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Properties of wallpaper groups:

(1) The group has a shortest non-trivial translation τ .

(2) Crystallographic restriction: All rotations are 2-, 3- , 4- or

6-fold rotations.

Also, 4-fold rotations cannot co-exist with 3- or 6-fold rotations

(because together they would generate a rotation by 30◦.)



Case (1): Suppose G contains 60◦ rotations.

Let P be the center of some sixfold rotation ρ ∈ G.



Let τ be a shortest translation in G.



The conjugate ρτρ−1 of τ is the translation that moves point P to

point ρτ(P ). The conjugate is also in group G.



Conjugating τ by rotations around P gives more translations.



Conjugating τ by rotations around P gives more translations.



Conjugating τ by rotations around P gives more translations.



Conjugating τ by rotations around P gives more translations.



The conjugate τρτ−1 of ρ is a 60◦ rotation around point τ(P ).



Analogously, conjugates of ρ by the six translations provide six

centers of sixfold rotation.



The same reasoning around the rotation center τ(P ) provides new

centers of rotation.



This reasoning can be repeated for all centers of rotation, which

provides us with an infinite triangular lattice of rotation centers.

Let S6 be the set of these rotation centers.



Any translation moving a lattice point into another lattice point is

in group G, as it is a composition of the one step translations in the

lattice.



Conversely, all translations in G must take lattice points to lattice

points.

Suppose the contrary: some translation takes a lattice point into a

non-lattice point.



Then G also contains a translation taking a vertex of one of the

equilateral triangles of the lattice into a non-vertex point of the

triangle.

But this contradicts the minimality of translation τ .



We have proved that the translations in G are exactly the

translations that map the lattice S6 into itself.

Let us prove the same for rotations.



If ρ′ ∈ G is any rotation then – by the crystallographic restriction –

the rotation angle is a multiple of 60◦.



If ρ′ ∈ G is any rotation then – by the crystallographic restriction –

the rotation angle is a multiple of 60◦.

It follows that ρ′ρi = τ ′ is a translation, for some i, where ρ is our

initial rotation around a lattice point.



If ρ′ ∈ G is any rotation then – by the crystallographic restriction –

the rotation angle is a multiple of 60◦.

It follows that ρ′ρi = τ ′ is a translation, for some i, where ρ is our

initial rotation around a lattice point.

Then ρ′ = τ ′ρ−i takes lattice points to lattice points since both ρ

and τ ′ are symmetries of the lattice.



If ρ′ ∈ G is any rotation then – by the crystallographic restriction –

the rotation angle is a multiple of 60◦.

It follows that ρ′ρi = τ ′ is a translation, for some i, where ρ is our

initial rotation around a lattice point.

Then ρ′ = τ ′ρ−i takes lattice points to lattice points since both ρ

and τ ′ are symmetries of the lattice.

We have proved that the rotations in G are also symmetries of the

lattice S6.



Conversely, let us show that all rotational symmetries of S6 are in

G. So let ρ′ be a rotation that is a symmetry of S6.



Conversely, let us show that all rotational symmetries of S6 are in

G. So let ρ′ be a rotation that is a symmetry of S6.

The symmetry group of S6 is a wallpaper group that contains a

sixfold rotation, so by the crystallographic restriction, the rotation

angle of ρ′ is a multiple of 60◦.



Conversely, let us show that all rotational symmetries of S6 are in

G. So let ρ′ be a rotation that is a symmetry of S6.

The symmetry group of S6 is a wallpaper group that contains a

sixfold rotation, so by the crystallographic restriction, the rotation

angle of ρ′ is a multiple of 60◦.

Then, ρ′ρi = τ ′ is a translation, for some i. This translation maps

lattice points to lattice points and hence τ ′ ∈ G.



Conversely, let us show that all rotational symmetries of S6 are in

G. So let ρ′ be a rotation that is a symmetry of S6.

The symmetry group of S6 is a wallpaper group that contains a

sixfold rotation, so by the crystallographic restriction, the rotation

angle of ρ′ is a multiple of 60◦.

Then, ρ′ρi = τ ′ is a translation, for some i. This translation maps

lattice points to lattice points and hence τ ′ ∈ G.

We have ρ′ = τ ′ρ−i ∈ G.



We have proved that the even isometries in G are exactly the even

symmetries of the lattice S6.

If G contains no odd isometries then G is uniquely determined: It

is the wallpaper group

W6 = 〈ρ, τ〉.



An example of a pattern whose symmetry group is

W6 = 〈ρ, τ〉.



In addition to the sixfold rotations at the lattice points, the group

also contains threefold rotational symmetries at centers of the

triangles.



The group also contains half-turns around the midpoints of

neighboring lattice points.



An example of a painting by Escher with symmetry group W6

(ignoring colors).



An example of a painting by Escher with symmetry group W6

(ignoring colors).



Another example of W6 (ignoring coloring).



6-fold rotation centers and the shortest translation.



3-fold rotation centers at the centers of lattice triangles.



And the 2-fold rotation centers.



Yet another example of W6, ignoring the coloring.



Yet another example of W6, ignoring the coloring.



One more example of W6.



One more example of W6.



Let us prove that there are no sixfold rotations around any

non-lattice points.



Q

P

Let Q be a center of a 60◦ rotation in G. Then also the halfturn σQ

around Q is in G.

Let P be the lattice point closest to Q. Also the halfturn σP

around P is in G.



Q

P

The composition σQσP is the translation by the vector 2
−−→
PQ.

Because σQσP is an even isometry in G, it maps lattice points to

lattice points. In particular, the image of P must be one of the six

lattice points surrounding P .



The composition σQσP is the translation by the vector 2
−−→
PQ.

Because σQσP is an even isometry in G, it maps lattice points to

lattice points. In particular, the image of P must be one of the six

lattice points surrounding P .

This is only possible if Q is the midpoint between P and an

adjacent lattice point.



The composition σQσP is the translation by the vector 2
−−→
PQ.

Because σQσP is an even isometry in G, it maps lattice points to

lattice points. In particular, the image of P must be one of the six

lattice points surrounding P .

This is only possible if Q is the midpoint between P and an

adjacent lattice point.

But these six points are not centers of sixfold symmetry of the

lattice. They are only centers of halfturns.



Suppose next that group G contains some odd isometry α.

If ρ is the 60◦ rotation around a lattice point P then the conjugate

αρα−1 is a sixfold rotation around point α(P ).

All sixfold rotations are around lattice points, so α(P ) ∈ S6, and α

is an odd symmetry of the lattice S6.



Suppose next that group G contains some odd isometry α.

If ρ is the 60◦ rotation around a lattice point P then the conjugate

αρα−1 is a sixfold rotation around point α(P ).

All sixfold rotations are around lattice points, so α(P ) ∈ S6, and α

is an odd symmetry of the lattice S6.

Conversely, if β is an arbitrary odd symmetry of S6 then αβ is an

even symmetry of S6 and hence αβ ∈ G. Because α ∈ G, we have

β ∈ G.



Suppose next that group G contains some odd isometry α.

If ρ is the 60◦ rotation around a lattice point P then the conjugate

αρα−1 is a sixfold rotation around point α(P ).

All sixfold rotations are around lattice points, so α(P ) ∈ S6, and α

is an odd symmetry of the lattice S6.

Conversely, if β is an arbitrary odd symmetry of S6 then αβ is an

even symmetry of S6 and hence αβ ∈ G. Because α ∈ G, we have

β ∈ G.

Conclusion: G is the symmetry group of the lattice S6. This is our

second wallpaper group

W 1
6 = 〈ρ, τ, α〉.



An example of a pattern whose symmetry group is

W 1
6 = 〈ρ, τ, α〉.



Case (2): Suppose G contains 120◦ rotations, but no 60◦ rotations.

Let P be the center of some threefold rotation ρ ∈ G.



Let τ be a shortest translation in G.



The conjugate ρτρ−1 of τ is the translation that moves point P to

point ρτ(P ). The conjugate is also in group G.



The sum of the two translations is also a translation in G.



The sum of the two translations is also a translation in G.



The sum of the two translations is also a translation in G.



Also inverse translations are in G.



The conjugate τρτ−1 of ρ is a threefold rotation around point τ(P ).



Analogously, conjugates of ρ by the six translations provide six

centers of threefold rotations.



The same reasoning around the rotation center τ(P ) provides new

centers of rotation.



This reasoning can be repeated for all centers of rotation, which

provides us with an infinite triangular lattice of rotation centers.

Let S6 be the set of these rotation centers.



Any translation moving a lattice point into another lattice point is

in group G, as it is a composition of the one step translations in the

lattice.



Conversely, all translations in G must take lattice points to lattice

points.

Suppose the contrary: some translation takes a lattice point into a

non-lattice point.



Then G also contains a translation taking a vertex of one of the

equilateral triangles of the lattice into a non-vertex point of the

triangle.

But this contradicts the minimality of translation τ .



We have proved that the translations in G are exactly the

translations that map the lattice S6 into itself.

Let us prove that rotations in G are exactly the 3-fold symmetries

of the lattice.



If ρ′ ∈ G is any non-trivial rotation then – by the crystallographic

restriction and by the assumption that there are no sixfold

rotations in G – the rotation must be by ±120◦.



If ρ′ ∈ G is any non-trivial rotation then – by the crystallographic

restriction and by the assumption that there are no sixfold

rotations in G – the rotation must be by ±120◦.

It follows that ρ′ρ±1 = τ ′ is a translation where ρ is our initial

3-fold rotation around a lattice point.



If ρ′ ∈ G is any non-trivial rotation then – by the crystallographic

restriction and by the assumption that there are no sixfold

rotations in G – the rotation must be by ±120◦.

It follows that ρ′ρ±1 = τ ′ is a translation where ρ is our initial

3-fold rotation around a lattice point.

Then ρ′ = τ ′ρ∓1 takes lattice points to lattice points since both ρ

and τ ′ are symmetries of the lattice.



If ρ′ ∈ G is any non-trivial rotation then – by the crystallographic

restriction and by the assumption that there are no sixfold

rotations in G – the rotation must be by ±120◦.

It follows that ρ′ρ±1 = τ ′ is a translation where ρ is our initial

3-fold rotation around a lattice point.

Then ρ′ = τ ′ρ∓1 takes lattice points to lattice points since both ρ

and τ ′ are symmetries of the lattice.

We have proved that the rotations in G are also symmetries of the

lattice S6.



Conversely, let us show that all 3-fold rotational symmetries of S6

are in G. So let ρ′ be a rotation by 120◦ that is a symmetry of S6.

Then, ρ′ρ−1 = τ ′ is a translation. This translation maps lattice

points to lattice points and hence τ ′ ∈ G.

We have ρ′ = τ ′ρ ∈ G.



We have proved that the even isometries in G are exactly the

translational and 3-fold rotational symmetries of S6.

If G contains no odd isometries then G is uniquely determined: It

is the wallpaper group

W3 = 〈ρ, τ〉.



An example of a pattern whose symmetry group is

W3 = 〈ρ, τ〉.



In addition to the 3-fold rotations at the lattice points, the group

also contains 3-fold rotational symmetries at centers of the

triangles.



An Escher painting with symmetry W3.



An Escher painting with symmetry W3.



An Escher painting with symmetry W3.



Suppose next that group G contains some odd isometry α.

A glide reflection γ and a 3-fold rotation ρ generate a reflection

γργρ−1γ

so the group contains a reflection σm.



Suppose next that group G contains some odd isometry α.

A glide reflection γ and a 3-fold rotation ρ generate a reflection

γργρ−1γ

so the group contains a reflection σm.

As ρσmρ−1 is a reflection on line ρ(m) that intersects m, group G

contains a non-trivial rotation around the intersection point.

Conclusion: every reflection line contains rotation centers.

As the initial rotation center was arbitrary, we can choose it so that

its center P is on the reflection line m.



m

P

We have σm ∈ G and P ∈ m.



m

P

Q

a

We have σm ∈ G and P ∈ m.

Let α ∈ G be odd. Let us prove that α is a symmetry of the lattice

S6. It is enough to show that an arbitrary lattice point Q is

mapped into a lattice point.



m

P

Q

t’

a

We have σm ∈ G and P ∈ m.

Let α ∈ G be odd. Let us prove that α is a symmetry of the lattice

S6. It is enough to show that an arbitrary lattice point Q is

mapped into a lattice point.

If τ ′ ∈ G is the translation that takes P to Q then

ατ ′σm

is an even element of G, and hence a symmetry of the lattice. It

maps P 7→ α(Q), so α(Q) is a lattice point.

Now we know that all elements of G are symmetries of lattice S6.



P

m

Let P be again a rotation center through which a reflection line m

passes.



P

m

Let P be again a rotation center through which a reflection line m

passes.

Because σm keeps the lattice invariant, it has to be also a

symmetry for the six closest lattice points around P .



Let P be again a rotation center through which a reflection line m

passes.

Because σm keeps the lattice invariant, it has to be also a

symmetry for the six closest lattice points around P .

The symmetries for these six points form the dihedral group D6,

which contains six reflections: three on lines through opposite

points, and three between them.



The three reflections on the black lines are conjugate to each other

through the 120◦ rotation around point P .



The three reflections on the black lines are conjugate to each other

through the 120◦ rotation around point P .



The three reflections on the black lines are conjugate to each other

through the 120◦ rotation around point P .



Analogously, the three reflections on the red lines are conjugate to

each other in G.



30

But G cannot contain both black and red reflection lines because

the product of two such reflections is a rotation by 60◦.



Conclusion: G either contains all three black reflection lines or all

three red reflection lines, but not both.



Conclusion: G either contains all three black reflection lines or all

three red reflection lines, but not both.

Knowing one odd element α of G determines uniquely all of them:

they are exactly αβ where β goes through all even elements of G.

Hence we have just two possible wallpaper groups with odd

isometries.



If we take the red reflection lines through point P we obtain the

wallpaper group

W 1
3 = 〈τ, ρ, σr〉,

and if we take the black reflection lines we obtain the wallpaper

group

W 2
3 = 〈τ, ρ, σb〉.



An example of a pattern whose symmetry group is

W 1
3 = 〈τ, ρ, σr〉.

There are no reflection lines through neighboring lattice points.



But note the reflection lines through all rotation centers:

(1) the corners of the triangles,



But note the reflection lines through all rotation centers:

(1) the corners of the triangles,

(2) the centers of the black triangles,



But note the reflection lines through all rotation centers:

(1) the corners of the triangles,

(2) the centers of the black triangles,

(3) the centers of the white triangles.



An example of a pattern whose symmetry group is

W 2
3 = 〈τ, ρ, σb〉.



There are reflection lines through some neighboring lattice points,

i.e., through rotation centers that are separated by the shortest

translation.



Another difference to W 1
3 is that there are rotation centers that are

not on any reflection line.



Here’s an Escher painting with the symmetry group W 1
3 .



Here’s an Escher painting with the symmetry group W 1
3 .

Three interlaced lattices of rotation centers



Here’s an Escher painting with the symmetry group W 1
3 .

Three interlaced lattices of rotation centers

with lines of symmetry through all rotation centers.



This painting has the symmetry group W 2
3 .



There are lines of symmetry through adjacent lattice points.



But there are also rotations centers that are not on any line of

symmetry.



Case (3): Suppose G contains 90◦ rotations.

Let P be the center of some 4-fold rotation ρ ∈ G.



Let τ be a shortest translation in G.



The conjugate ρτρ−1 of τ is the translation that moves point P to

point ρτ(P ). The conjugate is also in group G.



Conjugating τ by rotations around P gives more translations.



The conjugate τρτ−1 of ρ is a 90◦ rotation around point τ(P ).



Analogously, conjugates of ρ by all four translations provide four

centers of 4-fold rotation.



The same reasoning around the rotation center τ(P ) provides new

centers of rotation.



This reasoning can be repeated for all centers of rotation, which

provides us with an infinite square lattice of rotation centers.

Let S4 be the set of these rotation centers.



Any translation moving a lattice point into another lattice point is

in group G, as it is a composition of the one step translations in the

lattice.



Conversely, all translations in G must take lattice points to lattice

points.

Suppose the contrary: some translation takes a lattice point into a

non-lattice point.



Then G also contains a translation taking a corner of one of the

squares of the lattice into a non-vertex point of the square.

But this contradicts the minimality of translation τ .



We have proved that the translations in G are exactly the

translations that map the lattice S4 into itself.

Let us prove the same for rotations.



If ρ′ ∈ G is any rotation then – by the crystallographic restriction –

the rotation angle is a multiple of 90◦.



If ρ′ ∈ G is any rotation then – by the crystallographic restriction –

the rotation angle is a multiple of 90◦.

It follows that ρ′ρi = τ ′ is a translation, for some i, where ρ is our

initial rotation around a lattice point.



If ρ′ ∈ G is any rotation then – by the crystallographic restriction –

the rotation angle is a multiple of 90◦.

It follows that ρ′ρi = τ ′ is a translation, for some i, where ρ is our

initial rotation around a lattice point.

Then ρ′ = τ ′ρ−i takes lattice points to lattice points since both ρ

and τ ′ are symmetries of the lattice.



If ρ′ ∈ G is any rotation then – by the crystallographic restriction –

the rotation angle is a multiple of 90◦.

It follows that ρ′ρi = τ ′ is a translation, for some i, where ρ is our

initial rotation around a lattice point.

Then ρ′ = τ ′ρ−i takes lattice points to lattice points since both ρ

and τ ′ are symmetries of the lattice.

We have proved that the rotations in G are also symmetries of the

lattice S4.



Conversely, let us show that all rotational symmetries of S4 are in

G. So let ρ′ be a rotation that is a symmetry of S4.



Conversely, let us show that all rotational symmetries of S4 are in

G. So let ρ′ be a rotation that is a symmetry of S4.

The symmetry group of S4 is a wallpaper group that contains a

4-fold rotation, so by the crystallographic restriction, the rotation

angle of ρ′ is a multiple of 90◦.



Conversely, let us show that all rotational symmetries of S4 are in

G. So let ρ′ be a rotation that is a symmetry of S4.

The symmetry group of S4 is a wallpaper group that contains a

4-fold rotation, so by the crystallographic restriction, the rotation

angle of ρ′ is a multiple of 90◦.

Then, ρ′ρi = τ ′ is a translation, for some i. This translation maps

lattice points to lattice points and hence τ ′ ∈ G.

We have ρ′ = τ ′ρ−i ∈ G.



We have proved that the even isometries in G are exactly the even

symmetries of the square lattice S4.

If G contains no odd isometries then G is uniquely determined: It

is the wallpaper group

W4 = 〈ρ, τ〉.



An example of a pattern whose symmetry group is

W4 = 〈ρ, τ〉.



In addition to the 4-fold rotations at the lattice points, the group

also contains 4-fold rotational symmetries at the centers of the

squares.



The group also contains half-turns around the midpoints between

neighboring lattice points.



Let us show that these are the only rotations in G.



P

Q

Let us show that these are the only rotations in G.

Let Q be a center of a rotation in G. By the crystallographic

restriction, the halfturn σQ is in G.

Let P be the lattice point closest to Q. Also the halfturn σP

around P is in G.



P

Q

The composition σQσP is the translation by the vector 2
−−→
PQ.

Because σQσP is an even isometry in G, it maps lattice points to

lattice points. In particular, the image of P must be one of the

eight lattice points surrounding P .



P

The composition σQσP is the translation by the vector 2
−−→
PQ.

Because σQσP is an even isometry in G, it maps lattice points to

lattice points. In particular, the image of P must be one of the

eight lattice points surrounding P .

This is only possible if Q is the center of a lattice square or a

midpoint between two adjacent lattice points.



P

The composition σQσP is the translation by the vector 2
−−→
PQ.

Because σQσP is an even isometry in G, it maps lattice points to

lattice points. In particular, the image of P must be one of the

eight lattice points surrounding P .

This is only possible if Q is the center of a lattice square or a

midpoint between two adjacent lattice points.

Among these, the centers of squares have 4-fold symmetry.



An example of a painting by Escher with symmetry group W4

(ignoring colors).



An example of a painting by Escher with symmetry group W4

(ignoring colors).



An example of a painting by Escher with symmetry group W4

(ignoring colors).



Another example of W4, ignoring the coloring.



Another example of W4, ignoring the coloring.



Another example of W4, ignoring the coloring.



Here’s an interesting example of W4.



These are all the rotation centers of the picture.



And this is a shortest translation.



However, if only the shells and the stars in front are considered

then we have more rotation centers. These rotations are not all

valid for the grey background.



A translation for the front objects. The shells and stars also have

the symmetry group W4 but the lattice is tilted 45◦ and lengths are

divided by
√

2.



Let us suppose next that group G contains some odd isometry α.

Due to conjugacy of rotations, α must map 4-fold rotation centers

to 4-fold rotation centers. But there are two types of 4-fold rotation

centers: lattice points and the centers of the lattice squares.



PQ
a

If some odd α maps some lattice point P to a lattice point Q then

all odd isometries in G must map all lattice points to lattice points,

and hence be symmetries of S4.



PQ
a

?jR

If some odd α maps some lattice point P to a lattice point Q then

all odd isometries in G must map all lattice points to lattice points,

and hence be symmetries of S4.

To see this, consider an arbitrary odd ϕ ∈ G and an arbitrary

lattice point R.



PQ

t’

a

?jR

If some odd α maps some lattice point P to a lattice point Q then

all odd isometries in G must map all lattice points to lattice points,

and hence be symmetries of S4.

To see this, consider an arbitrary odd ϕ ∈ G and an arbitrary

lattice point R.

Let τ ′ ∈ G be the translation that takes Q to R.



PQ

t’

a

jR

If some odd α maps some lattice point P to a lattice point Q then

all odd isometries in G must map all lattice points to lattice points,

and hence be symmetries of S4.

To see this, consider an arbitrary odd ϕ ∈ G and an arbitrary

lattice point R.

Let τ ′ ∈ G be the translation that takes Q to R.

Then ϕτ ′α is an even isometry in G that takes point P to point

ϕ(R). Hence ϕ(R) is a lattice point.



If one odd symmetry α of S4 is in G then all odd symmetries of S4

are in G because they are of the form αβ where β is an even

symmetry of S4. (Recall that all even symmetries of S4 are in G.)



If one odd symmetry α of S4 is in G then all odd symmetries of S4

are in G because they are of the form αβ where β is an even

symmetry of S4. (Recall that all even symmetries of S4 are in G.)

We have shown that if some odd element of G maps some lattice

point to a lattice point then G is the symmetry group of the lattice

S4. We denote

W 1
4 = 〈τ, ρ, α〉.

Notice that the group contains symmetry lines through all rotation

centers.



For example, the symmetries of the infinite checker board form W 1
4 .



The second option for the odd elements in G is that none of them

maps any lattice point into a lattice point. Hence they take all

green lattice points into the yellow centers of the lattice squares.

Let α ∈ G be one such isometry.



m

Let m be some diagonal line between the two types of rotation

centers. Reflection σm has the property that it exchanges the green

and yellow rotation centers.



m

Then σmα is an even isometry that takes all lattice points into

lattice points, so it is in group G. Therefore reflection σm is in G as

well, and all odd isometries are now uniquely determined as the

compositions of σm and the even elements of G.



m

We obtain our next wallpaper group

W 2
4 = 〈τ, ρ, σm〉



An example of a pattern with symmetry W 2
4 . There are no lines of

symmetry through the centers of 4-fold rotations.



A drawing by Escher, with symmetry group is W 2
4 .



The shortest translation and the lattice points.



All rotations.



And the reflection lines. Note that the reflections swap the green

and the yellow rotations. No reflection line passes through a center

of a 4-fold rotation.



Case (4): Suppose G contains half turns but no other rotations.

Let P be the center of some half turn ρ ∈ G.



Let τ1 and τ2 be generators of the translations in G.



For all translation τ ∈ G, the conjugate τρτ−1 of ρ is the half turn

around point τ(P ).

The set {τ(P ) | τ ∈ G} is a parallelogram lattice, which we denote

by S2.



As τ1 and τ2 generate all translations of G, these translations are

exactly the translational symmetries of lattice S2.

Let us show that rotations in G are exactly the half turns that are

also symmetries of S2.



All rotations ρ′ ∈ G are half turns, so ρ′ρ = τ ′ is a translation

where ρ is our initial half turn around point P .

Then ρ′ = τ ′ρ takes lattice points to lattice points since both ρ and

τ ′ are symmetries of the lattice.



All rotations ρ′ ∈ G are half turns, so ρ′ρ = τ ′ is a translation

where ρ is our initial half turn around point P .

Then ρ′ = τ ′ρ takes lattice points to lattice points since both ρ and

τ ′ are symmetries of the lattice.

Conversely, if ρ′ is a half turn and a symmetry of S2 then ρ′ρ is a

translational symmetry of S2. Hence it is in G, so ρ′ is in G as well.

We have proved that the even isometries in G are exactly the

symmetries of S2 that are translations or half turns.



If G contains no odd isometries then G is uniquely determined: It

is the wallpaper group

W2 = 〈ρ, τ1, τ2〉.



An example of a pattern whose symmetry group is

W2 = 〈ρ, τ1, τ2〉.



In addition to the half turns around the lattice points, the group

also contains half turns around midpoints between adjacent lattice

points, as well as around the centers of the parallelograms.



Let us prove that these are the only centers of half turns.



P
Q

Let Q be an arbitrary center of a half turn, and let P be the lattice

point at the center of a translated parallelogram containing Q.



P
Q

The composition σQσP of the two half turns is the translation by

the vector 2
−−→
PQ. All translations of G map lattice points to lattice

points, so the image of P must be one of the eight lattice points

surrounding P .



The composition σQσP of the two half turns is the translation by

the vector 2
−−→
PQ. All translations of G map lattice points to lattice

points, so the image of P must be one of the eight lattice points

surrounding P .

This is only possible if Q is the center of a lattice parallelogram or

a midpoint between two adjacent lattice points. So these are all the

centers of half turns in G.



Here is an example of a painting by Escher with symmetry group

W2 (ignoring colors).



Two generating translations and a center of a half turn.



The generated lattice S2.



All centers of half turns.



Suppose then that G also contains some odd isometry. The

following lemma states that in this case the lattice S2 is rectangular

or rhombic:

Lemma: Let G be any wallpaper group that contains an odd

isometry with axis m. Then there are translations τ1, τ2 ∈ G that

generate all translations of G such that one of the following holds:

(1) τ1 ‖ m and τ2⊥m, or

(2) |τ1| = |τ2| and τ1τ2 ‖ m.

Moreover, in case (2), group G contains a reflection.

t

t1

2

m

t

t1

2
t
2

t1
m

(1) (2)



Even isometries of G are already known to us (symmetries of S2

that are translations or half turns), so fixing one odd isometry α

uniquely determines all odd isometries: They are the compositions

of α and the even elements of G.



Now we have the following cases:

(a) G contains some reflection σm. Based on the lemma we have

two cases:

(a1) τ1 ‖ m and τ2⊥m,

(a2) |τ1| = |τ2| and τ1τ2 ‖ m.



Now we have the following cases:

(a) G contains some reflection σm. Based on the lemma we have

two cases:

(a1) τ1 ‖ m and τ2⊥m,

(a2) |τ1| = |τ2| and τ1τ2 ‖ m.

(b) G does not contain a reflection but it contains a glide reflection

γ with axis m. Case (1) of the lemma must hold, so

(b1) τ1 ‖ m and τ2⊥m.



Now we have the following cases:

(a) G contains some reflection σm. Based on the lemma we have

two cases:

(a1) τ1 ‖ m and τ2⊥m,

(a2) |τ1| = |τ2| and τ1τ2 ‖ m.

(b) G does not contain a reflection but it contains a glide reflection

γ with axis m. Case (1) of the lemma must hold, so

(b1) τ1 ‖ m and τ2⊥m.

It turns out that cases (a2) and (b1) lead to one new wallpaper

group, while case (a1) leads to two different wallpaper groups.



m

(a2) σm ∈ G and |τ1| = |τ2| and τ1τ2 ‖ m. In this case the lattice is

rhombic, and m is parallel to a diagonal of each rhombus.



m

(a2) σm ∈ G and |τ1| = |τ2| and τ1τ2 ‖ m. In this case the lattice is

rhombic, and m is parallel to a diagonal of each rhombus.

By connecting all centers of half turns (including the ones that are

not lattice points) we obtain a lattice of ”mini-rhombi”of quarter

size.



m

Consider a mini-rhombus that is intersected by the line m of

reflection. We want to prove that m contains one of the corners of

the rhombus, so suppose line m properly intersects the rhombus,

not just a corner of it.



m

Consider a mini-rhombus that is intersected by the line m of

reflection. We want to prove that m contains one of the corners of

the rhombus, so suppose line m properly intersects the rhombus,

not just a corner of it.

The diagonals of a rhombus are perpendicular bisectors of each

other, so one of them is perpendicular to m.



m

Q

s (Q)m

Consider a mini-rhombus that is intersected by the line m of

reflection. We want to prove that m contains one of the corners of

the rhombus, so suppose line m properly intersects the rhombus,

not just a corner of it.

The diagonals of a rhombus are perpendicular bisectors of each

other, so one of them is perpendicular to m.

If m is not a bisector of the diagonal then a corner Q of the

rhombus is reflected by σm inside the rhombus. This contradicts

the fact that there are no centers of half turns inside the rhombus.



m

So line m is the perpendicular bisector of a diagonal, and hence

contains the other diagonal. It passes through two corners of the

mini-rhombus.



m

So line m is the perpendicular bisector of a diagonal, and hence

contains the other diagonal. It passes through two corners of the

mini-rhombus.

We conclude that the reflection line m necessarily contains centers

of half turn. As the original center P of a half turn was arbitrary,

we can select it so that P ∈ m. The groups is uniquely determined:

W 1
2 = 〈τ1, τ2, σP , σm〉,

where |τ1| = |τ2| and P ∈ m and τ1τ2(P ) ∈ m.



In group G a reflection line m follows diagonals of rhombi.



The conjugates of the reflection with respect to translations give

reflections on all parallel lines through lattice points.



And the compositions of the halfturns and the reflections give

reflections on perpendicular lines through the lattice points.



No other reflections exist: any other reflection line creates a wrong

rotation at the intersection point with an existing reflection line.



We conclude that there are centers of half turn that are not on any

line of reflection.



An example of a pattern with symmetry group W 1
2 .



m

Case (a1): σm ∈ G and τ1 ‖ m and τ2⊥m.



m

There are two possibilities: Line m contains a center of a half turn,

or it does not.



m

Suppose first that line m contains a center of a half turn. As the

original center P of a half turn was arbitrary, we can choose it so

that P ∈ m.



m

This gives the wallpaper group

W 2
2 = 〈τ1, τ2, σP , σm〉,

where τ1 ⊥ τ2 and P ∈ m and τ1(P ) ∈ m.



There are perpendicular lines of reflection through all centers of

half turn, obtained as the compositions of σm and translations and

half turns of G.



m

The other option is that line m does not contain any centers of half

turn. Then m must be in the middle between two horizontal rows

of such points.



We obtain wallpaper group W 3
2 = 〈τ1, τ2, σP , σm〉.

In this case the lines of reflection are all parallel and run in

between the centers of half turns.



An example of a pattern with symmetry group W 2
2 .



And an example of a pattern with symmetry group W 3
2 .



A way to differentiate groups W 1
2 , W 2

2 and W 3
2 :

• In W 2
2 there are lines of reflection through all centers of half

turns,

• In W 1
2 there are lines of reflection through some but not all

centers of half turns,

• In W 3
2 there are no lines of reflection through any centers of

half turns. All lines of reflection are parallel.



m

Case (b1): G does not contain a reflection but it contains a glide

reflection γ with axis m. Case (1) of the lemma holds, so τ1 ‖ m

and τ2⊥m.



m

In this case line m cannot contain any center of a half turn.

Reason: If P ∈ m then γσP is a reflection, and we assumed there

are no reflections in G.



m

So m must be a line in the middle between two rows of symmetry

points.



As γ2 is a translation parallel to τ1, we have

γ2 = τ i
1

for some i ∈ Z. If i = 2j is even then γ = σmτ
j
1 , which implies that

σm = γτ
−j
1 is in G, a contradiction.



As γ2 is a translation parallel to τ1, we have

γ2 = τ i
1

for some i ∈ Z. If i = 2j is even then γ = σmτ
j
1 , which implies that

σm = γτ
−j
1 is in G, a contradiction.

So i is an odd integer, say

γ2 = τ
2j+1
1 .

Then γτ
−j
1 is another glide reflection in G whose translation is

exactly half of τ1.

We have the wallpaper group

W 4
2 = 〈τ2, σP , γ〉,

where γ2 = τ1 is perpendicular to τ2.



Here is an example of a pattern with symmetry group W 4
2 .



Case (5): Suppose G has no non-trivial rotations. Let τ1 and τ2 be

translations that generate all translations of G.



Even isometries in G are precisely the translations. If there are no

odd isometries in G then we have the wallpaper group

W1 = 〈τ1, τ2〉.



Group W1 = 〈τ1, τ2〉 is the symmetry group of this pattern, for

example.



Suppose then that there are some odd isometries in G. Based on

our lemma, we have the following cases:

(a) G contains some reflection σm. Two subcases:

(a1) τ1 ‖ m and τ2⊥m,

(a2) |τ1| = |τ2| and τ1τ2 ‖ m.

(b) G does not contain a reflection but it contains a glide reflection

γ with axis m. Case (1) of the lemma must hold, so

(b1) τ1 ‖ m and τ2⊥m.



m

Let us begin with case (a2): σm ∈ G and |τ1| = |τ2| and τ1τ2 ‖ m.

In this case the lattice is rhombic, and m is parallel to a diagonal of

each rhombus.



We have the symmetry group

W 1
1 = 〈τ1, τ2, σm〉.



An example of a pattern whose symmetry group is

W 1
1 = 〈τ1, τ2, σm〉.



An example of a pattern whose symmetry group is

W 1
1 = 〈τ1, τ2, σm〉.

Notice a glide reflection whose axis is not a reflection line.



Here is an example of a painting by Escher with symmetry group

W 1
1 (ignoring colors).



Here are two generating translations of equal length.



Here is a line of reflection parallel to τ1τ2.



Also, notice a glide reflection whose axis not a line of reflection.

This separates W 1
1 from the next group W 2

1 .



m

Next case (a1): σm ∈ G and τ1 ‖ m and τ2⊥m. In this case the

lattice is rectilinear, and m is parallel to a generator τ1.



We have the symmetry group

W 2
1 = 〈τ1, τ2, σm〉.



An example of a pattern whose symmetry group is

W 2
1 = 〈τ1, τ2, σm〉. Notice that any axis of a glide reflection is also a

line of symmetry.



m

The final(!) case (b1): G does not contain a reflection but it

contains a glide reflection γ with axis m. Case (1) of the lemma

holds, so τ1 ‖ m and τ2⊥m.



We can choose the glide so that γ2 = τ1. We obtain the wallpaper

group

W 3
1 = 〈γ, τ2〉.



An example of a pattern whose symmetry group is W 3
1 = 〈γ, τ2〉.



Here is an example of a painting by Escher with symmetry group

W 3
1 (ignoring colors).



Here are perpendicular generating translations.



And here is an axis of a glide reflection.



Here is another, analogous example.



A third example of group W 3
1 .



Perpendicular generating translations.



And a line of a glide reflection.



Yet one more example of W 3
1 .
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6
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6
p6m
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