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Abstract. This is the second part of an introduction to Weil conjectures, which
concern the number of points on varieties over a �nite �eld. We begin by recalling and
expanding some basic de�nitions from �rst part, and then proceed to state the Weil
conjectures (a theorem despite its name). After this we give an informal discussion of
cohomology of varieties; this gives us a natural way to interpret the Weil conjectures.
We do not assume that the reader is familiar with cohomology theories, so we will try
to motivate this by examples. We then brie�y discuss what goes into the construction
of the so called `-adic cohomology; to put it simply, cohomology of a variety is just a
collection of �nite dimensional vector spaces with some nice properties. After stating
some of these properties we �nd that only linear algebra is needed to prove some parts
of the Weil conjectures. We then describe some applications of these ideas, and give
some reading suggestions. Same disclaimer as last time is in place; I do not consider
myself an expert in this topic, so it is likely that the note contains some inaccuracies.
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1. Statement of the Weil conjectures

We begin by recalling some de�nitions from the �rst part; let k be a �eld. We de�ne
an a�ne algebraic set to be a set of common zeros of a �nite collection of polynomials
{f1, . . . , fm} ⊆ k[X1, . . . , Xn], that is,

V = V (f1, . . . , fm) := {x ∈ kn : fj(x) = 0 ∀j = 1, 2 . . . ,m}.

For example, the a�ne n-space over k is An
k = V ({0}). Given such a variety V, the ideal

of de�nition and the coordinate ring are de�ned as

I(V ) := {g ∈ k[X1, . . . , Xn] : g(x) = 0 ∀x ∈ V } ⊆ k[X1, . . . , Xn],

P(V ) := k[X1, . . . , Xn]/I(V ).

We say that V is irreducible if the ideal of de�nition I(V ) is a prime ideal. Intuitively,
this means that V is not a non-trivial �nite union of algebraic sets.
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Recall that for any extension k ⊆ K, we can look at the points on V with coordinates
in K

V (K) := {x ∈ Kn : fj(x) = 0 ∀j = 1, 2 . . . ,m} ⊇ V (k).

Then V is said to be absolutely irreducible if V (k) is irreducible, where k is the algebraic
closure of k. An a�ne variety over k is then de�ned to be an absolutely irreducible
algebraic set with coordinates in k, de�ned by polynomials with coe�cients in k.

Example 1. The set V (Y 2 −X2) ⊆ A2
k is not irreducible, it is a union of two varieties

V (Y −X) and V (Y +X). If k = Fp and a ∈ Fp is not a square, then V (Y 2−aX2) ⊆ A2
k

is irreducible but not absolutely irreducible.

Similarly as in the �rst part, we will focus on projective varieties; a projective variety
is an absolutely irreducible algebraic subset of Pnk de�ned by a set of homogeneous
polynomial equations. Any a�ne variety in An

k de�nes a projective variety in Pnk by
homogenization of the polynomials; one should think of this as the original a�ne variety
with additional `points at in�nity'.
Roughly speaking, a variety is of dimension d if it is de�ned by m equations in an

(m+ d)-dimensional space.
We also need to recall the de�nition of a non-singular variety. For example, a curve

V = {x ∈ A2
k : f(x) = 0}

is non-singular if for all (x, y) ∈ V either ∂xf(x, y) 6= 0 or ∂yf(x, y) 6= 0. If both
partial derivatives vanish, such a point is said to be a singular point. The notion of
non-singularity can be generalized to higher-dimensional varieties by using the Jacobian
matrix JV (x) = (∂fi/∂xj(x)), where f1, . . . , fm are the polynomials de�ning the variety
V ⊂ An

k ; a point (x1, . . . , xn) ∈ V is non-singular if the matrix JV (x) is of rank n − d,
where d is the dimension of the variety (some care is needed in making this rigorous).
We are now prepared to state the Weil conjectures (a theorem despite its name); �x

q = pm, and let X be a non-singular projective variety de�ned over Fq. Let d denote the
dimension of X. De�ne

Nn := |X(Fqn)|,

the number of points with coordinates in Fnq . Then the zeta function of X is

ZX(T ) := exp

(
∞∑
n=1

Nn
T n

n

)
,

so that the logarithmic derivative of ZX(T ) is the generating function of Nn; it is a
complex function, which can be continued meromorphically to the whole plane. The
Weil conjectures then are as follows:

1. Rationality. ZX(T ) is a rational function of T, that is, a quotient of polynomials
with rational coe�cients.

2. Functional equation. There is an integer E such that

ZX

(
1

qdT

)
= ±qdE/2TEZX(T )
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3. Riemann hypothesis for X. We have

ZX(T ) =
P1(T )P3(T ) · · ·P2d−1(T )

P0(T )P2(T ) · · ·P2d(T )
,

where P0(T ) = 1− T, P2d = 1− qqT, and for every i the polynomial Pi(T ) has integer
coe�cients, and

Pi(T ) =
∏
j

(1− αijT ),

where αij are algebraic integers with |αij|= qi/2.

We note here that if we set T = q−s and ζX(s) := ZX(q−s), then the third part implies
that ζX(s) has its poles and zeros on the vertical lines {< s = i/2}, i = 0, 1, . . . , 2d,
with poles on integer values and zeros on half-integer values of the real part. This is
analogous to the Riemann hypothesis, which states that if s is a non-trivial zero of ζ(s),
then < s = 1/2.

Exercise 1. If X = PdFq
, then Nn = qnd + qn(d−1) + · · ·+ qn + 1, and

ZPd
Fq

(T ) =
1

(1− T )(1− qT ) · · · (1− qdT )
.

On their own the three parts to the conjecture may look somewhat mystifying. How-
ever, there is a fourth part to the Weil conjectures, which will eventually motivate the
other three.

4. Betti numbers. We have E =
∑2d

i=0(−1)i degPi in the functional equation.
Futhermore, if q = p and X is a good reduction modulo p, then degPi = Bi, the ith

Betti number of X(C), so that E is the Euler characteristic of X(C).

Let us clarify what the above means. By reduction modulo p we mean the following:
suppose, for example, that f(X, Y ) ∈ Z[X, Y ] is a polynomial with integer coe�cients.
Then by taking the residue class modulo p of each coe�cient, we can view f as an
element of Fp[X, Y ]. The curve X = {x ∈ F2

p : f(x) = 0} is then a reduction modulo p.
Since f has integer coe�cients, we can also consider the complex points

X(C) = {x ∈ C2 : f(x) = 0}.

Then the Betti numbers say something about the topology of X(C); roughly, Bi is the
number of `i-dimensional holes' on X(C). All of this discussion generalizes to higher
dimensional varieties in an obvious way. As an example, the Betti numbers of PdC are
Bi = 1, if i ≤ 2d is even, and Bi = 0, if i ≤ 2d is odd, and Bi = 0 for i > 2d. (Some
care is needed to make the above discussion rigorous, for example, the reduction of
f(X, Y ) = pX + pY modulo p is just 0; these technicalities are swept under the rug by
inserting the word `good' before `reduction modulo p').
This striking idea, that the geometry of the complex points should a�ect the number

of points modulo p, is perhaps the deepest insight of Weil's conjectures; making this
rigorous was a key motivation for the developments in algebraic geometry through 1950's
to 1970's. To understand this fourth part and its relation to the other parts, we need
to make an excursion into cohomology.
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2. `-adic cohomology

The Weil conjectures cannot be reasonably discussed without mentioning cohomol-
ogy. Various kinds of cohomology theories have been developed in di�erent parts of
mathematics; they can be thought be an attempt to characterize of `obstructions' of
some sort.
What we seek is a cohomology theory for varieties over �nite �elds. There are standard

ways of developing cohomology theories for varieties over complex numbers by using their
`analytic' topology (a non-singular variety over C is also a smooth manifold). To prove
the fourth part of the Weil conjectures, these two cohomologies should be comparable
in some way.
We �rst give an informal description of a certain cohomology theory for topological

spaces. We then sketch how this can be used to de�ne a cohomology theory for varieties
over �nite �elds; this requires us to broaden what we mean by a topology, to the so
called étale topology. Étale cohomology is then de�ned as the cohomology with respect
to the étale topology. `-adic cohomology is de�ned using étale cohomology. Lastly, we
will list some basic properties of `-adic cohomology.
If this section feels quite abstract and highbrow, fear not; in the next section we will

use only some basic linear algebra, to deduce the parts one, two and (almost) four of
the Weil conjecture, using the basic properties of the cohomology. For that purpose it is
su�cient to say that the `-adic cohomology consists of a collection of �nite dimensional
vector spaces with some convenient properties. We still feel obliged to give at least a
�avour of what goes into this construction. All the discussion in this section is informal
and we will refrain from rigorous de�nitions for the sake of the reader, for it would
require us to dwell on category theory and other abstract nonsense for far too long.

2.1. Cohomology. In this section we will discuss a cohomology theory of topological
spaces called �ech cohomology.
Consider the following basic problem: recall that two topological spaces X and Y

are said to be homoemorphic if there exists a continuous bijection f : X → Y whose
inverse is also continuous (the intuition here is that X and Y are homeomorphic if one
is continuously deformable in to another). De�ne the annulus and the disk on the real
plane

A := {(x, y) ∈ R2 : 1/4 < x2 + y2 < 1}, D := {(x, y) ∈ R2 : x2 + y2 < 1}.

Suppose that someone asks us to show to show that A is not homeomorphic to D.
The obvious way to do this is to note that every closed path in the disk D can be
continuously shrunk to a point; on the other hand, if a closed path in A `winds around'
the hole once, then such a path cannot be continuously deformed to a point (since the
`winding number' of a closed path remains �xed in continuous deformations), cf. Figure
1.
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Figure 1. Closed paths in D and A.

Suppose then that someone (an evil supervillain perhaps?) demands we give a proof
without using the notion of a path, since this does not generalizes well to arbitrary
spaces (recall that we are concerned with varieties over �nite �elds, which are �nite sets
of points). Another way to approach this problem is by considering open coverings:
Recall �rst that for any topological space, an open subset U ⊆ X is said to be

connected if for any two non-empty open sets V,W such that U = V ∪ W, we have
V ∩W 6= ∅ (this means that U has only one connected component).

Figure 2. The �rst two sets are connected but the last one is not.

The disk D enjoys the following property (although this is not completely obvious):
let U, V ⊆ D be two non-empty open connected subsets such that D = U ∪ V. Then
U ∩ V is connected.
However, for the annulus A there is a covering by two open connected subsets U, V ⊆

A such that U ∩ V is not connected, but consists of two components. This implies
then that A cannot be homeomorphic to D, since for homoemorphic spaces the is a
one-to-one correspondence between open coverings.
To push this further, if we have a disk with n holes, then there exists an open covering

by two connected open subsets U, V such that U ∩ V has n + 1 connected components
(somehow the number of holes seems to be determined by what is the worst number of
components we can get).
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Figure 3. The intersection U ∩ V shown in green.
The moral of the story is that we can say something about the topology of a space

by considering open coverings and intersections. By making this idea precise one ends
up with the de�nition of �ech cohomology; for a topological space X and for any group
G, such a construction gives a sequence of groups called the �ech cohomology groups

H0(X,G), H1(X,G), . . . , H i(X,G), . . .

The group G is called the group of coe�cients; typical choices include Z,Q,C,Z/nZ,
for example. (We note that the open sets in a covering here need not be connected; the
construction of �ech cohomology is de�ned as a certain `quotient' which automatically
tracks the number of components of the intersections versus the number of components
of the open sets in the covering. Thus, the notion connectedness is not really required
for the de�nition, only open coverings and intersections).
The intuition is that H i(X,G) decodes something about the i-dimensional structure

of X. For example, H0(X,G) is a direct sum of n copies of G if X has n connected
components. Roughly speaking, H i(X,G) is GBi(X), where Bi(X) is the number of i-
dimensional holes on X (the ith Betti number, two dimensional holes are cavities, for
example). In the previous example,

H i(D,Z) =

{
Z, i = 0

0, i > 0,
H i(A,Z) =

{
Z, i = 0, 1

0, i > 1.

The fact that A and D are not homeomorphic is evident from that their cohomology
groups disagree for i = 1 (however, it is possible to have non-homeomorphic spaces
whose cohomology groups are the same, so that this is not a complete characterization).
The reader who is not familiar with cohomology may wonder what is the relevance of

the group of coe�cients G, that is, can't we just count the number of i-dimensional holes
and pat ourselves on the back? The point is that having more algebraic structure makes
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the theory much more powerful; in our case we will choose the coe�cient group to be
a �eld, which means that the cohomology groups become vector spaces. It so happens
that a map of spaces f : Y → X induces maps in cohomology f ∗ : H i(X,G)→ H i(Y,G)
(for each i), which are then linear maps of vector spaces; these induced maps will play
a vital role. For topological spaces, the induced map is de�ned by noting that if {Ui} is
an open covering of X and f : Y → X is continuous, then {f−1(Ui)} is an open covering
of Y .
Another way of motivating �ech cohomology is that it measures the amount of ob-

structions in going from `local solutions' to `global solutions', that is, if we can solve
some problem in any su�ciently small open set, can we also �nd a global solution?
Such an approach is often used, for example, when solving di�erential equations. As an
example, the equation ef(x) = x has a complex analytic solution in a su�ciently small
neighborhood of any point in the annulus A ⊂ C, but the equation fails to have a global
analytic solution in the whole of A. Looking at open coverings and intersections seems
to be a very natural approach to try to understand such obstructions.

2.2. Étale topology. For any variety V there is a natural topology called the Zariski
topology; U ⊆ V is an open set if it is a complement of a �nite collection of algebraic
subsets of V . For example, open subsets of A2

k are complements of �nite collections
of points and curves. Unfortunately this topology is insu�cient for development of a
cohomology. In fact, one can even show for this topology that H i(V,G) = 0 for all
i > 0; there simply are not enough open sets (strictly speaking, there is a way to de�ne
a so-called sheaf cohomology by using the Zariski topology, which replaces the coe�cient
group G by a more general object called a sheaf, but this is not suited for our purposes).
A variety over a �nite �eld is just a �nite collection of points, so that one could argue

that any topology for such a variety is too trivial to yield interesting cohomological
theory. A brilliant idea of Grothendieck was that we need to extend what we mean by
a topology; recall that to de�ne �ech cohomology, we essentially needed two concepts,
(1) open covering, and (2) intersection. It turns out that both of these make sense if we
replace open subsets i : U ↪→ X by more general mappings f : Y → X, that need not
be injective:

(1) A collection of maps {fi : Ui → X} is said to be a covering, if X =
⋃
fi(Ui)

(2) Given two maps f : U → X and g : V → X, their `intersection' is de�ned to be
the �ber product over X

U ×X V := {(u, v) ∈ U × V : f(u) = g(v)}

(technically the �ber product depends also on the maps f, g but this is usually ignored
to lighten the notation).

Exercise 2. (i) If i : U ↪→ X and j : V ↪→ X are two injections of open subsets of X,
then their �ber product U ×X V can be naturally identi�ed with U ∩ V.
(ii) Give sets U and X and a function f : U → X so that the `self-intersection' U×XU

is not U .

Suppose then that we are given some property E of maps. Then the E-topology of X
is just the collection of all maps f : U → X satisfying E, and an E-covering is a covering
{fi : Ui → X} where each map satis�es E. The intersections are understood to mean the
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�ber products. (Strictly speaking, we need to specify the underlying category, that is,
the objects and the morphims, e.g. sets and functions, topological spaces and continuous
maps, vartieties and morphisms of varieties. This generalization of topology, properly
de�ned, is generally known as Grothendieck topology). Given such an E-topology, we
can use the �ech construction to de�ne cohomology with respect to the E-topology.
The question then is, what property E we should choose to de�ne topology for a

variety X/Fq? There are many options (E = `�at', `fppf', `fpqc', . . . ), all of which yield
interesting cohomologies, but for our purpose the choice is E = `étale'. We will not
give here a rigorous de�nition for a map of varieties to be étale; the intuition is that
f : Y → X is étale if it is `smooth' and a `local isomorphism', in some sense. We give
examples of étale morphisms:

Example 2. If we have two non-singular varieties over complex numbers Y/C and X/C,
then they have the structures of complex manifolds. Then a map of varieties f : Y → X
is étale if and only if it is a local isomorphism (with respect to their analytic topology).

Example 3. (At this point the temptation to mention schemes becomes unbearable mo-
mentarily, apologies for this lapse. This example is not terribly important in what
follows). Suppose that k is an algebraically closed �eld. Recall that by Hilbert's Nul-
stellensatz (cf. Part I, Section 2), points on an a�ne variety X/k are in one-to-one
correspondence with the maximal ideals of the coordinate ring P(X). An a�ne scheme
over a commutative ring A is then essentially the pair (SpecA,A), where

SpecA := {p ⊂ A a prime ideal}

is the set of prime ideals of A (recall that maximal ideals are prime ideals). Thus,
SpecP(X) corresponds to the variety X (prime ideals that are not maximal correspond
to subvarieties of X). Then any homomorphism of rings f : A→ B de�nes a morphism
of schemes

SpecB → SpecA p→ f−1(p).

(Exercise: check that pre-image of a prime ideal is prime). By de�nition, a morphism
of a�ne schemes consists of a pair of maps like this, A→ B and SpecB → SpecA.
For any �eld k, there is an associated scheme Spec k = {(0)}. Then a �eld extension

f : k ↪→ K de�nes a map of schemes SpecK → Spec k which is étale if the �eld extension
is separable. Thus, an étale morphism is a generalization of a separable �eld extension.
The exact de�nition of an étale map is most natural to give in the framework of

schemes. For example, let A be a ring, P1, . . . , Pn ∈ A[X1, . . . , Xn] be polynomials, and
de�ne the quotient ring

B = A[X1, . . . , Xn]/(P1, . . . , Pn).

Let f : SpecB → SpecA be the map de�ned by the composition

A ↪→ A[X1, . . . , Xn]→ B,

where the latter map is the quotient map. Then f is étale if and only if the image of the
Jacobian determinant det (∂Pi/∂Xj) in B is a unit, that is, has a multiplicative inverse
in B. This is analogous to the inverse function theorem of multivariable calculus; a
continuously di�erentiable function F : Rn → Rn is a local isomorphism (has an inverse
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on su�ciently small neighborhood of every point) if its Jacobian determinant is non-
zero at every point. This justi�es the previous example of complex manifolds, since the
inverse function theorem holds also for manifolds.

Another way of thinking about étale topology is by localization: for a usual topological
space X and a point x ∈ X, we can think about problems `locally' at su�ciently small
open neighborhoods of x; a local problem is often easier to solve than a global problem.
For étale topology on a variety X, an étale neighborhood of a point x is an étale map
f : U → X such that x ∈ f(U). For two étale neighborhoods U and V, neighborhood
V is considered to be smaller than U if V → X factors through U as V → U → X.
Then by considering smaller neighborhoods we can in some sense `zoom in' at the point
x. Local problems are again easier; in the framework of the previous example, étale
maps of spectrum of �elds correspond separable �eld extensions, and any problem on a
�eld k is usually easier to solve for the algebraic closure k, which is in the étale-sense a
`localization' of the problem.
Finally, we will denote by H i

ét
(X,G) the �ech cohomology with respect to the étale

topology.

2.3. `-adic cohomology. There is still the subtle point of what is the correct choice for
the group of coe�cients G in our cohomology? For technical reasons we want to choose
it to be a �eld with characteristic zero, but it turns out that for the obvious choices Q
or C étale cohomology is not well-behaved; after all of the above constructions, a piece
is of the puzzle is missing.
However, for a variety over Fq with q = pm, étale cohomology with the coe�cient

groups Z/`nZ behave nicely for any given prime ` 6= p and any natural number n. This
allows us to de�ne the so-called `-adic cohomology by

H i(X,Q`) :=
(

lim
←
H i

ét
(X,Z/`nZ)

)
⊗Z`

Q`.(2.1)

We now proceed to explain what the above notations mean, although this will probably
not be very enlightening (especially since we have not even given the proper de�nition
of �ech cohomology). The main point here is that Q` is a �eld with characteristic 0,
and H i(X,Q`) is a Q`-vector space for every i.
We begin with the limit notation. Roughly speaking, within a category, it is possible

to de�ne a limit of a sequence of objects with morphisms between them, to be an object
with certain properties; this may not always exist. For example, in the category of sets,
suppose that we have a sequence of sets indexed by the integers

· · · ⊆ U−1 ⊆ U0 ⊆ U1 ⊆ U2 ⊆ · · · .
We then have injections fij : Ui ↪→ Uj for any j ≥ i. Then the direct limit and the
inverse limit of this sequence are simply

lim
→
Ui =

⋃
i

Ui, lim
←
Ui =

⋂
i

Ui;

the dirction of the arrow indicates whether the object is `terminal' or `initial' to the
given sequence. Another example is that the algebraic closure Fq is the direct limit of
Fqn in the category of �elds. A limit is in some sense `the most e�cient solution' for
some problem, for instance, Fq is the smallest �eld containing all �elds Fqn .



10 JORI MERIKOSKI

Given any prime ` and any natural number n, there are natural (projection) ring
homomorphisms Z/`mZ→ Z/`nZ, for any m ≥ n, that is, we have surjective maps

Z/`Z← Z/`2Z← Z/`3Z← · · ·

Then the `-adic integers are the inverse limit of this sequence in the category of rings

Z` = lim
←

Z/`nZ.

Concretely, we have

Z` =

{∑
n≥0

an`
n : an ∈ {0, 1, . . . , `− 1}

}
,

where the series may be in�nite. Then Q` is the quotient �eld of Z`, which is just

Q` =

{∑
n≥k

an`
n : k > −∞, an ∈ {0, 1, . . . , `− 1}

}
.

It turns out that the maps Z/`mZ→ Z/`nZ induce maps in cohomology

H i
ét

(X,Z/`mZ)→ H i
ét

(X,Z/`nZ),

and the inverse limit in (2.1) exists in the category of rings. This gives the limit a
structure of a Z`-module, which means that we can take the tensor product ⊗Z`

Q`; this
in turn makes H i(X,Q`) into a Q`-vector space. The properties of H i(X,Q`) we next
describe are inherited from the properties of H i

ét
(X,Z/`nZ).

2.4. Some basic properties. The reason that the various di�erent cohomology the-
ories are called cohomologies is that they all satisfy some basic properties; we will list
some of them here. In addition, there are some properties which are special to the étale
cohomology included in the below; the list is by far not complete. In the below, we �x
a non-singular projective variety X over Fp and a prime ` 6= p (the choice of the prime
is not important).

Finiteness. H i(X,Q`) is a �nite dimensional vector space for all i ≥ 0.

Cohomological dimension. If X is of dimension d, then H i(X,Q`) = 0 for i > 2d
(we get 2d here since a d-dimensional complex variety is a 2d-dimensional object; cf.
the comparison property below).

Comparison. If X is a non-singular projective variety over C, then there is an
isomorphism

H i(X,Q`)⊗Q`
C ' H i

an
(X,C),

where the latter cohomology is with respect to the analytic topology of the complex
manifold X(C) (this is an object which is much easier to understand).

Base change. If X is a good reduction modulo p, then

H i(X,Q`) ' H i(X(C),Q`)
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Functoriality. A morphism of varieties f : X → Y induces a map (of vector spaces)
in cohomology for all i ≥ 0

f ∗ : H i(Y,Q`)→ H i(X,Q`)

(it is common to ignore in the notation that f ∗ depends on i).

Leschetz �xed-point formula. Under some assumptions, if f : X → X has a �nite
number L(f,X) of �xed points (that is, points so that x = f(x)), then

L(f,X) =
2d∑
i=0

(−1)iTr(f ∗; H i(X,Q`)),

where f ∗ is the induced linear map H i(X,Q`) → H i(X,Q`), and Tr is the trace (this
part is one of the reasons why we want to have cohomology with coe�cients in a �eld
of characteristic 0; the quantity on the left is an integer).

Poincaré duality. For any 0 ≤ i ≤ 2d, the cohomology H i(X,Q`) is the vector
space dual of H2d−i(X,Q`). In particular, we have

dimH i(X,Q`) = dimH2d−i(X,Q`), dimH0(X,Q`) = dimH2d(X,Q`) = 1.

It is noteworthy that by the time Weil formulated his conjectures, the counterparts
of the above propoerties were known for the cohomology of complex analytic manifolds
with respect to their analytic topologies; in that setting the theorems are not too di�-
cult, but for `-adic cohomology the above are all deep statements, whose proofs require
a lot of care.
In the language of schemes, étale cohomology makes sense also for Spec k, the spec-

trum of a �eld k. In that instance it turns out that the étale cohomology groups are
exactly the so called Galois cohomology groups, which have been studied independently.
Noting the comparison theorem above, we start to get a sense why theorems in étale
cohomology lie deep; on one hand étale cohomology says something about complex man-
ifolds, which are just about as continuous and smooth as anything can be. On the other
hand, it also describes `one point spaces' Spec k, which is just about as discrete as pos-
sible. Étale cohomology gives a bridge between these two extremes, which is convenient
for us since varieties over �nite �elds lie somewhere in the middle.

3. Remarks on the proofs

Let us recap the situation thus far: for any d-dimensional non-singular projective
variety X over Fq, we have a collection of �nite dimensional Q`-vector spaces, called the
`-adic cohomology,

H0(X,Q`), H
1(X,Q`), . . . , H

2d(X,Q`),

which satisfy some cozy properties. We now use these properties sketch the proofs for
parts 1,2, and (almost) 4 of the Weil conjectures. Similarly as in the outline of the proof
Weil for curves (cf. Part 1) we begin with the Frobenius morphism:
Recall that on Fq we de�ne the Frobenius morphism as

Frq : Fq → Fq, x 7→ xq.
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Then Fqn is the �xed points of Frnq (x) = xq
n

Fqn = {x ∈ Fq : x = Frnq (x)}.(3.1)

Let X be a non-singular projective variety over Fq and denote X := X(Fq). Recall
the `freshman's dream' identity (x+ y)q = xq + yq, which holds for any x, y ∈ Fq. Then
for any polynomial f we have f(xq) = (f(x))q. Hence, if x = (x1, . . . , xn) is a solution
to a given set of polynomial equations, then so is

Frq(x) := (xq1, . . . , x
q
n).

Thus, the Frobenius de�nes a map Frq : X → X by acting separately on each coordinate
of a point. Hence, by (3.1)

X(Fqn) := {x ∈ X : x = Frnq (x)},(3.2)

that is, we can capture the points over Fqn as the �xed points of the Frobenius Frnq .
By the functoriality property, the Frobenius Frq induces a linear map of vector spaces

in cohomology denoted by

Φ : H i(X,Q`)→ H i(X,Q`),

and the map induced by Frnq is just Φn. Hence, by (3.2) and by the Lefschetz �xed-point
formula

Nn = |X(Fqn)|=
2d∑
i=0

(−1)iTr(Φn; H i(X,Q`)).

Thus, we arrive at the following formula for the zeta function

ZX(T ) = exp

(
∞∑
n=1

Nn
T n

n

)
=

2d∏
i=0

[
exp

(
∞∑
n=1

Tr(Φn; H i(X,Q`))
T n

n

)](−1)i
(3.3)

We now require the following general lemma from linear algebra

Lemma 1. Let V be a �nite dimensional vector space, and let φ : V → V be a linear
map. Then we have the formal power series identity

exp

(
∞∑
n=1

Tr(φn;V )
T n

n

)
= det(1− φT ;V )−1.

We will not prove the above lemma, but note that if V is one-dimensional, then φ is
just multiplication by a scalar λ so that the above is just the identity

exp

(
∞∑
n=1

λn
T n

n

)
=

1

1− λT
.

Combining the above lemma with (3.3) we get

ZX(T ) =
P1(T )P3(T ) · · ·P2d−1(T )

P0(T )P2(T ) · · ·P2d(T )
for Pi(T ) = det(1− ΦT ;H i(X,Q`)),(3.4)
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that is, Pi(T ) is the characteristic polynomial of Φ acting on the ith cohomology. By
the �niteness property, the H i(X,Q`) are �nite dimensional vector spaces, so that Pi
are polynomials and

deg Pi = dim H i(X,Q`).

This essentially proves the �rst part of the Weil conjectures, which was to show that
the zeta function is rational; strictly speaking, since H i(X,Q`) are Q`-vector spaces, we
still need to check that we get a quotient of polynomials with rational coe�cients. Let
Q[[T ]] denotes the ring of power series with coe�cients in Q, an let Q(T ) and Q`(T )
denote the rings of quotients functions of polynomials with coe�cients in Q and Q`,
respectively. Then it holds that Q[[T ]] ∩ Q`(T ) = Q(T ). By series expansion of the
exponential we see that ZX(T ) ∈ Q[[T ]]. By (3.4) we see that also ZX(T ) ∈ Q`(T ).
Hence, ZX(T ) ∈ Q(T ), that is, ZX(T ) = P (T )/Q(T ) for some rational P and Q. Note
that this does not yet show that any of the individual Pi has rational coe�cients.
It is perhaps not di�cult believe from the representation (3.4) that the functional

equation

ZX

(
1

qdT

)
= ±qdE/2TEZX(T )

is essentially a consequence of the Poincaré duality property, which states thatH i(X,Q`)
and H2d−i(X,Q`) are vector space duals (with some additional observations and linear
algebra). From the proof we get (unsurprisingly) the formula for the constant

E =
2d∑
i=0

(−1)i dim H i(X,Q`),

which is very similar to the conjectured formula of part four of the Weil conjecture.
Unfortunately, we do not yet know that any of the Pi are the ones conjectured by part
three (since we do not even know that any of Pi has rational coe�cients); that this is
so is a deep result of Deligne.
However, given that this is true, we need to check that if X is a good reduction

modulo p, then dim H i(X,Q`) is the ith Betti number of X(C), which is by de�nition

Bi := dim H i
an

(X(C),C),

where the cohomology is with respect to the analytic topology. This now follows from
the base change property, which allows us to change X to X(C), combined with the
comparison property.
By the formula Pi(T ) = det(1 − ΦT ;H i(X,Q`)) the Riemann hypothesis for X also

has a new interpretation: the eigenvalues of Φ acting on H i(X,Q`) are complex numbers
of modulus qi/2. This is what Deligne showed to be true. Unfortunately we are not able
to discuss this further here, for it requires much deeper ideas (but more importantly
due to my own lack of knowledge).

4. Applications

4.1. Exponential sums. Similarly as in the case of curves, the Weil conjectures have
a big impact for the theory of exponential sums. However, in this instance the most
important results do not follow directly from the Weil conjectures, but rather from
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Deligne's proof of the Riemann hypothesis for varieties. We give some examples of such
results before we elucidate the connection between exponential sums and cohomology
described above.

Theorem 2. Let Q ∈ Fp[X1, . . . , Xn] be a polynomial of degree d satisfying certain
smoothness conditions. Then (for e(z) := e2πiz)∑

x1,...,xn∈Fp

e (Q(x1, . . . , xn)/p) ≤ (d− 1)npn/2.

This theorem is very impressive in that we get square root cancellation with respect to
every variable in the sum. Another application is the generalization of the Weil bound
to the Hyper-Kloosterman sums

Kln(a; p) :=
∑

x1,...,xn∈Fp

x1···xn≡a (mod p)

e((x1 + · · ·+ xn)/p).

Note that this is a (n− 1)-dimensional sum, since the condition x1 · · · xn ≡ a �xes one
of the variables.

Theorem 3. We have square root cancellation in Kln(a; p), that is,

|Kln(a; p)| ≤ np(n−1)/2.

The theory of more general exponential sums, called trace functions, is an active area
of research. It allows the study of bounds for the `Fourier transform' of exponential
sums, as well as study of correlations of exponential sums. For example,

Theorem 4. If a, b ∈ Fp, a 6= 0 and (a, b) 6= (1, 0) then∣∣∣∣∣∣
∑
x∈F×

p

Kl3(x; p)Kl3(ax; p)e(bx/p)

∣∣∣∣∣∣ � p3−1/2.

The theorem states that even in the correlations we get square root cancellation! This
result can be applied to show that in equidistribution estimates for the ternary divisor
function d3(n), we can go beyond the so called Bombieri-Vinogradov result. A result
of similar type was used by Zhang to break the Bombieri-Vinogradov barrier for the
equidistribution of primes in arithmetic progressions (under a slight modi�cation); he
then applied this to show (using the GPY-sieve) that there are ini�tely many primes pn
such that pn+1 − pn ≤ 70, 000, 000, obtaining for the �rst time bounded gaps between
primes.
A result of a di�erent nature concerns the argument of the Gauss sums

Gχ(a; p) :=
∑
x∈F×

p

χ(x)e(ax/p) = χ(a)Gχ(1; p).

Recall that for all non-trivial characters χ we have |Gχ(1; p)|= √p. A very di�cult
problem is to �nd the argument of a Gauss sum. However, we have

Theorem 5. The sets {Gχ(1; p)/
√
p : χ non-trivial} becomes equidistributed on the unit

circle as p→∞.
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We give a quick sketch of the proof for this: by Weil's equidistribution criterion, the
theorem is equivalent to saying that for any �xed n

Wn(p) :=
∑

χ (mod p) non-trivial

(
Gχ(1; p)
√
p

)n
= o(p).

as p→∞. By inserting the de�nition of Gauss sums and expanding we �nd that

Wn(p) =
1

pn/2

∑
x1,...,xn∈F×

p

e((x1 + · · ·+ en)/p)
∑

χ (mod p) non-trivial

χ(x1 · · ·xn)

=
p− 1

pn/2
Kln(1; p)

by orthogonality of Dirichlet characters. Thus, by Theorem 3 we have |Wn(p)|� p1/2,
which is even stronger than what we required.
We now give a rough description of how the cohomological machinery is applied to

obtain such results. For concreteness, suppose we have a one dimensional exponential
sum of the form

S =
∑
x∈U

(some algebraic expression of x involving characters) ,

where U is Fq minus some special points; we do not specify here what sort of expressions
are allowed, but as an example we might have∑

x∈U

e(P (x)/p)χ(Q(x)),

where P and Q are rational functions and U is Fp minus the poles of P and Q and the
zeros of Q.
In general, the set U has a structure of a scheme as a subscheme of A1

Fq
, so we think

of U as a curve of some sort. Associated to such an exponential sum there is an object
called an `-adic sheaf on U, denoted by F ; this is a generalization of the coe�cient group
in cohomology, which allows one to de�ne the `-adic sheaf cohomology groups (which
are vector spaces over Q`)

H0(U,F), H1(U,F), and H2(U,F)

(technically we need to take `cohomology with compact support H i
c' but let us ignore

this detail). The cohomology for i > 2 is zero since U is one dimensional. For our
simpli�ed exposition it su�ces to say that for an exponential sum, there is a natural
way to associate a collection of �nite dimensional vector spaces H i(U,F) over Ql.
In analogue to the Lefschetz �xed-point formula, we now have a trace formula for the

exponential sum

S =
2∑
i=0

(−1)iTr(Φ; H i(U,F)),(4.1)

where Φ is the map in cohomology induced by the Frobenius (cf. previous section).
Under some smoothness conditions, Deligne's proof of the Riemann hypothesis gives:

The eigenvalues of Φ acting on H i(U,F) are complex numbers of absolute value qi/2.
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Thus, using (4.1) we obtain the following dichotomy: if dimH2(U,F) = 0, then we
get square root cancellation |S|� q1/2. If dimH2(U,F) 6= 0, then we get a main term
with square root cancellation for the error term S = αq + O(q1/2); the constant α is
determined by the eigenvalues of Φ on the second cohomology.
The second cohomology group is usually easy to compute by using Poincaré duality,

which states that it is the dual of the zeroth cohomology group. In the case that the
second cohomology is not zero, also the eigenvalues of Φ on it can be determined. A very
di�cult problem is to understand the Frobenius eigenvalues on the �rst cohomology;
this is usually impossible, so that the implied constant in O(q1/2) bounded just by the
dimension of the �rst cohomology.
All of this generalizes to higher dimensional exponential sums, with a trace formula

S =
2d∑
i=0

(−1)iTr(Φ; H i(U,F)),

where U ⊆ Ad
Fq
. For higher dimensional sums, under some conditions, Deligne shows

that H i(U,F)) = 0 except for i = d (here again we must take cohomology with compact
support). This is how one gets square root cancellation with respect to every variable
in the sum in the above sample theorems.

4.2. Ramanujan conjecture. There are analogues of the Riemann hypothesis for the
coe�cients of modular forms. An instance of this is the Ramanujan conjecture: de�ne
the discriminant modular form by

∆(z) := q
∞∏
n=1

(1− qn)24 for q := e2πz.

It is well known that this is a modular form of weight 12; this means that the function
has a symmetry property that for any integers a, b, c, d such that ad− bc = 1

∆

(
az + b

cz + d

)
= (c+ dz)12∆(z).

De�ne the Ramanujan τ -function by

∆(z) =
∞∑
n=1

τ(n)qn,

where τ(n) are integers.
Then we can associate to ∆ a Dirichlet series

L(s, τ) :=
∞∑
n=1

τ(n)ns.

Then the Ramanujan conjectures state that

(1) τ is multiplicative, that is, for all (m,n) = 1 we have τ(mn) = τ(m)τ(n)
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(2) For all primes p we have τ(pn+1) = τ(p)τ(pn)− p11τ(pn−1), so that by combining
this with (1) we have an Euler product

L(s, τ) =
∏
p

(
1− τ(p)

ps
+
p11

p2s

)−1
(3) We have the uppper bound |τ(p)|≤ 2p11/2.

To see the analogue with the Riemann hypothesis, write

Lp(s, τ) := 1− τ(p)

ps
+
p11

p2s

for the local factor, so that L(s, τ) =
∏

p Lp(s, τ)−1. Then the third part implies that
if Lp(s, τ) = 0, then < s = 11/2. This is because by making the change of variables
u = p−s we have to solve the quadratic equation

1− τ(p)u+ p11u2 = 0.

Let α and β be the solutions. Then p11(u − α)(u − β) = 1 − τ(p)u + p11u, so that we
have

p11(α + β) = τ(p), p11αβ = 1.

The bound (3) gives that the discriminant τ(p)2−4p11 ≤ 0. Hence, α and β are complex
conjugates, and combining with p11αβ = 1 we get |α|= |β|= p−11/2, as claimed.
The �rst two parts were proven by Mordell in 1917 using so-called Hecke operators.

The last part was proven by Deligne in 1974 using the ideas he had developed for the
proof of the Weil Conjectures; the connection between the two is not obvious and is not
discussed further here.

5. History and further reading suggestions

As was mentioned in the �rst part, the origin of the Weil conjectures is in Weil's
article [8]. In there Weil noted that the conjecture holds for curves and gave examples
to support his conjecture. In 1954 Weil gave a talk at ICM where he explained that the
conjecture could be approached if only we had a cohomology theory with coe�cients
in a �eld of characteristic zero for varieties over �nite �eld; this strategy is what we
have tried to explain in the previous section. We again note that at the time such a
cohomology theory already existed for varieties over complex numbers, by using their
analytic topology.
To make progress, the theory of algebraic geometry needed to be developed in a

more general framework. Starting from 1955, algebraic geometry was rewritten and
developed in much greater generality by the likes of Serre, Grothendieck and Dieudonné.
Serre was the �rst to try to construct the desired cohomology theory but with limited
success. Building on Serre's work, Grothendieck had the insight that such a cohomology
theory might be constructed using a more �exible notion of a topology, now known as
a Grothendieck topology. In the 1960's, Grothendieck in collaboration with M. Artin
started to develop the theory of étale cohomology.
It should be noted that in 1960, the rationality and the functional equation of the zeta

function had been proven by Dwork using a di�erent approach based on p-adic analysis
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[4]. However, this approach did not give a way to prove the Riemann hypothesis for
varieties, so that developing a cohomology theory that Weil had envisioned was still on
the agenda.
After years of work, Grothendieck and Artin had developed the étale cohomology

enough to give rigorous proof of the rationality and the functional equation in the spirit
of Weil; this work was recorded in the famous SGA notes. Grothendieck formulated the
so-called standard conjectures for étale cohomology, and noted that the last parts of the
Weil conjectures would follow from these. However, proving these standard conjectures
appeared to be inaccessible, and some parts of these conjectures still remain open.
It was Deligne who found a di�erent route to the Weil conjectures [2], [3]. Deligne's

proof relies heavily on the theory that had been developed, and is inspired by a con-
struction of Lefschetz in classical algebraic geometry. It also makes use of the so called
Rankin-Selberg convolution of L-functions, which had been used in the context of au-
tomorphic L-functions.
For texts on basic algebraic geometry and algebra, see the reading suggestions at the

end of the �rst part.
For a more detailed description of étale cohomology and Deligne's proof of the Weil

conjectures, see Kowalski's notes [5]. He assumes some background in algebraic geometry
but most of it should be accessible.
For proofs of the basic theorems in étale cohomology, see Deligne's SGA notes [1] and

Milne's lecture notes [7]. Both require good background on basic algebraic geometry.
Chapter 6 of Deligne's notes contains a description of the theory of exponential sums
from a cohomological perspective; this is quite readable even with relatively little theo-
retical background, at least if you are willing to accept the cohomological machinery as
a black box.
For more on exponential sums and how to use them in applications of analytic number

theory, see the recent notes of Michel [6].
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