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Physical (or restriction site) mapping

• The problem: Establish the physical location of some 
landmarks (e.g., the restriction sites of an enzyme) in 
the genome

• Importance: in DNA sequencing, in gene finding
q Assume a short sequence of DNA from chromosome 1 has been 

sequenced. Having a physical map of chromosome 1, we will find 
the location of the markers in the short sequence and then place 
the sequence on the chromosome

• Important phase in genome sequencing projects

• Short youtube video with an example (Jeri Erickson and 
Walt Allan at the FBR's out-reach education division, 
ScienceWorks for ME): 
https://www.youtube.com/watch?v=8FqMUF96cPE
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• Mapping by enzyme digestion – small molecules
q Partial digestion (PDP)
q Double digestion (DDP)

• Mapping by hybridization – long molecules

• Formulate the experimental setup

• Formulate the computation problem
q Give the algorithm (if a ”smart” one exists) MAPPING BY ENZYME 

DIGESTION
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Physical mapping: PDP or DDP

• Most physical mapping dealing with relatively short 
sequences (say a virus genome) correspond to the 
following problem: 

q if X is a set of points on a line and we know some of the 
differences |x-y|, with x,yÎX, deduce the position of the points in 
X on the line

q Partial Digest Problem: we know all differences |x-y| 
(experimentally difficult, its computational complexity 
unknown, behaves well in practice)

q Double Digest Problem: we have two sets X,Y and we know the 
distance between all consecutive points in X. Same data for Y and 
for XÈY – deduce the position of the points in X and Y
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Difficulty of the problem

• Physical mapping is a difficult problem for a variety of 
reasons
q Experimental errors
q Lack of experimental data 
q Lack of coverage
q It may be impossible to get from the available data one 

contiguous physical map
– The pieces of map are called contigs
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Errors in restriction site mapping

• Errors in gel electrophoresis: 
q Report the length with an error up to 5%
q Small fragments may be ignored
q Fragments with small difference in length may be reported having 

identical length

• Errors in digestion: 
q Some fragments may be completely lost
q This leads to lack of coverage 

Introduction to computational and systems biology 
http://users.abo.fi/ipetre/compsysbio/

Mapping through partial digest

October 14, 2019 Introduction to computational and systems biology 
http://users.abo.fi/ipetre/compsysbio/

8

October 14, 2019 9

Restriction site mapping by partial digest

• Partial digest
q Subject the target DNA molecule to one enzyme
q Several restriction sites of that enzyme may exist along the target 

molecule
q Perform many digestion experiments with that enzyme acting on 

copies of the target, varying the exposure time (partial digest)
– By allowing more or less time, the goal is to obtain at least one fragment 

for every pair of sites (count also the ends of the line as sites)
– Example bellow: obtain fragments of length 1, 2, 3, 4, 5, 6

q Based on this data, deduce the position of the restriction sites on 
the target DNA molecule

q NOTE: the problem is known in CS as the “turnpike 
reconstruction” problem (with exits on a highway)

1 3 2
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Restriction site mapping – models

• Partial digest problem (PDP): 
q X is a set of points on a line 
q The (multi)set of differences between ALL points in X is 

D(X)={ |x1-x2|, x1, x2ÎX } 
q Reconstruct X based on the information given by D(X)

• (somewhat) Difficult problem 
q No polynomial algorithm is known 
q No proof that it is NP-complete
q There are methods that prove fast in practice
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A backtracking solution to PDP

• Let N be the largest number in D(x); assume that 0 and N are in 
X and all other numbers in X are in between. 

• Let X0={0,N}

• Idea: repeatedly position the longest remaining distance in D(X)
q In each step, the longest sequence is realized from one of the outermost 

points of X. Thus, if m is currently the largest number in D(X), then add 
either m or N-m to X0

q We can only add m to X0 if |x-m|ÎD(X), for all xÎX0. In that case, we 
remove those differences from D(X). Similarly, we can only add N-m to 
X0 if |x-(N-m)|ÎD(X), for all xÎX0 and in that case remove those 
differences from D(X).

q If neither option is possible, then we need to backtrack – remove from X0
the last added point and continue the analysis

• Solution is found when D(X) gets empty
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A backtracking solution to PDP

• The method only works if we have the full multiset of 
differences, i.e., we know how many fragments of a given size 
we have

• Computational complexity (Skiena, Smith, Lemke 1990)
q Worst-time: O(2nnlog(n))
q Average-time: O(n2log(n))

• Good point in favor of this method: “rather small” number of 
possible solutions (Skiena, Smith, Lemke 1990)
q For any D(X), let H(n) be the number of mutually homeometric (sets X with 

the same D(X)) sets of size n
q H(n)=2k for some k, or else H(n)=0
q H(n)<1/2n1.2333

Introduction to computational and systems biology 
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PDP – an example

• D(X)={2,2,3,3,4,5,6,7,8,10} 
• Let L=D(X) and let the first point be x1=0: X={0}
• 10ÎL

q The second point is x2=10: X={0,10}
q Take 10 out of L: L={2,2,3,3,4,5,6,7,8}

• 8ÎL 
q Since X={0,10}, we have two possibilities: either 8ÎX or 2ÎX 
q The two possibilities to be considered separately – they lead to different 

solutions
q In fact, they lead to “mirror/symmetric” solutions (the second one is 

identical to the first if we reverse the line)
q Assume 2ÎX: X={0,2,10} 
q Take 2 and 8 out of L: L={2,3,3,4,5,6,7}

0 102
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PDP – an example

• X={0,2,10}, L={2,3,3,4,5,6,7}
• 7ÎL 

q Two possibilities: either 7ÎX or 3ÎX
q If 3ÎX, then the difference 3-2=1ÎD(X), a contradiction
q Thus, 7ÎX

• X={0,2,7,10}, take 7, 5, 3 out of L: L={2,3,4,6}
• 6ÎL 

q Two possibilities: either 6ÎX or 4ÎX
q If 6ÎX: then the difference 7-6=1ÎD(X), a contradiction
q Thus, 4ÎX

• X={0,2,4,7,10}, take 4, 2, 3, 6 out of L: L=Æ

0 102 74
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PDP – other examples

• It is crucial to have the multiset of differences rather 
than simply just the set of differences

• Example: assume D(X) is a given as a set –
{2,16,18,20}
q The backtrack method will give the answer “no solution”
q Still, there is a solution: X={0,2,18,20} 
q This solution gives the multiset of differences {2,2,16,18,18,20}
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Restriction site mapping by double digest

• Experimental part: subject the target DNA to complete 
digestion by two enzymes
q Complete digestion by enzyme A of one copy of the target: two fragments 

of length 1 and one of length 2 in the example bellow
q Complete digestion by enzyme B of another copy of the target: two 

fragments of length 2 in the example bellow

q Complete digestion by enzymes A and B of another copy of the target: four 
fragments of length 1 in the example bellow

• Computational part: deduce the positions of the restriction 
sites of enzymes A and B along the target DNA molecule 

A,B
1 1 1 1

A
1 12

B
2 2

October 14, 2019
18

DDP – Example
An 800 base pair seqence
of DNA was digested with 
EcoRI and PstI. 



4

October 14, 2019 19

Restriction site mapping – models

• Double digest problem (DDP)
q If Z is a set of n points on a line, denote by d(Z) the multiset of the n-1 

distances between consecutive points of Z
q Let A, B be two sets of points on a line and let X=AÈB 

– The outermost points of X are in both A and B; A and B have no other 
common points

q Knowing d(A), d(B), and d(X), deduce the position of the points in A 
and B on the line

Introduction to computational and systems biology 
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• Difficult problem: NP-complete
q Easy to check a solution
q DDP is a generalization of the set-partition problem

• The number of solutions may be exponential

• Difficult to cope with coincidences: enzyme A cuts in a 
point very close to enzyme B – some fragments will appear 
to have the same length

• Easy to get experimental data: complete digestion by two 
enzymes
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Limitations of PDP and DDP

• They can only be applied to physical mapping of 
relatively small molecules, such as viral, chloroplast, or 
mitochondrial DNA – big difficulties for big molecules, 
both experimentally and computationally

q For a large DNA molecule, biologists break into smaller pieces, 
map or fingerprint each fragment and then assemble the pieces 
together to determine the map of the entire molecule
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Physical mapping of longer molecules

• Mapping long molecules
q Mapping starts with breaking DNA into small pieces using 

restriction enzymes – to study them biologists multiply them by 
cloning – the fragments are thus called clones

q The clones in the clone library may overlap with each other, 
however the order of clones is lost

q Process of reconstruction starts with fingerprinting the clones –
describe each clone through an easily determined set of 
fingerprints (e.g., a set of keywords present in the clone). If two 
clones have substantial overlap, their fingerprints should be very 
similar. 
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Physical mapping of longer molecules

• Types of fingerprints used:
q Restriction maps – the restriction map of a clone provides an 

ordered list of restriction fragments – used in 1987 for the 
physical map of E.coli

q Restriction fragments sizes – this provides an unordered list of 
restriction fragments – used in 1986 in the yeast mapping project

q Hybridization data – expose the clone to a number of probes 
(some short DNA sequences) and determine which of the probes 
bind to the clone – used in 1992 for the first physical map of the 
human genome. Consider this in details in the following

Introduction to computational and systems biology 
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Mapping by hybridization
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• Problem setup

q Input: a set of DNA molecules coming from the same genome
– Also called “probes” in this lecture

q Output: a map giving their relative position on the genome

q Tool to use: the hybridization of the probes on several fragments 
of the genome (clones)

– “Fingerprints” of the clones
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Mapping by hybridization

• The probes may be considered to be unique – each one occurs 
just once in the genome (such sequences exist, they are 
called STS – sequence tag site)

• If two clones share a large part of their fingerprints (about the 
same probes binding to them): they are likely to overlap in 
the target sequence

• Note: obtain only the relative order of the probes, not their 
exact location
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A model for mapping by hybridization : 
the consecutive 1s model

• Assumptions for this model:
q Unique probes – a probe can bind to a clone in at most one place (STSs)
q No errors (errors considered later)
q All clones x probes hybridization experiments have been done

• Data: a binary n x m matrix (Mij=1 iff probe j hybridizes to clone i, 
otherwise Mij=0)

• Problem: permute the columns (probes) such that all 1s in each row are 
consecutive (the C1s property)
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http://users.abo.fi/ipetre/compsysbio/

A model for mapping by hybridization : 
the consecutive 1s model

October 14, 2019 Introduction to computational and systems biology 
http://users.abo.fi/ipetre/compsysbio/

29

• Intuition behind the method
q The columns of the matrix correspond to probes
q The rows of the matrix correspond to clones (contiguous sequences of DNA)

q If we enumerate the probes in the order they occur on the target, then 
each clone has a sequence of 0 hybridization results, then a sequence of 1s, 
and then another sequence of 0s

q Determining the order of the probes along the target molecule is the same 
as determining the permutation of columns which makes all 1s in each row 
to be consecutive
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Example

Data offered by the lab (answers YES/NO to probe-clone hybridization, probes are 
marked with color dots):

01013

10102

00111

Lab data written as a binary matrix:

03

12

11

1

0

1

1

0

0

0

1

0

Permute the columns to get the C1P:

Clone 1 hybridizes to the following probes:

Result: the map of the molecule:

Clone 2 hybridizes to the following probes:

Clone 3 hybridizes to the following probes:

Introduction to computational and systems biology 
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Algorithm for C1P

• Problem: Given an n x m binary matrix M, determine if M has the 
C1P for rows and if so, find the C1P permutation

• For each row i of M, let Si be the set of columns k with Mik=1 
(those columns where there is 1 on row i)

• Take a look at how permuting the columns to group the 1s on one 
row affects other rows

• Each row can be thought of as a ”witness” who gives a 
“statement” about which columns should be clustered together
q “Interview” all witnesses

Introduction to computational and systems biology 
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Algorithm for C1P

• For two rows i and j, there are three possibilities:
1. Si Ç Sj = Æ
2. Si Í Sj or Sj Í Si
3. Si Ç Sj ≠ Æ and none is a subset of the other

• First case: we can clearly deal with rows i,j independently since they do not “interfere” with each other 

• Second case: a row j such that Sj Í Si: we can deal with rows 
i, j separately since they do not “interfere” with each other 

• Third case: i and j have to be treated simultaneously – they 
are “connected”

• Q: How to describe best these possibilities?
q A: Graphs!
q Build a graph corresponding to the matrix M
q Vertices: the rows of M
q Edge between i and j iff Si Ç Sj ≠ Æ and none is a subset of the other 

(case 3 above)
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Algorithm for C1P

• Problem: Generate all permutations of columns that 
transform M into a matrix with C1s

• Basic idea:
q Build the graph on the previous slide
q For each connected component of the graph, describe the C1s 

permutations of columns for the rows in that component
q Join the permutations for all connected component – this gives all C1s 

permutations for the whole matrix
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Algorithm for C1P – an example

c1 c2 c3 c4 c5 c6 c7 c8 c9

l1 1 1 0 1 1 0 1 0 1

l2 0 1 1 1 1 1 1 1 1

l3 0 1 0 1 1 0 1 0 1

l4 0 0 1 0 0 0 0 1 0

l5 0 0 1 0 0 1 0 0 0

l6 0 0 0 1 0 0 1 0 0

l7 0 1 0 0 0 0 1 0 0

l8 0 0 0 1 1 0 0 0 1

Introduction to computational and systems 
biology 
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Solving C1P

• S1={1,2,4,5,7,9}
• S2={2,3,4,5,6,7,8,9}
• S3={2,4,5,7,9}
• S4={3,8}

• S5={3,6}
• S6={4,7}
• S7={2,7}
• S8={4,5,9}

S1

S3S2

S5

S4

S8

S6 S7
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Solving C1P: rows 6, 7, 8

• S6={4,7}, S7={2,7}, S8={4,5,9}
• For row 6, any permutation that groups together columns 4 and 7 is 

fine (any order of 4 and 7)

• For row 7, any permutation that groups together columns 2 and 7 is 
fine
q Two choices to combine with row 6: either 2 goes to the right of 7 (and 4 to 

its left) or viceversa

q They are symmetric – pick one

{4,7} {4,7}

S6: … 0 1 1 0 …

{4} {7} {2}

S6: … 0 1 1 0 0 …

S7: … 0 0 1 1 0 …

Introduction to computational and systems biology 
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Solving C1P – rows 6, 7, 8

• S6={4,7}, S7={2,7}, S8={4,5,9}

• For row 8, one needs to group together columns 4,5,9
q Clearly, columns 5 and 9 must be placed to the left of 4 (the positions to its 

right are taken)
q Columns 5 and 9 may be placed in any order

q Similarly done for the other components

{5,9} {5,9} {4} {7} {2}

S6: … 0 0 0 1 1 0 0 …

S7: … 0 0 0 0 1 1 0 …

S8: … 0 1 1 1 0 0 0 …

Introduction to computational and systems biology 
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Solving C1P
{5,9} {5,9} {4} {7} {2}

S6: … 0 0 0 1 1 0 0 …

S7: … 0 0 0 0 1 1 0 …

S8: … 0 1 1 1 0 0 0 …

{1} {2,4,5,7
,9}

{2,4,5,7
,9}

{2,4,5,7
,9}

{2,4,5,7
,9}

{2,4,5,7
,9}

{3,6,8} {3,6,8} {3,6,8}

S1 0 1 1 1 1 1 1 0 0 0 0

S2 0 0 1 1 1 1 1 1 1 1 0

{1} {5,9} {5,9} {4} {7} {2} {3,6,8} {3,6,8} {3,6,8}

S1: 0 1 1 1 1 1 1 0 0 0

S2: 0 0 1 1 1 1 1 1 1 1

S6: 0 0 0 0 1 1 0 0 0 0

S7: 0 0 0 0 0 1 1 0 0 0

S8: 0 0 1 1 1 0 0 0 0 0
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C1P – algorithm 

• Describing all C1s permutations S for the rows in one 
connected component
q S will be a sequence of sets of integers (columns)
q Initially S=Æ
q Traverse the component in depth-first. For each visited node i do

– If this is the first node, then S=Si

– Let U=SÇSi, V=S-Si, W=Si-S
– If the columns in U are not consecutive in S, then the component and 

the matrix do not have C1P, stop. 
– Same negative answer if there are integers i,jÎV such that i occurs in 

S before the integers in U and j occurs after; stop.
– If all integers in V occur before U in S, then S=RT, where T=T1T2…Tk

consists only of integers in U and T1,…,Tk are sets if integers. 
– If T1-U¹Æ, then replace T1 in T with (T1-U)(T1ÇU)
– Let S=SW

– If all integers in V occur after U in S, then S=TR, where T=T1T2…Tk 
consists only of integers in U and T1,…,Tk are sets if integers. 
– If Tk-U¹Æ, then replace Tk in T with (Tk-U)(TkÇU)
– Let S=WS

Introduction to computational and systems biology 
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C1P

• Complexity: O(mn)

• There is a better (but more involved) algorithm for this 
problem: O(m+n+r), where r is the total number of 1s 
in the matrix
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• Critical (implicit) assumption so far: no errors

• Reality: there are errors of several different types
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Hybridization mapping - errors

• False negatives: a probe may fail to bind where it should

• False positives: a probe may bind where it should not
q Misreading the experimental results: false negatives or false positives

• Errors in the cloning process:
q Two separate fragments may be joined together: chimeric clones (occurs 

frequently, up to 60% of the clones)
q Deletion: an internal piece of a clone is lost – again two disjoint 

fragments are joined together

• Repeats in the genome: two clones may have the same 
fingerprint but they come from some repetitions in the genome
q Use STSs

• Lack of data: impossible to perform all hybridization experiments

Introduction to computational and systems biology 
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The consecutive 1s model - discussion

• In reality there are errors (in the lab one tries to minimize 
their number) – we need to build a model to approximate the 
solution

• Incorporate the errors into the model (i.e., find a solution 
which deviates as little as possible from the given data)
q E.g., find a column permutation so that in each row there are at most k 

blocks of consecutive 1s (k=2,3)
q Other idea: minimize the total number of blocks of 1 in the matrix

• The problems become NP-complete

• Other trouble: even if we find a C1P permutation, we cannot 
be sure that it is the “real” one: ideally, find all solutions

Introduction to computational and systems biology 
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Hybridization mapping with errors

• No errors: a matrix with C1P

• A row corresponds to a chimeric clone (two fragments were 
joined) – two blocks of 1s separated by a number of 0 (a gap)

• We have a false negative on a row: we have a 0 separating 
two blocks of 1s – another gap

• Idea: errors – gaps 
q New problem: Find a permutation of the columns to minimize the number 

of gaps
q Reduce the problem to another well-known optimization problem: TSP

Introduction to computational and systems biology 
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Hybridization mapping with errors

• Problem: find a permutation of the columns to minimize the 
number of gaps in the rows of the matrix

• Reduce the problem to finding a Hamiltonian cycle of minimum 
weight
q Add a rightmost column filled with 0s and build a graph as follows:

– The graph is complete, a vertex for each column (probe)
– The weight on each edge: the number of rows where the two columns 

differ (the Hamming distance of the two columns)

q The idea of the additional column comes from two sources: 
– we will consider circular permutations of columns in such a way that if we 

have i blocks of 0 in a row, the “penalty” for that row will be exactly 2i (1 
for entering the block of 0s, 1 for exiting it)

– circular permutations will not penalize a row that starts with a block of 1 
and ends with another – introduce an artificial all-zero last column

Introduction to computational and systems biology 
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Example

p1 p2 p3 p4 p5 p6

C1 1 1 1 0 0 0

C2 0 1 1 1 0 0

C3 1 0 0 1 1 0

C4 1 1 1 1 0 0

p1

p6

p5

p4

p3

p2

2

3

1

2

6
3

2

3
4
2 0

3

2

2 2
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Hybridization mapping with errors

• Intuition: a cycle in the graph corresponds to a possible 
ordering of the columns

• Q: What is the relation between the gaps in rows and 
the weight of a cycle?
q Gap in a row: a transition from 1 to 0 and a transition from 0 to 1 

– add 2 to the weight of the cycle
q Do not count the transitions from the last column to the first one 

– add the 0 column mentioned above

• Cycle weight = 2 x number of gaps + 2n

• Minimizing the number of gaps in rows is the same to 
minimizing the weight of the cycle:

Introduction to computational and systems biology 
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Hybridization mapping with errors

• Result: if we want to find a column permutation giving a 
minimal number of gaps, find a Hamiltonian cycle with 
minimum weight (equivalent to TSP in the case of complete 
graphs)
q Reduce the gap minimization problem to TSP, solve the corresponding TSP 

problem

q TSP is NP-complete 

• Use the many approximating techniques available for TSP, 
e.g. the Greedy approximation

• Question: having a good approximation for TSP, do we get a 
good approximation for the gap minimization problem ?

• Answer: YES!
q Cycle weight = 2 x number of gaps + 2n

Introduction to computational and systems biology 
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Summary

• Two methods to yield data for DNA mapping
q Digestion by restriction enzymes

q Hybridization experiments

• The computational problems
q Measure and compare fragment lengths – PDP, DDP; DDP is NP-

complete

q C1P for hybridization matrix: no errors - polynomial algorithm, 
errors - NP-hard problems, approximations, reductions to other 
problems, prove that the reduction is good
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