
INTRODUCTION TO WEIL CONJECTURES, PART I: CURVES

JORI MERIKOSKI

Abstract. This note is the �rst part of two of an introduction to the Weil conjectures
and related exponential sum estimates. In this note I restrict to the case of curves.
No background in algebraic geometry is assumed from the reader; the relevant notions
from algebraic geometry are introduced as we go along.

The Weil conjectures concern the number of solutions to polynomial equations in
�nite �elds. These have applications in other parts of number theory via exponential
sum estimates; one can even consider the Weil conjectures as a far-reaching general-
ization of the theory of Gauss sums. I am by no means an expert in this subject, and
one of the purposes of writing this note is to increase my own understanding. Another
reason is to prepare the reader for more advanced texts on the topic, as much of the
existing literature assumes already some background in algebraic geometry from the
reader. At the end there are some further reading suggestions for the interested reader.
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1. Introduction

The Weil conjectures (a theorem despite its name) concern the number of solutions
to polynomial equations over �nite �elds. In this �rst part we will focus on the case
of curves. To motivate the topic, consider the following basic problem: for any ring R,
de�ne

R[X, Y ] :=

{∑
i,j≥0

aijX
iY j : aij ∈ R, aij = 0 for i, j � 1

}
,

the polynomial ring in two variables with coe�cients in R. Let p be a prime number
and Fp = {0, 1, 2, . . . , p− 1} denote the �nite �eld with p elements. Fix a non-constant
polynomial f(X, Y ) ∈ Fp[X, Y ]. What can we then say about the set of solutions to the
equation f(x, y) = 0 with x, y ∈ Fp? In particular, what can we say about the number
of solutions

N(f) := |{(x, y) ∈ Fp × Fp : f(x, y) = 0}| .
1
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As a trivial example, if f(X, Y ) = Y − X, then clearly N(f) = p. In general, under
some conditions on f , we might guess that N(f) ∼ p (we need some assumptions here
since, for example, for f = Y 2 −X2 = (Y −X)(Y +X) we have N(f) = 2p− 1). Why
is this an interesting problem? We give two motivating problems:
(1) Solutions to diophantine equations. Let f(X, Y ) ∈ Z[X, Y ]. Does there exist

x, y ∈ Z such that f(x, y) = 0, and if so, what can be said about these solutions? A
common strategy in studying this problem is to consider the reduction of f modulo
primes p; by taking the residue class of each coe�cient of f modulo p, we can consider
f as an element of Fp[X, Y ]. Suppose that for all primes p we can �nd �nd a solution to
f(x, y) = 0 (mod p). Then in some situations we can `glue' these `local solutions' modulo
p into a `global solution' in Z, by using the Chinese Remainder Theorem as follows: for
large integers n, we expect that Z/nZ approximates Z in some sense. If n = p1 · · · pk
for some distinct primes p1, . . . , pk, then the Chinese Remaider Theorem states that we
have a ring isomorphism

Z/nZ ∼= (Z/p1Z)× · · · × (Z/pkZ) .

Then given a solution (xi, yi) modulo pi for each i = 1, . . . , k, we obtain a solution
modulo n by using the above ring isomorphism. This strategy is known as `Hasse's
principle' or `local-to-global principle.' It can be made to work rigorously in some cases
(e.g. for quadratic forms which have a root in R). In any case, there is a converse to
this, that is, if there exists a prime p such that f(x, y) = 0 (mod p) has no solutions,
then clearly there cannot be a solution in Z.
(2) Exponential sums. In number theory one is often faced with exponential sums

which have some algebraic structure. Consider the following: Let f1, f2, g1, g2 ∈ Fp[X],
with g1, g2 6= 0, and denote U := {x ∈ Fp : f1(x)g1(x)g2(x) 6= 0.} Fix a Dirichlet
character χ modulo p (that is, a group homomorphism of multiplicative groups χ :
F×p → C×). We then want to understand the sums∑

x∈U

χ

(
f1(x)

g1(x)

)
ep

(
f2(x)

g2(x)

)
,

where ep(z) := e2πiz/p (an additive character). Especially, one is often interested in
showing that there is square-root cancellation in such sums, that is, a bound of the form
� √p. A classical example of such sums is the Gauss sums∑

x∈F×
p

χ(x)ep(ax),

whose modulus is always exactly
√
p if a ∈ F×p and χ is non-trivial. One way to interpret

the Weil conjectures is as a far-reaching generalization of the theory of Gauss sums.
In a very general situation (with some assumptions on fi, gi), there is a way to relate

these sums to counting solutions to certain polynomial equations modulo p. The general
case is quite involved, but to give a simple example of the argument, consider the case
where the Dirichlet character is the Legendre symbol(

x

p

)
:=


0, if x = 0,

1, ifx = y2 for some y ∈ F×p ,
−1, otherwise.
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Then ∑
x∈F×

p

(
x

p

)
=
∑
x∈Fp

(
1 +

(
x

p

))
− p =

∣∣{(x, y) ∈ Fp × Fp : x = y2
}∣∣− p.

Although this is rather silly as the sum on the left hand side is trivially equal to 0, this
example gives a �avour of the general argument.
As an example of a bad case consider an exponential sum over χ(f(x)), where f(x) =

xd and χ is a character of order dividing d, that is, χd ≡ 1; then clearly there is no
cancellation in the sum.

2. Algebraic geometry: bare necessities

To state the Weil conjecture of curves, we need to discuss some basic notions in alge-
braic geometry. We �rst recall some basic facts about �eld extensions and algebraically
closed �elds; the realm of classical algebraic geometry is in the solutions to polyno-
mial equations over algebraically closed �elds. This is best illustrated by the so-called
Hilbert's Nullstellensatz (`theorem on the location of zeros'), which we will describe in
the second section. Lastly, we need to discuss projective spaces and singular points of
curves.

2.1. Fields. Recall that the characteristic of a �eld k is de�ned to be min{n ≥ 1 :
nx = 0 ∀x ∈ k} if such an n exists, and it is set to be 0 if no such n exists. It is easy
to show that for any �eld, the characteristic is always either 0 or some prime number.
Recall that a �eld extension k ⊆ K is said to be algebraic if for any given x ∈ K

there exists a polynomial f ∈ k[X] such that f(x) = 0.
An algebraic �eld extension k ⊆ K is said to be �nite if K is obtained from k by

adjoining a �nite number of elements of K (equivalently, K is a �nite k-vector space).
A �eld K is said to be algebraically closed if for any f ∈ K[X] there exists x ∈ K

such that f(x) = 0. This is (by induction) equivalent to saying that every polynomial
f ∈ K[X] factors into a product of linear factors, and also equivalent to saying that K
admits no non-trivial algebraic extensions.
An algebraic closure of k is an algebraic �eld extension k ⊆ k such that k is alge-

braically closed.

Theorem 1. For every �eld k, there exists an algebraic closure k. It is unique up to
isomorphism.

Example. Algebraic closure of R is C (this is the fundamental theorem of algebra).

Example. For a �nite �eld Fp, any �nite algebraic extension is a �eld with q = pm

elements for some integer m ≥ 1. These are unique up to isomorphism, so we may speak
of the �nite �eld with q elements, denoted as Fq. The �eld Fq is the splitting �eld of the
polynomial Xq − X, that is, the smallest algebraic extension of Fp such that Xq − X
splits in to linear factors. In fact we have

Xq −X =
∏
a∈Fq

(X − a).

In other words, Fq is obtained from Fp by adjoining the roots to the equationXq−X = 0.
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We have Fpm ⊆ Fpn if and only if m|n. In particular,

Fp ⊆ Fp2 ⊆ Fp2·3 ⊆ Fp4! ⊆ · · · ,
which lets us to construct an algebraic closure for Fp by setting

Fp =
⋃
m≥1

Fpm! .

2.2. Hilbert's Nullstellensatz.

Theorem 2. (Hilbert's Nullstellensatz). Let k be any �eld. If m is a maximal ideal
of the polynomial ring k[X1, . . . , Xn], then the residue �eld

k(m) := k[X1, . . . , Xn]/m

is a �nite extension of k.

Recall that an ideal I ⊆ R of a ring R is said to be maximal if I 6= R and for any
ideal I ⊆ J we have either J = I or J = R. Equivalently, an ideal I is maximal if
the quotient ring R/I is a �eld (exercise). Hilbert's Nullstellensatz has a myriad of
di�erent formulations in the literature; we have chosen the above since it is particularly
well suited for our purposes.
The reason algebraic geometers love algebraically closed �elds is that in that case

Hilbert's Nullstellensatz implies

Theorem 3. If k is an algebraically closed �eld, then every maximal ideal of the poly-
nomial ring k[X1, . . . , Xn] is of the form (X1 − c1, . . . , Xn − cn) for some constants
c1, . . . , cn ∈ k.
Exercise 1. A �eld k is algebraically closed if and only if every maximal ideal of k[X] is
of the form (X − c).
To put it geometrically, Hilbert's Nullstellensatz says that if k is an algebraically

closed �eld, then there is a one-to-one correspondence between the maximal ideals of
k[X1, . . . , Xn] and the points of the a�ne space

An
k := {(c1, . . . , cn) : c1, . . . , cn ∈ k}.

This establishes a dictionary between two �elds of mathematics, commutative algebra
and geometry. This interpretation of the Nullstellensatz generalizes as follows:

Theorem 4. Let k be an algebraically closed �eld, and let {f1, . . . , fm} be a �nite set
of polynomials from k[X1, . . . , Xn]. De�ne the `a�ne algebraic variety de�ned by the
polynomials fj' as the set of common zeros

V := {c ∈ An
k : fj(c) = 0 for all j = 1, 2, . . . ,m} .

Let I(V ) ⊆ k[X1, . . . , Xn] be the ideal of polynomials g such that g(c) = 0 for all c ∈ V
(this is called the ideal of de�nition of V , note that fj ∈ I(V )).
Then there is a one-to-one correspondence between the points of V and the maximal

ideals of the quotient ring (called the coordinate ring of V )

P(V ) := k[X1, . . . , Xn]/I(V ),

which is given by the map

x 7→ mx := {g ∈ P(V ) : g(x) = 0}.
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Exercise 2. Show that mx is a maximal ideal for any x ∈ V.

It is relatively easy to show that the map x 7→ mx is injective; the hard part, which
requires the Nullstellensatz, is to show that this map is surjective.

Example. Let k = C, and consider the curve V de�ned by f(X, Y ) = Y −X2, that
is,

V :=
{

(x, y) ∈ C2 : y = x2
}
.

Then I(V ) = (Y − X2) so that the coordinate ring is P(V ) = C[X, Y ]/(Y − X2).
The coordinate ring can be interpreted as the ring of polynomial functions on the curve
Y = X2; if g, h ∈ C[X, Y ] are such that g−h ∈ I(V ), then this means exactly that g and
h agree on the curve Y = X2. We can also compute the coordinate ring by substituting
Y = X2:

P(V ) = C[X, Y ]/(Y −X2) ∼= C[X,X2] = C[X].

Clearly now the maximal ideal (X − x) ⊆ C[X] corresponds to the point (x, x2) ∈ V.
In general, the ideal of de�nition is not necessarily the ideal (f1, . . . , fm) generated by

the de�ning polynomials. It can be shown that I(V ) is the radical ideal of (f1, . . . , fm),
that is, the ideal consisting of polynomials g such that for some positive k we have
gk ∈ (f1, . . . , fm).
Modern algebraic geometry generalizes this notion even further by using the language

of schemes; for any commutative ring R, we may de�ne

Specm(R) := {m ⊆ R a maximal ideal} (the maximal spectrum)

Spec(R) := {p ⊆ R a prime ideal} (the prime spectrum).

The idea then is to treat the prime spectrum of any commutative ring as a geometric
object, even if the ring is not a coordinate ring of any variety over a �eld. This makes
it possible to draw parallels between algebraic geometry and algebraic number theory.
As an example, we have

Spec(Z) = {(0)} ∪ Specm(Z) = {(0)} ∪ {(p) : p ∈ Z a prime number}.
The prime spectrum of a ring (equipped with its so-called `Zariski topology' and the
`structure sheaf') is referred to as an a�ne scheme. A general scheme is then an object
which is locally an a�ne scheme (that is, an object which is made by gluing together
a�ne schemes).

2.3. Projective spaces. The most natural framework for practising algebraic geometry
is in projective spaces. To motivate why this might be so, consider two distinct complex
lines L1, L2 ⊂ C2. Then there are two possibilities: either the lines are parallel, in which
case L1 ∩ L2 = ∅, or they are not parallel, in which case they meet at a single point in
C2. This situation is remedied by agreeing that parallel lines meet at a point at in�nity.
The projective plane P2

C can be thought of as C2 with additional points at in�nity (one
for each set of parallel lines).
We construct the projective spaces as follows: Let k be a �eld and de�ne an equiva-

lence relation ∼ on kn+1 \ {0} by
(a0, . . . , an) ∼ (b0, . . . , bn)
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if there exists some λ ∈ k \ {0} such that

(a0, . . . , an) = (λb0, . . . , λbn).

Then as a set we de�ne the n-dimensional projective space over k as the set of equivalence
classes

Pnk := (kn+1 \ {0})/∼ .

We are mainly interested in curves in this note. An a�ne curve in A2
k is the zero

set of an absolutely irreducible polynomial f(X, Y ) ∈ k[X, Y ], that is, a polynomial f
which is irreducible as an element of k[X, Y ]. For example, the zero set of f = Y 2−X2

is not a curve, but a union of two curves Y − X and Y + X. If, for instance, k = Fp
and a ∈ Fp is not a square, then the polynomial f = Y 2 − aX2 is irreducible but not
absolutely irreducible, so that it does not de�ne a curve.
A projective curve of degree n in P2

k is the zero set of an absolutely irreducible homo-
geneous polynomial

f(X, Y, Z) =
∑

i+j+l=n

aijlX
iY jZ l.

Since f is homogeneous, we have f(λX, λY, λZ) = λnf(X, Y, Z) so that the zero set
modulo the equivalence relation ∼ is well-de�ned. Any a�ne curve can be made into a
projective curve by the process of homogenization:
Example. Let f(X, Y ) = Y 2 − X3 − 1. Then the homogenization of f(X, Y ) is

given by f(X, Y, Z) = Y 2Z − X3 − Z3, that is, a homogeneous polynomial such that
f(X, Y ) = f(X, Y, 1). The projective curve given by f is then just the set of equivalence
classes de�ned by {

(x, y, 1) ∈ k3 : f(x, y) = 0
}
∪ {(0, 1, 0)} ⊂ P2

k,

that is, there is just one point (the point at in�nity) added to the set of a�ne points of
the curve.
There is no better justi�cation for the use of projective spaces than the classical

theorem of Bézout on the number of intersection points of two curves.

Theorem 5. (Bézout's Theorem) Let k be an algebraically closed �eld, and let V
and W be two distinct curves in P2

k, of degrees d and e. Then the number of intersection
points |V ∩W |, counted with multiplicities, is equal to de.

We will not here specify what is meant by multiplicities, other than that it generalizes
the notion of the multiplicity of a root of a polynomial. If k = C and we consider the
curves de�ned by (homogenization of) the polynomial f(X, Y ) = Y − h(X), where h is
of degree d, and the polynomial g(X, Y ) = Y, then we see that Bézout's Theorem is a
generalization of the fundamental theorem of algebra. Bézout's theorem is remarkable in
that just by agreeing that any two distinct lines always meet at a point (case d = e = 1),
we get the expected number of intersection points for curves of any degrees.

2.4. Non-singular curves. To state the Weil conjecture in the case of curves, we need
the notion of a non-singular curve. As the name suggests, this means that the curve
is well behaved at every point. If k = C, then a singular point could for example be a
cusp or a double point (see the �gure below).
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We will not here give the general de�nition of a singular point. For an a�ne curve
de�ned by f(X, Y ) = 0, a point (x, y) on the curve is singular if both of the partial
derivatives vanish at that point, that is,

f(x, y) =
∂

∂x
f(x, y) =

∂

∂y
f(x, y) = 0

There is a completely algebraic way of de�ning a singular point, which generalizes
to curves in general: a curve is non-singular if the tangent space at every point is one
dimensional. For example, in the case of the curve Y 2 = X3 +X2, the tangent space at
(0,0) is two dimensional, as the picture might suggest. This notion generalizes to higher
dimensional varieties.
Similarly as with singularities, there is an algebraic way of de�ning a dimension of a

variety. Curves are then varieties of dimension one. By a non-singular projective curve
over a �eld k, we will mean a non-singular absolutely irreducible variety of dimension
one in Pnk for some n ≥ 1. An example of this is the zero set of (homogenization of) an
absolutely irreducible polynomial f(X, Y ) in P2

k, such that at all points on the curve
either ∂xf 6= 0 or ∂yf 6= 0. Note that since f is a polynomial, the derivatives are
well-de�ned even if k 6= C.

3. Statement of the Weil conjecture for curves

Throughout this section we �x a prime p and a power of it q = pm. We will consider
the algebraic geometry of curves over the �nite �eld Fq.

3.1. Riemann hypothesis for curves. We begin by stating perhaps the most im-
portant part of the Weil conjecture for curves, namely, the Riemann hypothesis for
curves:
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Theorem 6. (Riemann hypothesis for curves). Let C be a non-singular projective
curve over a �nite �eld Fq. Then

||C|−(q + 1)| ≤ 2g
√
q,

where g = g(C) is the genus of the curve C, which is a numerical invariant (a non-
negative integer) depending only on the curve.

Remark 1. If the curve is de�ned by a polynomial of degree d, then the genus satis�es
g ≤ (d−1)(d−2)/2. One can think of the genus as a measure of how wild the behaviour
of the curve is.

Remark 2. Since we are working with projective curves, the expected number of points
is |P1

q|= q + 1. The genus of the projective line is 0.

Example. An elliptic curve y2 = x3 + ax + b is non-singular if 4a3 + 27b2 6= 0. The
genus of an elliptic curve is 1. By looking at the homogenization we see that there is
exactly one point at in�nity on the curve. Thus, we obtain∣∣|{(x, y) ∈ Fp × Fp : y2 = x3 + ax+ b}|−p

∣∣ ≤ 2
√
p.

This bound for elliptic curves was obtained by Hasse before Weil gave a proof of the
general case.
To understand why the above theorem is called the Riemann hypothesis for curves,

we need to discuss the zeta function of a curve. The zeta function will also allow us to
state the Weil conjectures for curves in its full form.

3.2. Zeta function of a curve. For any non-singular curve C over a �nite �eld Fq,
we can consider C(Fqn), the set of points on C over an extension �eld Fqn of Fq. For
example, if C is de�ned by (the homogenization) a polynomial f ∈ Fq[X, Y ] in P2

Fq
, we

set

C(Fqn) :=
{
x ∈ P2

Fqn
: f(x) = 0

}
.

De�ne also C := C(Fq), the points on C over the algebraic closure of Fq; recall that
Fqm ⊆ Fqn i� m|n. Hence, C(Fqm) ⊆ C(Fqn) i� m|n, so that C is given as the union of
C(Fqn).
Let Nn := |C(Fqn)|. Then we de�ne the zeta function of C formally as

ZC(T ) := exp

(
∞∑
n=1

Nn
T n

n

)
.

It is relatively easy to show that Nn � qn, so that the sum converges to a complex
valued function for |T |< q−1, T ∈ C.

Exercise 3. If C = P1
Fq
, show that Nn = qn + 1 and

ZP1
Fq

(T ) = exp

(
∞∑
n=1

(qn + 1)
T n

n

)
=

1

(1− T )(1− qT )
.

At �rst sight there is little resemblance of a zeta function. However, similarly as in the
Nullstellensatz (in fact a projective version of Theorem 4), we can (vaguely speaking)
consider the maximal ideals of the coordinate ring of C. For any maximal ideal m of the
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coordinate ring, one can de�ne the so-called residue �eld at m, denoted by k(m), which
is always a �nite extension of Fq; write deg(m) = n if k(m) = Fqn . For a curve C over Fq
(even though Fq is not algebraically closed), we have then the following Nullstellensatz-
type result: any maximal ideal m corresponds to exactly n = deg(m) points on C(Fqn).
Furthermore, for any two distinct maximal ideals the corresponding sets of points are
disjoint in C. In the other direction, for any point x ∈ C, if n is the smallest integer such
that x ∈ C(Fqn), then there is a unique maximal ideal of degree n which corresponds to
a set of n points containing x.
Combining the above discussion, we obtain (using the fact that C(Fqm) ⊆ C(Fqn) i�

m|n)

Nn =
∑

m, deg(m)|n

deg(m)

Therefore, taking a logarithm of both sides of the de�nition of ZC(T ) gives

logZC(T ) =
∞∑
n=1

Nn
T n

n
=
∑
m

∞∑
n=1

T n deg(m)

n
=
∑
m

− log(1− T deg(m)).

Hence,

ZC(T ) =
∏
m

(1− T deg(m))−1.

Letting T = q−s, s ∈ C, we de�ne

ζC(s) := ZC(q
−s) =

∏
m

(1− |k(m)|−s)−1,

which is gives the zeta function in the Euler product form.

Remark 3. If instead of a coordinate ring we consider the ring Z, then the set of maximal
ideals Specm(Z) consists of ideals (p) for prime numbers p. The residue �elds turn out
to be k((p)) = Fp. Thus, if we consider Specm(Z) to be a `curve', we get a zeta function

ζSpecm(Z)(s) =
∏
p

(1− |k((p))|−s)−1 =
∏
p

(1− p−s)−1 = ζ(s),

which is precisely the Riemann zeta function. This justi�es the terminology. However,
there are some important di�erences; for instance, the zeta function of a curve C over
Fq is 2πi/log q-periodic.

We can now state the Weil Conjecture for curves.

Theorem 7. (Weil). Let C be a non-singular projective curve over Fq, of genus g.
Then
(1) (Rationality) ZC(T ) is a rational function in T.
(2) (Functional equation) For e = 2− 2g (euler characteristic) we have

ZC(q
−1T−1) = qe/2T eZC(T ).

(3) (Riemann hypothesis for curves) We have

ZC(T ) =
P (T )

(1− T )(1− qT )
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with P (T ) =
∏2g

j=1(1− ωjT ), where ωj ∈ C satisfy |ωj|=
√
q.

Remark 4. The tird part of the above theorem implies that if ζC(s) = 0, then < s = 1/2,
in analoque with the usual Riemann hypothesis. Note that all of these properties are
already veri�ed for the projective line P1

Fq
by the previous exercise.

As a corollary of the above theorem, we obtain a more general version of Theorem 6.

Corollary 8. If Nn = |C(Fqn)|, then
|Nn − (qn + 1)|≤ 2gqn/2.

Proof. Taking the logarithmic derivative and using Taylor expansion, we �nd that
∞∑
n=1

NnT
n−1 =

d

dT
logZC(T )

=
d

dT

(
− log(1− T )− log(1− qT ) +

2g∑
j=1

log(1− ωjT )

)

=
d

dT

(
∞∑
n=1

(
qn + 1−

2g∑
j=1

ωnj

)
T n

n

)
=
∞∑
n=1

(
qn + 1−

2g∑
j=1

ωnj

)
T n−1.

Comparing the coe�cients of the power series and using |ωj|=
√
q we �nd that

|Nn − (qn + 1)|=

∣∣∣∣∣
2g∑
j=1

ωnj

∣∣∣∣∣ ≤ 2gqn/2.

�

Remark 5. It is possible to show that the above corollary is in fact equivalent to the
third part of the Weil conjectures. This is analogous to the fact that the Riemann
hypothesis for the Riemann zeta function is equivalent to π(x) =

´ x
2

dt
log t

+O(x1/2+ε) for

any ε > 0, where π(x) is the number of primes up to x.

3.3. Remarks on the proof. Weil gave two proofs of his conjectures in the case
of curves, both of which relied on his work of rewriting the foundations of algebraic
geometry to accomodate �elds in characteristic > 0. A new simpler proof using less
algebraic geometry was given by Bombieri and Stepanov (aka Stepanov's method, which
was generalized by Bombieri), although this proof is somewhat ad hoc.
We now brie�y discuss one of Weil's proofs, which is perhaps the most geometrically

intuitive. The rationality and the functional equation follow relatively easily from some
standard theorems of algebraic geometry (mainly the Riemann-Roch Theorem). To
prove the Riemann hypothesis for C, we want show that

|Nn − (qn + 1)|≤ 2gqn/2.

As with the other proofs, the key observation is this: de�ne the Frobenius morphism

Frq : Fq → Fq, x 7→ xq.

Then the set of �xed points of Frnq : x 7→ xq
n
is precisely Fqn ⊆ Fq, that is,{

x ∈ Fq : xq
n

= x
}

= Fqn .
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∆

ΓFrnq

C

C

Figure 2. The diagonal and the graph of the Frobenius, a heuristic
visualization (a similar picture is given in [11])

This is because Fqn was obtained from Fq by adjoining the roots of the equationXqn−X.
We can then de�ne an action of the Frobenius morphism on the curve Frq : C → C by
letting the Frobenius map act on each coordinate separately.

Exercise. If x, y ∈ Fq, then (x + y)q = xq + yq. Show that Frq(C) ⊆ C if C is de�ned
by a polynomial f ∈ Fq[X, Y ].

Hence, we obtain

C(Fqn) =
{
x ∈ C : Frnq (x) = x

}
,

that is, we can capture the Fqn-rational points by using the Frobenius morphism.
Now we are in position to use the machinery of algebraic geometry, since we have

reduced problem on a curve over a �nite �eld to a problem on a curve over an alge-
braically closed �eld, which is where algebraic geometry excels. Consider the product
C × C; in terms of algebraic geometry, this obtains the structure of a surface over Fq,
but for us it is enough to just think of it as a cartesian product of sets. De�ne then two
new curves which live on the surface C × C, the diagonal

∆ := {(x, x) : x ∈ C}

and the graph of the Frobenius

ΓFrnq
:= {(x, xqn) : x ∈ C}.

Then Nn = |C(Fqn)| is exactly the same as the number of intersection points of the
diagonal and the graph of the Frobenius. The diagonal is a curve of degree one, while
the graph of the Frobenius is a curve of degree qn. Thus, by Bézout's Theorem we expect
that the number of such intersection points should be ≈ qn; the tricky thing here is that
our curves now live on a surface rather than in the projective plane. Weil's main hurdle
in the proof was to create a theory of intersecions of curves on a surface (in positive
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characteristic), a task too onerous for us to discuss here. Needless to say, Weil was
successful in his venture, hence the theorem.
One of the key insights in Weil's proof is that algebraic geometry does not seem to

care too much what the characteristic of the underlying �eld is, only that the �eld
should be algebraically closed; this allows us to think about curves over k = Fq as if
they were geometric objects, as if k were C. This intuition is then made rigorous by
writing the proofs in the language of commutative algebra (`think geometrically, prove
algebraically').

4. Exponential sums

In this section we give two applications of Weil's bound for exponential sums. First
we discuss multiplicative character sums.

Theorem 9. Let χ be a non-trivial multiplicative character on Fq of order d|q − 1. Let
g(X) ∈ Fq[X] be a polynomial such that there is no polynomial h(X) ∈ Fq[X] such that
g = hd. Let m denote the number of distinct roots of g in Fq. Then∣∣∣∣∣∣

∑
x∈F×

q

χ(g(x))

∣∣∣∣∣∣ ≤ (m− 1)
√
q.

By using averaging tricks, this problem can be reduced to obtaining a bound for∣∣|{(x, y) ∈ Fqn × Fqn : yd = g(x)}|−qn
∣∣ ,

which we can do by using the Riemann hypothesis for the curve yd = g(x).
As another application, we describe Weil's bound for Kloosterman sums: for a, b ∈ F×p ,

de�ne the Kloosterman sum as

S(a, b; p) :=
∑
x∈F×

p

e

(
ax+ b/x

p

)
,

where the inverse 1/x is taken in Fp.

Theorem 10. We have

|S(a, b; p)|≤ 2
√
p.

Again, after some averaging magic the proof is reduced to bounding∣∣|{(x, y) ∈ F×pn × Fpn : yp − y = ax− b/x}|−pn
∣∣ ,

which can further be reduced to counting solutions to polynomial equations.
In both of the above cases, one also needs to study the `L-function associated with

the exponential sum', which is obtained similarly as the zeta function of a curve but
in place of Nn we have have an exponential sum over Fqn ; these are analogous to the
Diriclet L-functions L(s, χ) =

∑
n≥1 χ(n)n−s of analytic number theory.
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Further reading suggestions and references

The zeta function for curves over �nite �elds was introduced in 1923 by Artin in his
thesis [2],[3], where he also suggested the analogue of the Riemann hypothesis. In 1934
Hasse proved this in the case of elliptic curves [7]. The case of curves in general was
solved by Weil in 1946 [13]. In 1949 Weil gave conjectures of a more general version
for higher dimensional varieties over �nite �elds [12]; these became known as the Weil
conjectures. This generalization will be the topic of the second part of these notes.
A useful book on commutative algebra (e.g. proof of Hilbert's Nullstellensatz) is

Introduction to Commutative Algebra by Atiyah and McDonald [4]; it is a must-read if
you want to study algebraic geometry. For a textbook on algebra in general (categories,
rings, �eld extensions and homological algebra) I suggest Algebra: Chapter 0 by Alu�
[1]; its size may be intimidating but it is big only because it contains a vast amount of
examples and exercises which help to build an intuition. What is especially nice about
this book is that it does not try to avoid the use category theory, which makes the book
very coherent and neatly organized.
A standard textbook on algebraic geometry isAlgebraic Geometry by Robin Hartshorne

[6]. It can be quite a heavy book to read but it contains a lot of useful exercises, and if
you are interested in studying the subject there is no substitute for working through the
book. A new alternative for studying are the notes Foundations of algebraic geometry
by Ravi Vakil [10]; this is especially useful as it begins with a thorough chapter on
category theory, which may seem needlessly abstract at �rst but studying it pays o�
hugely in the long run.
As a softer introduction into the language of schemes, I suggest the book The Geom-

etry of schemes by Eisenbud and Harris [5].
For exponential sum estimates I suggest the notes Exponential sums over �nite �elds,

I: elementary methods by Kowalski [8]; it does not require background in algebraic
geometry, and there is given the method of Bombieri and Stepanov.
For an exposition of Weil's proof (by intersection theory) of the Riemann hypothesis

for curves (which is a guided exercise in the above-mentioned Hartshorne's Albegraic
Geometry), I suggest the notes Weil conjecture for curves by Sam Raskin [9] (this
requires a good knowledge of algebraic geometry).
If you have background in algebraic number theory, I suggest the book Riemann hy-

pothesis for function �elds by Frankenhuijsen [11]. It does not require much background
at all, and it contains the proof by Bombieri and Stepanov. It also contains more discus-
sion on the analogue between the Riemann hypothesis for curves and the usual Riemann
hypothesis.
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