Deriving the 17 wallpaper groups
Jarkko Kari, University of Turku

Properties of wallpaper groups:

(1) The group has a shortest non-trivial translation 7.

(2) Crystallographic restriction: All rotations are 2-, 3- | 4- or
6-fold rotations.

Also, 4-fold rotations cannot co-exist with 3- or 6-fold rotations
(because together they would generate a rotation by 30°.)



Case (1): Suppose G contains 60° rotations.

Let P be the center of some sixfold rotation p € G.



Let 7 be a shortest translation in G.



The conjugate prp~! of 7 is the translation that moves point P to

point p7(P). The conjugate is also in group G.



Conjugating 7 by rotations around P gives more translations.



Conjugating 7 by rotations around P gives more translations.



Conjugating 7 by rotations around P gives more translations.



Conjugating 7 by rotations around P gives more translations.



The conjugate T7p7 ! of p is a 60° rotation around point 7(P).



Analogously, conjugates of p by the six translations provide six

centers of sixfold rotation.



The same reasoning around the rotation center 7(P) provides new

centers of rotation.
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This reasoning can be repeated for all centers of rotation, which

provides us with an infinite triangular lattice of rotation centers.

Let Sg be the set of these rotation centers.
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Any translation moving a lattice point into another lattice point is

in group G, as it is a composition of the one step translations in the

lattice.
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Conversely, all translations in G must take lattice points to lattice

points.

Suppose the contrary: some translation takes a lattice point into a

non-lattice point.
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Then G also contains a translation taking a vertex of one of the

equilateral triangles of the lattice into a non-vertex point of the

triangle.

But this contradicts the minimality of translation 7.
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We have proved that the translations in GG are exactly the

translations that map the lattice Sg into itself.

Let us prove the same for rotations.



If o € G is any rotation then — by the crystallographic restriction —

the rotation angle is a multiple of 60°.



If o € G is any rotation then — by the crystallographic restriction —

the rotation angle is a multiple of 60°.

It follows that p'p* = 7’ is a translation, for some 7, where p is our

initial rotation around a lattice point.



If o € G is any rotation then — by the crystallographic restriction —

the rotation angle is a multiple of 60°.

It follows that p'p* = 7’ is a translation, for some 7, where p is our
initial rotation around a lattice point.

Then p’ = 7/p~* takes lattice points to lattice points since both p
and 7' are symmetries of the lattice.



If o € G is any rotation then — by the crystallographic restriction —

the rotation angle is a multiple of 60°.

It follows that p'p* = 7’ is a translation, for some 7, where p is our

initial rotation around a lattice point.

Then p’ = 7/p~* takes lattice points to lattice points since both p
and 7' are symmetries of the lattice.

We have proved that the rotations in G are also symmetries of the
lattice Sg.



Conversely, let us show that all rotational symmetries of Sg are in
(. So let p’ be a rotation that is a symmetry of Sg.



Conversely, let us show that all rotational symmetries of Sg are in
(. So let p’ be a rotation that is a symmetry of Sg.

The symmetry group of Sg is a wallpaper group that contains a
sixfold rotation, so by the crystallographic restriction, the rotation

angle of p’ is a multiple of 60°.



Conversely, let us show that all rotational symmetries of Sg are in
(. So let p’ be a rotation that is a symmetry of Sg.

The symmetry group of Sg is a wallpaper group that contains a
sixfold rotation, so by the crystallographic restriction, the rotation

angle of p’ is a multiple of 60°.

Then, p'p* = 7' is a translation, for some ¢. This translation maps

lattice points to lattice points and hence 7 € G.



Conversely, let us show that all rotational symmetries of Sg are in

(. So let p’ be a rotation that is a symmetry of Sg.

The symmetry group of Sg is a wallpaper group that contains a
sixfold rotation, so by the crystallographic restriction, the rotation

angle of p’ is a multiple of 60°.

Then, p'p* = 7' is a translation, for some ¢. This translation maps

lattice points to lattice points and hence 7 € G.

We have p' =7p~* € G.
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We have proved that the even isometries in GG are exactly the even

symmetries of the lattice Sg.

If G contains no odd isometries then GG is uniquely determined: It
is the wallpaper group
We = <p7 T>‘



An example of a pattern whose symmetry group is
We = <:0 9 7_>'
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In addition to the sixfold rotations at the lattice points, the group

also contains threefold rotational symmetries at centers of the

triangles.
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The group also contains half-turns around the midpoints of
neighboring lattice points.
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An example of a painting by Escher with symmetry group Wy

(ignoring colors).



An example of a painting by Escher with symmetry group Wy

(ignoring colors).
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Another example of Wy (ignoring coloring).
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0-fold rotation centers and the shortest translation.




3-fold rotation centers at the centers of lattice triangles.



And the 2-fold rotation centers.



Yet another example of Wy, ignoring the coloring.



Yet another example of Wy, ignoring the coloring.



One more example of V6.




One more example of V6.
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Let ) be a center of a 60° rotation in G. Then also the halfturn og

around () is in G.

Let P be the lattice point closest to (). Also the halfturn op
around P is in G.



A
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The composition ogop is the translation by the vector QPﬁ.
Because ogop is an even isometry in G, it maps lattice points to
lattice points. In particular, the image of P must be one of the six

lattice points surrounding P.



The composition ogop is the translation by the vector 2@.
Because ogop is an even isometry in G, it maps lattice points to
lattice points. In particular, the image of P must be one of the six

lattice points surrounding P.

This is only possible if () is the midpoint between P and an

adjacent lattice point.



The composition ogop is the translation by the vector 2P4Q>.
Because ogop is an even isometry in G, it maps lattice points to
lattice points. In particular, the image of P must be one of the six

lattice points surrounding P.

This is only possible if () is the midpoint between P and an
adjacent lattice point.

But these six points are not centers of sixfold symmetry of the

lattice. They are only centers of halfturns.



Suppose next that group G contains some odd isometry a.

If p is the 60° rotation around a lattice point P then the conjugate

apa~! is a sixfold rotation around point a(P).

All sixfold rotations are around lattice points, so a(P) € Sg, and «

is an odd symmetry of the lattice Sg.



Suppose next that group G contains some odd isometry a.

If p is the 60° rotation around a lattice point P then the conjugate

apa~! is a sixfold rotation around point a(P).

All sixfold rotations are around lattice points, so a(P) € Sg, and «

is an odd symmetry of the lattice Sg.

Conversely, if £ is an arbitrary odd symmetry of Sg then af is an

even symmetry of S¢ and hence a8 € G. Because a € G, we have

e q.



Suppose next that group G contains some odd isometry a.

If p is the 60° rotation around a lattice point P then the conjugate

apa~! is a sixfold rotation around point a(P).

All sixfold rotations are around lattice points, so a(P) € Sg, and «

is an odd symmetry of the lattice Sg.

Conversely, if £ is an arbitrary odd symmetry of Sg then af is an

even symmetry of S¢ and hence a8 € G. Because a € G, we have

e q.

Conclusion: G is the symmetry group of the lattice Sg. This is our

second wallpaper group

We = (p, T, ).



An example of a pattern whose symmetry group is

We = {p, T, a).



Case (2): Suppose G contains 120° rotations, but no 60° rotations.

Let P be the center of some threefold rotation p € G.



Let 7 be a shortest translation in G.



The conjugate prp~! of 7 is the translation that moves point P to

point p7(P). The conjugate is also in group G.



The sum of the two translations is also a translation in G.



The sum of the two translations is also a translation in G.



The sum of the two translations is also a translation in G.



Also inverse translations are in G.



The conjugate Tp7 ! of p is a threefold rotation around point 7(P).



Analogously, conjugates of p by the six translations provide six

centers of threefold rotations.



The same reasoning around the rotation center 7(P) provides new

centers of rotation.
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This reasoning can be repeated for all centers of rotation, which

provides us with an infinite triangular lattice of rotation centers.

Let Sg be the set of these rotation centers.
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Any translation moving a lattice point into another lattice point is

in group G, as it is a composition of the one step translations in the

lattice.
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Conversely, all translations in G must take lattice points to lattice

points.

Suppose the contrary: some translation takes a lattice point into a

non-lattice point.



RIS
QIR

Then G also contains a translation taking a vertex of one of the
equilateral triangles of the lattice into a non-vertex point of the

triangle.

But this contradicts the minimality of translation 7.
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We have proved that the translations in GG are exactly the

translations that map the lattice Sg into itself.

Let us prove that rotations in G are exactly the 3-fold symmetries
of the lattice.



If p € G is any non-trivial rotation then — by the crystallographic
restriction and by the assumption that there are no sixfold
rotations in G — the rotation must be by +120°.



If p € G is any non-trivial rotation then — by the crystallographic
restriction and by the assumption that there are no sixfold
rotations in G — the rotation must be by +120°.

It follows that p/p™! = 7/ is a translation where p is our initial

3-fold rotation around a lattice point.



If p € G is any non-trivial rotation then — by the crystallographic
restriction and by the assumption that there are no sixfold
rotations in G — the rotation must be by +120°.

It follows that p/p™! = 7/ is a translation where p is our initial

3-fold rotation around a lattice point.

Then p’ = 7/pT! takes lattice points to lattice points since both p
and 7' are symmetries of the lattice.



If p € G is any non-trivial rotation then — by the crystallographic
restriction and by the assumption that there are no sixfold
rotations in G — the rotation must be by +120°.

It follows that p/p™! = 7/ is a translation where p is our initial

3-fold rotation around a lattice point.

Then p’ = 7/pT! takes lattice points to lattice points since both p
and 7' are symmetries of the lattice.

We have proved that the rotations in G are also symmetries of the
lattice Sg.



Conversely, let us show that all 3-fold rotational symmetries of Sg
are in GG. So let p’ be a rotation by 120° that is a symmetry of Sg.

1

Then, p'p~" = 7’ is a translation. This translation maps lattice

points to lattice points and hence 7 € G.

We have p/ = 7'p € G.
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We have proved that the even isometries in G are exactly the

translational and 3-fold rotational symmetries of Sg.

If G contains no odd isometries then GG is uniquely determined: It
is the wallpaper group
W3 = <p7 T>‘
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In addition to the 3-fold rotations at the lattice points, the group

also contains 3-fold rotational symmetries at centers of the

triangles.



An Escher painting with symmetry Wjy.
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An Escher painting with symmetry Wjy.




An Escher painting with symmetry Wjy.




Suppose next that group G contains some odd isometry a.

A glide reflection v and a 3-fold rotation p generate a reflection

voyp 'y

so the group contains a reflection o,,.



Suppose next that group G contains some odd isometry a.

A glide reflection v and a 3-fold rotation p generate a reflection

voyp 'y

so the group contains a reflection o,,.

l is a reflection on line p(m) that intersects m, group G

As po,p~
contains a non-trivial rotation around the intersection point.

Conclusion: every reflection line contains rotation centers.

As the initial rotation center was arbitrary, we can choose it so that

its center P is on the reflection line m.



We have o,, € G and P € m.



We have o,, € G and P € m.

Let o € G be odd. Let us prove that « is a symmetry of the lattice
Se. It is enough to show that an arbitrary lattice point () is
mapped into a lattice point.



We have o0,,, € G and P € m.

Let o € G be odd. Let us prove that « is a symmetry of the lattice
Se. It is enough to show that an arbitrary lattice point () is
mapped into a lattice point.
If 7/ € GG is the translation that takes P to () then

at' o,

is an even element of G, and hence a symmetry of the lattice. It
maps P — a(Q), so a(Q) is a lattice point.

Now we know that all elements of G are symmetries of lattice Sg.



Let P be again a rotation center through which a reflection line m

passes.



Let P be again a rotation center through which a reflection line m

passes.

Because o, keeps the lattice invariant, it has to be also a

symmetry for the six closest lattice points around P.



Let P be again a rotation center through which a reflection line m

passes.

Because o, keeps the lattice invariant, it has to be also a

symmetry for the six closest lattice points around P.

The symmetries for these six points form the dihedral group Dy,
which contains six reflections: three on lines through opposite

points, and three between them.



The three reflections on the black lines are conjugate to each other

through the 120° rotation around point P.



The three reflections on the black lines are conjugate to each other

through the 120° rotation around point P.



The three reflections on the black lines are conjugate to each other

through the 120° rotation around point P.



Analogously, the three reflections on the red lines are conjugate to

each other in G.



But G cannot contain both black and red reflection lines because

the product of two such reflections is a rotation by 60°.



Conclusion: G either contains all three black reflection lines or all

three red reflection lines, but not both.



Conclusion: G either contains all three black reflection lines or all

three red reflection lines, but not both.

Knowing one odd element « of G determines uniquely all of them:

they are exactly a3 where 3 goes through all even elements of G.

Hence we have just two possible wallpaper groups with odd

1Isometries.



If we take the red reflection lines through point P we obtain the
wallpaper group
W31 — <T7 :07 07“>7

and if we take the black reflection lines we obtain the wallpaper

group
VVB2 — <7-7 P O-b>'
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An example of a pattern whose symmetry group is

VVB1 = (T, p,0r).

There are no reflection lines through neighboring lattice points.






But note the reflection lines through all rotation centers:
(1) the corners of the triangles,

(2) the centers of the black triangles,



But note the reflection lines through all rotation centers:
(1) the corners of the triangles,
(2) the centers of the black triangles,

(3) the centers of the white triangles.
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An example of a pattern whose symmetry group is

W?)2 — <T7 p? O-b>'
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There are reflection lines through some neighboring lattice points,
i.e., through rotation centers that are separated by the shortest
translation.
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Another difference to W3 is that there are rotation centers that are
not on any reflection line.
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Here’s an Escher painting with the symmetry group Wi.



Here’s an Escher painting with the symmetry group Wi.

Three interlaced lattices of rotation centers



Here’s an Escher painting with the symmetry group W3.
Three interlaced lattices of rotation centers

with lines of symmetry through all rotation centers.



This painting has the symmetry group W2.



There are lines of symmetry through adjacent lattice points.



But there are also rotations centers that are not on any line of

symmetry.



Case (3): Suppose G contains 90° rotations.

Let P be the center of some 4-fold rotation p € G.



Let 7 be a shortest translation in G.



The conjugate prp~! of 7 is the translation that moves point P to

point p7(P). The conjugate is also in group G.



Conjugating 7 by rotations around P gives more translations.



The conjugate T7p7 ! of p is a 90° rotation around point 7(P).



Analogously, conjugates of p by all four translations provide four

centers of 4-fold rotation.
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The same reasoning around the rotation center 7(P) provides new

centers of rotation.
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This reasoning can be repeated for all centers of rotation, which

provides us with an infinite square lattice of rotation centers.

Let S; be the set of these rotation centers.
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Any translation moving a lattice point into another lattice point is
in group G, as it is a composition of the one step translations in the
lattice.
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Conversely, all translations in G must take lattice points to lattice

points.

Suppose the contrary: some translation takes a lattice point into a
non-lattice point.
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Then G also contains a translation taking a corner of one of the

squares of the lattice into a non-vertex point of the square.

But this contradicts the minimality of translation 7.
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We have proved that the translations in G are exactly the
translations that map the lattice S, into itself.

Let us prove the same for rotations.




If o € G is any rotation then — by the crystallographic restriction —

the rotation angle is a multiple of 90°.



If o € G is any rotation then — by the crystallographic restriction —

the rotation angle is a multiple of 90°.

It follows that p'p* = 7’ is a translation, for some 7, where p is our

initial rotation around a lattice point.



If o € G is any rotation then — by the crystallographic restriction —

the rotation angle is a multiple of 90°.

It follows that p'p* = 7’ is a translation, for some 7, where p is our
initial rotation around a lattice point.

Then p’ = 7/p~* takes lattice points to lattice points since both p
and 7' are symmetries of the lattice.



If o € G is any rotation then — by the crystallographic restriction —

the rotation angle is a multiple of 90°.

It follows that p'p* = 7’ is a translation, for some 7, where p is our

initial rotation around a lattice point.

Then p’ = 7/p~* takes lattice points to lattice points since both p
and 7' are symmetries of the lattice.

We have proved that the rotations in G are also symmetries of the
lattice Sy.



Conversely, let us show that all rotational symmetries of S4 are in
(. So let p’ be a rotation that is a symmetry of Sy.



Conversely, let us show that all rotational symmetries of S4 are in
(. So let p’ be a rotation that is a symmetry of Sy.

The symmetry group of Sy is a wallpaper group that contains a
4-fold rotation, so by the crystallographic restriction, the rotation

angle of p’ is a multiple of 90°.



Conversely, let us show that all rotational symmetries of S are in

(. So let p’ be a rotation that is a symmetry of Sy.

The symmetry group of Sy is a wallpaper group that contains a
4-fold rotation, so by the crystallographic restriction, the rotation
angle of p’ is a multiple of 90°.

Then, p'p* = 7' is a translation, for some ¢. This translation maps

lattice points to lattice points and hence 7 € G.

We have p' =7p~* € G.
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We have proved that the even isometries in G are exactly the even
symmetries of the square lattice Sy.

If G contains no odd isometries then G is uniquely determined: It
is the wallpaper group
Wy = <:0 9 7_>'
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I R SR G

In addition to the 4-fold rotations at the lattice points, the group

also contains 4-fold rotational symmetries at the centers of the

squares.
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The group also contains half-turns around the midpoints between

neighboring lattice points.
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Let us show that these are the only rotations in G.
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Let us show that these are the only rotations in G.

Let () be a center of a rotation in G. By the crystallographic
restriction, the halfturn og is in G.

Let P be the lattice point closest to (). Also the halfturn op
around P is in G.
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The composition ogop is the translation by the vector QPﬁ.
Because ogop is an even isometry in G, it maps lattice points to
lattice points. In particular, the image of P must be one of the

eight lattice points surrounding P.
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The composition ogop is the translation by the vector QPﬁ.
Because ogop is an even isometry in G, it maps lattice points to
lattice points. In particular, the image of P must be one of the

eight lattice points surrounding P.

This is only possible if () is the center of a lattice square or a

midpoint between two adjacent lattice points.



o —¢ —¢—

The composition ogop is the translation by the vector QPﬁ.
Because ogop is an even isometry in G, it maps lattice points to
lattice points. In particular, the image of P must be one of the

eight lattice points surrounding P.

This is only possible if () is the center of a lattice square or a

midpoint between two adjacent lattice points.

Among these, the centers of squares have 4-fold symmetry.



An example of a painting by Escher with symmetry group Wy
(ignoring colors).



An example of a painting by Escher with symmetry group Wy
(ignoring colors).



An example of a painting by Escher with symmetry group Wy
(ignoring colors).



Another example of Wy, ignoring the coloring.
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Another example of Wy, ignoring the coloring.




Another example of Wy, ignoring the coloring.




Here’s an interesting example of Wjy.



These are all the rotation centers of the picture.



And this is a shortest translation.



However, if only the shells and the stars in front are considered
then we have more rotation centers. These rotations are not all
valid for the grey background.



A translation for the front objects. The shells and stars also have

the symmetry group W, but the lattice is tilted 45° and lengths are
divided by v/2.



Let us suppose next that group G contains some odd isometry «.

Due to conjugacy of rotations, o must map 4-fold rotation centers
to 4-fold rotation centers. But there are two types of 4-fold rotation
centers: lattice points and the centers of the lattice squares.



0

If some odd o maps some lattice point P to a lattice point () then
all odd isometries in G must map all lattice points to lattice points,

and hence be symmetries of Sy4.



If some odd o maps some lattice point P to a lattice point () then
all odd isometries in G must map all lattice points to lattice points,

and hence be symmetries of Sy4.

To see this, consider an arbitrary odd ¢ € GG and an arbitrary

lattice point R.



If some odd o maps some lattice point P to a lattice point () then
all odd isometries in G must map all lattice points to lattice points,

and hence be symmetries of Sy4.

To see this, consider an arbitrary odd ¢ € GG and an arbitrary

lattice point R.

Let 7/ € G be the translation that takes @ to R.



If some odd o maps some lattice point P to a lattice point () then
all odd isometries in G must map all lattice points to lattice points,

and hence be symmetries of Sy4.

To see this, consider an arbitrary odd ¢ € GG and an arbitrary

lattice point R.

Let 7/ € G be the translation that takes @ to R.

Then 7'« is an even isometry in G that takes point P to point
¢(R). Hence ¢(R) is a lattice point.



If one odd symmetry a of S4 is in G then all odd symmetries of Sy
are in G because they are of the form a8 where 3 is an even

symmetry of Sy. (Recall that all even symmetries of Sy are in G.)



If one odd symmetry a of S4 is in G then all odd symmetries of Sy
are in G because they are of the form a8 where 3 is an even

symmetry of Sy. (Recall that all even symmetries of Sy are in G.)

We have shown that if some odd element of G maps some lattice

point to a lattice point then GG is the symmetry group of the lattice
S4. We denote

Wi = (1,p, ).

Notice that the group contains symmetry lines through all rotation

centers.



For example, the symmetries of the infinite checker board form W} .
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The second option for the odd elements in G is that none of them

maps any lattice point into a lattice point. Hence they take all

green lattice points into the yellow centers of the lattice squares.

Let a € G be one such isometry.
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Let m be some diagonal line between the two types of rotation
centers. Reflection o, has the property that it exchanges the green
and yellow rotation centers.
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Then o,,a is an even isometry that takes all lattice points into
lattice points, so it is in group . Therefore reflection o, is in G as
well, and all odd isometries are now uniquely determined as the
compositions of ¢, and the even elements of G.
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We obtain our next wallpaper group

W42 — <T> P, Um>
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An example of a pattern wit

symmetry through the centers



A drawing by Escher, with symmetry group is W2.



The shortest translation and the lattice points.



All rotations.



And the reflection lines. Note that the reflections swap the green
and the yellow rotations. No reflection line passes through a center
of a 4-fold rotation.



Case (4): Suppose G contains half turns but no other rotations.

Let P be the center of some half turn p € G.



Let 7 and 75 be generators of the translations in G.



For all translation 7 € G, the conjugate 7p7 ! of p is the half turn

around point 7(P).

The set {T(P) | 7 € G} is a parallelogram lattice, which we denote
by SQ.



As 7 and 7 generate all translations of (G, these translations are

exactly the translational symmetries of lattice .S5.

Let us show that rotations in GG are exactly the half turns that are

also symmetries of Ss.



All rotations p’ € G are half turns, so p’p = 7/ is a translation

where p is our initial half turn around point P.

Then p’ = 7/p takes lattice points to lattice points since both p and
7/ are symmetries of the lattice.



All rotations p’ € G are half turns, so p’p = 7/ is a translation

where p is our initial half turn around point P.

Then p’ = 7/p takes lattice points to lattice points since both p and

7/ are symmetries of the lattice.

Conversely, if p’ is a half turn and a symmetry of Sy then p’'p is a
translational symmetry of So. Hence it is in G, so p’ is in G as well.

We have proved that the even isometries in G are exactly the

symmetries of Sy that are translations or half turns.



If G contains no odd isometries then G is uniquely determined: It

is the wallpaper group

W2 — <p7 7-177-2>'
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%%%% m.



In addition to the half turns around the lattice points, the group
also contains half turns around midpoints between adjacent lattice

points, as well as around the centers of the parallelograms.



Let us prove that these are the only centers of half turns.



Let () be an arbitrary center of a half turn, and let P be the lattice
point at the center of a translated parallelogram containing ().



The composition ogop of the two half turns is the translation by
the vector 2P—Q>. All translations of G map lattice points to lattice
points, so the image of P must be one of the eight lattice points

surrounding P.



The composition ogop of the two half turns is the translation by
the vector 2P—Q>. All translations of G map lattice points to lattice
points, so the image of P must be one of the eight lattice points

surrounding P.

This is only possible if () is the center of a lattice parallelogram or
a midpoint between two adjacent lattice points. So these are all the
centers of half turns in G.



Here is an example of a painting by Escher with symmetry group
W5 (ignoring colors).



Two generating translations and a center of a half turn.



The generated lattice Ss.



All centers of half turns.



Suppose then that G also contains some odd isometry. The
following lemma states that in this case the lattice Sy is rectangular

or rhombic:

Lemma: Let G be any wallpaper group that contains an odd
isometry with axis m. Then there are translations 7, 7 € G that

generate all translations of GG such that one of the following holds:
(1) 7 || m and 72 Lm, or
(2) |m1| = |m2| and 1172 || m.

Moreover, in case (2), group G contains a reflection.




Even isometries of G are already known to us (symmetries of Sy
that are translations or half turns), so fixing one odd isometry «
uniquely determines all odd isometries: They are the compositions

of o and the even elements of (.



Now we have the following cases:

(a) G contains some reflection o,,. Based on the lemma we have

two cases:
(al) 7 || m and 5 Lm,

(a2) |’7'1| = |’7'2| and T172 H m.



Now we have the following cases:

(a) G contains some reflection o,,. Based on the lemma we have

two cases:
(al) 7 || m and 5 Lm,

(a2) |’7'1| = |’7'2| and T172 H m.

(b) G does not contain a reflection but it contains a glide reflection
~v with axis m. Case (1) of the lemma must hold, so

(b1) 71 || m and 12 Lm.



Now we have the following cases:

(a) G contains some reflection o,,. Based on the lemma we have

two cases:
(al) 7 || m and 5 Lm,

(a2) |’7'1| = |’7'2| and T172 H m.

(b) G does not contain a reflection but it contains a glide reflection

v with axis m. Case (1) of the lemma must hold, so

(b1) 71 || m and 12 Lm.

It turns out that cases (a2) and (b1) lead to one new wallpaper
group, while case (al) leads to two different wallpaper groups.



(a2) 0, € G and |11| = |72| and 775 || m. In this case the lattice is
rhombic, and m is parallel to a diagonal of each rhombus.
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(a2) 0, € G and |11| = |72| and 775 || m. In this case the lattice is

rhombic, and m is parallel to a diagonal of each rhombus.

By connecting all centers of half turns (including the ones that are

not lattice points) we obtain a lattice of ”mini-rhombi” of quarter

size.



Consider a mini-rhombus that is intersected by the line m of
reflection. We want to prove that m contains one of the corners of

the rhombus, so suppose line m properly intersects the rhombus,

not just a corner of it.



Consider a mini-rhombus that is intersected by the line m of
reflection. We want to prove that m contains one of the corners of
the rhombus, so suppose line m properly intersects the rhombus,

not just a corner of it.

The diagonals of a rhombus are perpendicular bisectors of each

other, so one of them is perpendicular to m.



Consider a mini-rhombus that is intersected by the line m of
reflection. We want to prove that m contains one of the corners of
the rhombus, so suppose line m properly intersects the rhombus,

not just a corner of it.

The diagonals of a rhombus are perpendicular bisectors of each

other, so one of them is perpendicular to m.

If m is not a bisector of the diagonal then a corner () of the
rhombus is reflected by o, inside the rhombus. This contradicts

the fact that there are no centers of half turns inside the rhombus.



So line m is the perpendicular bisector of a diagonal, and hence
contains the other diagonal. It passes through two corners of the

mini-rhombus.



So line m is the perpendicular bisector of a diagonal, and hence
contains the other diagonal. It passes through two corners of the

mini-rhombus.

We conclude that the reflection line m necessarily contains centers
of half turn. As the original center P of a half turn was arbitrary,

we can select it so that P € m. The groups is uniquely determined:
W21 — <7-17 T2,0p, 0m>7

where |1| = |2| and P € m and 7y 72(P) € m.



<\

In group G a reflection line m follows diagonals of rhombi.



The conjugates of the reflection with respect to translations give

reflections on all parallel lines through lattice points.



And the compositions of the halfturns and the reflections give

reflections on perpendicular lines through the lattice points.



No other reflections exist: any other reflection line creates a wrong

rotation at the intersection point with an existing reflection line.



We conclude that there are centers of half turn that are not on any

line of reflection.



An example of a pattern with symmetry group Wj.



(al): o, € G and 7y || m and 7 Lm.

Case



There are two possibilities: Line m contains a center of a half turn,
or it does not.



e

<o P ¢ <
<>

<O P ¢ <
e

<o P ¢ <
<>

Suppose first that line m contains a center of a half turn. As the
original center P of a half turn was arbitrary, we can choose it so
that P € m.



e

<o P ¢ <
<>

<O P ¢ <
e

<o P ¢ <

This gives the wallpaper group
W22 — <7-17 T2,0p, Om>7

where 71 | 75 and P € m and 71 (P) € m.



There are perpendicular lines of reflection through all centers of

half turn, obtained as the compositions of ¢, and translations and
half turns of G.
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The other option is that line m does not contain any centers of half
turn. Then m must be in the middle between two horizontal rows

of such points.



We obtain wallpaper group W3 = (11,72, 0p, 0p,).

In this case the lines of reflection are all parallel and run in
between the centers of half turns.






i i i il i i i i e
iy gy gy gy gy gy Ty T Ty,
i i il i i i i o e
gy ™y gy gy gy Ty Ty, Ty,
i i i i e i o i i
gy ™y gy gy gy gy Ty Ty, Ty,
S i il il il L o il i
gy "y gy gy gy gy Ty Ty Ty,
i i il i i i i i e

iy "y "y T

And an example of a pattern with symmetry group Ws.



A way to differentiate groups W3, W$ and W5

e In W3 there are lines of reflection through all centers of half

turns,

e In W3 there are lines of reflection through some but not all
centers of half turns,

e In W3 there are no lines of reflection through any centers of
half turns. All lines of reflection are parallel.



¢

Case (bl): G does not contain a reflection but it contains a glide

reflection v with axis m. Case (1) of the lemma holds, so 71 || m

and o 1Lm.
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In this case line m cannot contain any center of a half turn.
Reason: If P € m then vyop is a reflection, and we assumed there

are no reflections in G.



So m must be a line in the middle between two rows of symmetry
points.



As ~? is a translation parallel to 7, we have

)
=T

for some ¢ € Z. If i = 25 is even then v = omTf , which implies that

om =7 ’ is in G, a contradiction.



As ~? is a translation parallel to 7, we have
V=T
for some ¢ € Z. If i = 25 is even then v = omTf , which implies that

om =7 ’ is in G, a contradiction.

So ¢ is an odd integer, say
2 _2j+1
=T -

Then 7, 7 is another glide reflection in G whose translation is
exactly half of 4.
We have the wallpaper group

W24 — <7_27 O-P7’7>7

where v = 71 is perpendicular to 7.
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Here is an example of a pattern with symmetry group Ws.



Case (5): Suppose G has no non-trivial rotations. Let 7 and 75 be

translations that generate all translations of G.



Even isometries in G are precisely the translations. If there are no

odd isometries in G then we have the wallpaper group

W1 = <7’1,7‘2>.



the symmetry group of this pattern, for

7'2> 18

example.



Suppose then that there are some odd isometries in . Based on

our lemma, we have the following cases:
(a) G contains some reflection o,,. Two subcases:
(al) 7 || m and 5 Lm,

(a2) |’7'1| = |’7'2| and T172 H m.

(b) G does not contain a reflection but it contains a glide reflection
~v with axis m. Case (1) of the lemma must hold, so

(b1) 71 || m and 12 Lm.



Let us begin with case (a2): 0, € G and |r| = || and 7172 || m.
In this case the lattice is rhombic, and m is parallel to a diagonal of
each rhombus.
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We have the symmetry gro



An example of a pattern whose symmetry group is

<7-177-27O-m>-

1
1
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An example of a pattern whose symmetry group is
Wi = (11,72, 0m).

Notice a glide reflection whose axis is not a reflection line.
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Next case (al): 0, € G and 7 || m and 7o Lm. In this case the

lattice is rectilinear, and m is parallel to a generator 7.



We have the symmetry group

W12 = (T1, T2, Om)-
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mpl of a p attern whose Symm etr y group 1

. Notice that any a a glide ﬂ ctio

1 fymmty



The final(!) case (bl): G does not contain a reflection but it
contains a glide reflection v with axis m. Case (1) of the lemma

holds, so 71 || m and 75 Lm.
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We can choose the glide so that ¥2 = 7. We obtain the wallpaper

group
ng — <77 7_2>'
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symmetry group is W3 = (~, 7

An example of a pattern whose
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Here is an example of a painting by Escher with symmetry group
W? (ignoring colors).
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Here are perpendicular generating translations.
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And here is an axis of a glide reflection.
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Here is another, analogous example.



A third example of group W7y.



Perpendicular generating translations.



And a line of a glide reflection.



Yet one more example of W},




Our notation | Fejes Té6th | Crystallographic
We We p6
W61 W61 p6m
W3 W3 p3
W31 W31 p3ml
W32 W32 p31lm
Wy Wy p4
Wi Wi p4dm
i i pig
Wo Wo p2
W21 W21 cmm
W22 W22 pmm
Wy Wy pmg
Wy Wy pgg
Wi W1 pl
VVl1 VVl1 cm
W12 W12 pm
w3 w; pg




