(F 2−G2) could be in either part. We use{

(D2
x − D2

t − 1)G · F = 0,

(D2
x − D2

t )(F · F −G ·G) = 0.
(27)
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Multisoliton solutions for the mKdV/sG class

The mKdV and sG equations belong to the class{
B(D~x) G · F = 0,

A(D~x)(F · F + εG ·G) = 0,
(28)

where A is even and B either odd (mKdV) or even (sG). If B is
odd one can also rotate to{

B(D~x) g · f = 0, (B odd )
A(D~x) g · f = 0.

(29)
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For the vacuum we choose F = 1, G = 0 and therefore we must
have A(0) = 0. For the 1SS we may try

F = 1 + αeη, G = βeη.

Direct calculation yields from (28) the conditions

αA(~p) = 0, βB(~p) = 0, αβB(0) = 0.

Now we can in principle have two different kinds of solitons

type a: F = 1 + eηA , G = 0, DR: A(~p) = 0,
type b: F = 1, G = eηB , DR: B(~p) = 0.

(30)

(For mKdV and SG the A polynomial is too trivial.)

Jarmo Hietarinta Bilinear method



Constructing multisoliton solutions
Searching for integrable equations

The KP-DS combination

KdV-type
The mKdV/sG class

The nonlinear Schrödinger class

For the vacuum we choose F = 1, G = 0 and therefore we must
have A(0) = 0. For the 1SS we may try

F = 1 + αeη, G = βeη.

Direct calculation yields from (28) the conditions

αA(~p) = 0, βB(~p) = 0, αβB(0) = 0.

Now we can in principle have two different kinds of solitons

type a: F = 1 + eηA , G = 0, DR: A(~p) = 0,
type b: F = 1, G = eηB , DR: B(~p) = 0.

(30)

(For mKdV and SG the A polynomial is too trivial.)

Jarmo Hietarinta Bilinear method



Constructing multisoliton solutions
Searching for integrable equations

The KP-DS combination

KdV-type
The mKdV/sG class

The nonlinear Schrödinger class

For the vacuum we choose F = 1, G = 0 and therefore we must
have A(0) = 0. For the 1SS we may try

F = 1 + αeη, G = βeη.

Direct calculation yields from (28) the conditions

αA(~p) = 0, βB(~p) = 0, αβB(0) = 0.

Now we can in principle have two different kinds of solitons

type a: F = 1 + eηA , G = 0, DR: A(~p) = 0,
type b: F = 1, G = eηB , DR: B(~p) = 0.

(30)

(For mKdV and SG the A polynomial is too trivial.)

Jarmo Hietarinta Bilinear method



Constructing multisoliton solutions
Searching for integrable equations

The KP-DS combination

KdV-type
The mKdV/sG class

The nonlinear Schrödinger class

Two-soliton solutions

We have three different combinations

a+a: The starting point must be

F = 1 + εeη1 + εeη2 + O(ε2), G = O(ε2),

with A(~p1) = A(~p2) = 0

G = 0, =⇒ the A-equation is KdV type for F

a+b: Now the starting point is

F = 1 + εeη1 + O(ε2), G = εeη2 + O(ε2),

with A(~p1) = B(~p2) = 0.

This leads to

F = 1 + eη1 , G = eη2 + L12eη1+η2 , (31)

with L12 = −B(~p2 − ~p1)

B(~p1 + ~p2)
. (32)
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b+b: In this case we start with

F = 1 + O(ε2), G = εeη1 + εeη2 + O(ε2),

with B(~p1) = B(~p2) = 0,

and the 2SS turns out to have the form

F = 1− K12eη1+η2 , G = eη1 + eη2 , (33)

with K12 = ε
A(~p1 − ~p2)

A(~p1 + ~p2)
. (34)

Jarmo Hietarinta Bilinear method



Constructing multisoliton solutions
Searching for integrable equations

The KP-DS combination

KdV-type
The mKdV/sG class

The nonlinear Schrödinger class

Results from search:
(Assume both A and B are nonlinear enough to support
solitons:) {

(D3
x + Dy ) g · f = 0,

(D3
x Dt + aD2

x + DtDy ) g · f = 0,{
(D3

x + Dy ) g · f = 0,

(D6
x + 5D3

x Dy − 5D2
y + DtDx) g · f = 0.

{
(DxDt + b) G · F = 0,

(D3
x Dt + 3bD2

x + DtDy )(F · F + G ·G) = 0,
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The nonlinear Schrödinger equation is given by

iut + uxx + 2ε|u|2u = 0, (35)

where the function u is complex.

The substitution that bilinearizes (35) is

u = g/f , g complex, f real,

yielding

f [(iDt + D2
x )g · f ]− g [D2

x f · f − ε2|g|2] = 0,

For normal (bright) solitons we split this into{
(iDt + D2

x )g · f = 0,

D2
x f · f = ε2|g|2. (36)
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Soliton solutions for the nonlinear Schrödinger (nlS) type (F is
real and G complex):{

B(D~x) G · F = 0,

A(D~x) F · F = |G|2. (37)

For the vacuum soliton we take f = 1, g = 0.
Formal expansion the 1SS is

f = 1 + εf1 + ε2f2 + . . . , g = εg1 + . . .

With this on finds that there can be two kinds of solitons,{
F = 1 + eηA , G = 0, with dispersion relation A(~p) = 0,

F = 1 + KeηB+η∗B , G = eηB , with dispersion relation B(~p) = 0.
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A search can be based on the existence of 2SSs.

Three equations were found (JH, J. Math. Phys. (1988)){
(D2

x + iDy + c) G · F = 0,

(a(D4
x − 3D2

y ) + DxDt) F · F = |G|2,{
(iαD3

x + 3cD2
x + i(bDx − 2dDt) + g) G · F = 0,

(αD3
x Dt + aD2

x + (b + 3c2)DxDt + dD2
t ) F · F = |G|2,{

(iαD3
x + 3DxDy − 2iDt + c) G · F = 0,

(a(α2D4
x − 3D2

y + 4αDxDt) + bD2
x ) F · F = |G|2.

The last equation combines the two most important
(2 + 1)-dimensional equations, Davey-Stewartson and
Kadomtsev-Petviashvili equations.

We will next take a closer look on this equation.
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Bilinear form of DS

The Davey-Stewartson (DS) equation (the long-wave limit of
the Benney-Roskes equation) is given by (σ = ±1){

iφt + (−σ1∂
2
X + ∂2

Y )φ = σ2|φ|2φ + 2σ1σ2Qφ,

(+σ1∂
2
X + ∂2

Y )Q = −∂2
X |φ|2.

(38)

We convert this into Hirota’s bilinear form using the substitution

φ = G/F , Q = 2σ2∂
2
X log F . F real, G complex.

After integrating the second equation twice w.r.t x we get{
(iDt − σ1D2

X + D2
Y )G · F = 0,

(+σ1D2
X + D2

Y )F · F = −σ2|G|2.
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What about the signs σi?{
(iDt − σ1D2

X + D2
Y )G · F = 0,

(+σ1D2
X + D2

Y )F · F = −σ2|G|2.

The DSI variant corresponds to σ1 = −1{
(iDt + D2

X + D2
Y )G · F = 0,

F · F = −σ2|G|2.

It is usually presented in 45o rotated form and is known to have
dromion solutions.

Later we will consider the DSII variant (σ1 = 1){
(iDt + )G · F = 0,

(D2
X + D2

Y )F · F = −σ2|G|2.
(39)

after a 45 degree rotation.
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Reductions
Let us consider some special cases of{

(−2iDt + 3DxDy + iαD3
x + c) G · F = 0,[

a(α2D4
x − 3D2

y + 4αDxDt) + bD2
x

]
F · F = 2|G|2, (40)

1) If α = 1, b = 0, G = 0 we get KPI{
(−2iDt + 3DxDy + iαD3

x + c) G · F = 0,[
a(D4

x − 3D2
y + 4DxDt) + bD2

x

]
F · F = 0.

2) If α = c = 0 we recover the rotated DSII,{
(−2iDt + 3DxDy+iαD3

x + c) G · F = 0,[
a(α2D4

x − 3D2
y+4αDxDt) + bD2

x

]
F · F = 2|G|2,

Thus (40) combines of the two most important (2 + 1)-dim
equations, but only their DSII and KPI variants.
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Place in the Jimbo-Miwa classification
The first equations of KP and second modified KP hierarchy are

(D3
1 + 2D3 + 3D1D2)σ · τ = 0,

(D3
1 + 2D3 − 3D1D2)σ̄ · τ = 0, (41)

(D4
1 − 4D1D3 + 3D2

2)τ · τ = 24σ̄σ.

Note scaling!

This is a subcase of{
(−2iDt + 3DxDy + iαD3

x + c) G · F = 0,[
a(α2D4

x − 3D2
y + 4αDxDt) + bD2

x

]
F · F = 2|G|2.

with D1 = Dx , D2 = iDy , D3 = −Dt , τ = F , σ = G, σ̄ = G∗,
a = 1/12, α = 1, b = 0, c = 0
• nonzero b, c break the scaling invariance,
• nonzero b is necessary for reduction to DS

Solutions to (41) have been studied by Hirota and Ohta (1991)
and Isojima, Willox and Satsuma (2002), Kodama (2005).
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Bilinear to nonlinear
F , G are polynomials of exponentials like eγx+δy+κt .

Soliton-like expressions obtained, e.g., from
q := G/F and u := ∂2 log F

For the nonlinear Schrödinger-type equations the canonical first
step is F = ew , G = qew , w real. In the present case{

(iαD3
x + 3DxDy − 2iDt + c)G · F = 0,[

a(α2D4
x − 3D2

y + 4αDxDt) + bD2
x

]
F · F = |G|2.

the substitution above gives{
iα(qxxx + 6qxwxx) + 3(qxy + 2wxyq)− 2iqt + cq = 0,

a2[α2(wxxxx + 6wxx
2)− 3wyy + 4αwxt ] + 2bwxx = |q|2.

To get something looking like KP and DS we need u = ∂2w , but
which derivatives?
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Take an x-derivative of the second equation and define v = wx :{
iα(qxxx + 6qxvx) + 3(qxy + 2vyq)− 2iqt + cq = 0,

2a[α2(vxxxx + 12vxvxx)− 6vyy + 8αvxt ] + 2bvxx = (|q|2)x .

1) The limit to KP: We put q = 0, α = 1, a = 1, b = 0, operate
on the second equation by ∂x and define u = 2vx .

2) Limit to DS: Take α = c = 0, operate by ∂y and use u = vy :{
3qxy − 2iqt + 6uq = 0,

−6auyy + buxx = (|q|2)xy .

With b = −6a = 1/δ, u = −z + 1
2δ|q|2 and a 45o rotation in the

(x , y)-plane this equation becomes DSII

Note that we had to use different substitutions for KP and DS.
Connection is simpler at the bilinear level!
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KP-type solutions{
(iαD3

x + 3DxDy − 2iDt + c)G · F = 0,[
a(α2D4

x − 3D2
y + 4αDxDt) + bD2

x

]
F · F = |G|2.

KP-type solitons: 1SS

G = 0, F = 1 + eη1 , ηj = pjx + qjy + ωj t + η0
j

Dispersion relation from the second equation (p, q, ω real)

a(α2p4
j − 3q2

j + 4αpjωj) + bp2
j = 0

Physical field
u = 2α∂2

x log(F ).

2SS:

G = 0, F = 1 + eη1 + eη2 + A12eη1+η2 A12 = ...
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Figure: xy -plot of a KP-type solution for the full equation, the plot
shows u = 2∂2

x log(f ) at a fixed time.
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2SS is given by:
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Figure: xy -plot of a nlS-type solution for the full equation, the plot
shows |q| = |G|/F at a fixed time
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Combinations

{
(iαD3

x + 3DxDy − 2iDt + c)G · F = 0,[
a(α2D4

x − 3D2
y + 4αDxDt) + bD2

x

]
F · F = |G|2.

We can also have combinations of KP- and nls-type solutions:

F = 1 + eη1 + a22eη2+η∗2 + a122eη1+η2+η∗2 ,

G = κ2eη2 + b12eη1+η2 .

Here index 1 corresponds to a KP-soliton with DR from second
equation, 2 to a nls-type soliton with DR from the first equation.
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Figure: xy -plot of the combination of one nlS-type solution and one
KP-type solution for the full equation, at a fixed time. The top part
shows |q| = |G|/F , the bottom part u = 2∂2

x log(f ).
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Dromion solutions
Recall the standard DSI{

(iDt + D2
X + D2

Y )G · F = 0,

DX DY F · F = |G|2.

Dromion solutions are built up from ghosts:

F = 1+eηi+η∗i , G = 0, ηi = pix+qiy+ωi t+η0, DR: piqi = 0, ∀ i

Two perpendicular ghosts are needed for a dromion:

F = 1 + eη1+η∗1 + eη2+η∗2 + Aeη1+η∗1 +η2+η∗2 , G = κeη1+η2

but now we have five dispersion relations:

p(r)
1 = 0, q(r)

2 = 0,

ω
(r)
1 = −2q(r)

1 (q(i)
1 + q(i)

2 ), ω
(r)
2 = −2p(r)

2 (p(i)
1 + p(i)

2 ),

=(ω1 + ω2) = <((p1 + p2)
2 + (q1 + q2)

2), A = 1 + |κ|2

8q(r)
1 p(r)

2

.
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Dromion for the generalized system

F = 1 + eη1+η∗1 + eη2+η∗2 + Aeη1+η∗1 +η2+η∗2 , G = κeη1+η2

with five dispersion relations:

q(r)
1

p(r)
1

+
q(r)

2

p(r)
2

=2α
(

p(i)
1 + p(i)

2

)
,(

q(r)
1

p(r)
1

)2

+

(
q(r)

2

p(r)
2

)2

=4α2
(
[p(r)

1 ]2 + [p(r)
2 ]2

)
+ 4α(q(i)

1 + q(i)
2 ) + 2b

3a ,

4αp(r)
j ω

(r)
j =− 4α2[p(r)

j ]4 + 3[q(r)
j ]2 − b

a [p(r)
j ]2,

ω
(i)
1 + ω

(i)
2 =− 3

2(q(r)
1 p(r)

1 + q(r)
2 p(r)

2 )− α
2 (p(i)

1 + p(i)
2 )3

+ 3α
2 (p(i)

1 + p(i)
2 )([p(r)

1 ]2 + [p(r)
2 ]2)

+ 3
2(p(i)

1 + p(i)
2 )(q(i)

1 + q(i)
2 )− c

2
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where

A =1 +
(

4aα2[p(r)
1 p(r)

2 ]2 − |κ|2/96
)

/[
ap(r)

1 p(r)
2 [α2(p(i)

1 + p(i)
2 )2 − α2(3[p(r)

1 ]2 + 2p(r)
1 p(r)

2 + 3[p(r)
2 ])

− 2α(q(i)
1 + q(i)

2 )− b
3a ]

]
An illustration of this dromion solution is next
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Figure: xy -plot of a dromion solution for the full equation, at a fixed
time. The top part shows |q| = |G|/F , the bottom part u = 2∂2

x log(f ).
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Conclusions

Advantages of the bilinear formalism:

• Multisoliton solutions easy to construct.

• The dependent variables are usually tau-functions, with
good properties.

• Natural for the Sato theory, which explains hierarchies of
integrable equations (Jimbo and Miwa)

• Suitable for classification: the bilinear form strongly
restricts the freedom of changing dependent variables.
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