

Restriction Enzyme EcoRI			<u>Fragm</u> 230, 2	ent Lengths 50, 320		DDP – Example			
PstI EcoRI + PstI			50, 35 50, 80	0, 400 , 150, 200, 3	20	An 800 base pair seqence of DNA was digested with EcoRI and PstI.			
230	250	320	250 or	230	320 or				
230	320	250			01				
	 0	EcoRI 	EcoRI 	 800	EcoRI sing	gle cut map			
	PstI 0 50	P	'stI 400	 800	PstI single	cut map			
	PstI 0 50 50 20	EcoRI P: 250 40 0 150	stI EcoRI 	 800 0	Double dig map locati fragment s	gest complete map (final answer) ons of cut sites izes			

Restriction site mapping – models (2)

- Difficult problem: NP-complete

 Easy to check a solution
 DDP is a generalization of the set-partition problem
- The number of solutions may be *exponential*
- Difficult to cope with *coincidences*: enzyme A cuts in a point very close to enzyme B – some fragments will appear to have the same length
- Easy to get experimental data: complete digestion by two enzymes

Introduction to computational and systems biology http://users.abo.fi/ipetre/compsysbio/

October 14, 2019

20

22

32

- 2. $S_i \subseteq S_j$ or $S_j \subseteq S_i$ 3. $S_i \cap S_j \neq \emptyset$ and none is a subset of the other
- First case: we can clearly deal with rows i i independently since they do not "interfere" with each other
- Second case: a row j such that $S_{i}\subseteq S_{i}$: we can deal with rows i,j separately since they do not "interfere" with each other
- Third case: i and j have to be treated simultaneously they are "connected"
- Q: How to describe best these possibilities?

 - Q: now to describe best direct period.
 B: Graphs!
 B: Bild a graph corresponding to the matrix M
 Vertices: the rows of M
 Edge between i and j iff Si ∩ Sj ≠ Ø and none is a subset of the other (case 3 above) Introduction to computational and systems biology http://users.abo.fi/ipetre/compsysbio/

October 14, 2019

		{4}	{7}	{2}	}			
S6:	 0	1	1	0	C	·		
S7:	 0	0	1	1	C	·		
		(5.0)	(5.0)		(7)	(2)		
		{5,9}	{5,9}	{4}	{7}	{2}		
S6:	 0	{5,9} 0	{5,9} 0	{4} 1	{7} 1	{2} 0	0	
S6: S7:	 0 0	{5,9} 0 0	{5,9} 0 0	{4} 1 0	{7} 1 1	{2} 0 1	0 0	
S6: S7: S8:	 0 0 0	{5,9} 0 0 1	{5,9} 0 0 1	{4} 1 0 1	{7} 1 1 0	{2} 0 1 0	0 0 0	

	56: 57: 58:		0 0	{5,9} 0 0 1	{5,9} 0 0 1	{4} 1 0 1	<pre>{7} 1 1 0</pre>	{2} 0 1 0	Solvi	ing C1P	
		{1}	{2,4,5,7 ,9}	{2,4,5,7 ,9}	{2,4,5,7 ,9}	{2,4,5,7 ,9}	{2,4,5, ,9}	7 {3,6,8}	{3,6,8}	{3,6,8}	
S1	0	1	1	1	1	1	1	0	0	0	0
S2	0	0	1	1	1	1	1	1	1	1	0
		{1}	{5,9	} {	5,9}	{4}	{7}	{2}	{3,6,8}	{3,6,8}	{3,6,8}
S1:	0	1	1		1	1	1	1	0	0	0
S2:	0	0	1		1	1	1	1	1	1	1
S6:	0	0	0		0	1	1	Ō	0	0	0
S7:	0	0	0		0	0	1	1	0	0	0
S8:	0	0	1		1	1	0	Ö	0	0	0
	October 14, 2	019		Introduction to computational and systems biology http://users.abo.fi/ipetre/compsysbio/						38	

