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1 Introduction

Informally, a tiling is a covering of the plane with tiles of various shapes in such a way that the tiles do
not overlap each other. Often the tiles have simple shapes (e.g. polygons), and typically only a small
number of di�erent shapes are used in each tiling. Such tilings are everywhere around us: in pavements,
quilt patterns, fabrics, brick walls, carpets, etc. Interest to decorative tilings is very old: Moors are
an example of a culture that produced complex geometric patterns in tilings { famous examples can be
found in the Alhambra at Granada, Spain.

In this course we learn about mathematical concepts relevant to tilings and patterns. The mathemati-
cal tools we use include high-school level geometry, elementary group theory, some topology, combinatorics
and computation theory. After initial geometric considerations we work in detail on some computational
questions on tilings, including decidability aspects. The basics of computation theory and other required
material are provided during the course as needed, so that the course is made as self-contained as possible.
In some instances we may rely on theorems from other �elds that are presented without proofs, and in
these instances an interested reader is directed to literature or other courses o�ered on these topics for
more details and precise proofs.

2 Symmetries

Let us begin by investigating the fundamental concepts of symmetry.

2.1 Isometries of the plane

A plane isometry is any function � : R2 �! R2 that preserves distance:

8(x1; y1); (x2; y2) 2 R2 : d(�(x1; y1); �(x2; y2)) = d((x1; y1); (x2; y2))

where the distance d : R2 � R2 �! R is the usual Euclidean distance de�ned by

d((x1; y1); (x2; y2)) =
p

(x1 � x2)2 + (y1 � y2)2:

In other words, � moves the points of the plane in a "rigid" motion that does not change any distances.
In these notes we’ll denote points of the plane by capital letters, so the isometry property will be

written as
8P; Q 2 R2 : d(�(P ); �(Q)) = d(P; Q):

Our �rst theorem states that an isometry is necessarily a bijection (that is, both one-to-one and onto).
This implies that it has an inverse function. This inverse function is also an isometry.

Theorem 2.1 An isometry is a bijection. Its inverse function is an isometry.

Proof. Let � be an isometry. It is trivial that � is one-to-one (also the term "injective" is used). Namely,
if �(P ) = �(Q) then

d(P; Q) = d(�(P ); �(Q)) = 0;

which means that P = Q.

The proof that � is onto (also the term "surjective" is used) is more di�cult, and is therefore left as a
homework problem ;-)

Let P; Q 2 R2 be arbitrary and denote P 0 = ��1(P ) and Q0 = ��1(Q). Then P = �(P 0) and Q = �(Q0)
so d(P 0; Q0) = d(P; Q), which proves that the inverse function ��1 preserves distance.
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Our next observation states that isometries preserve shapes. More precisely, let us show that an
isometry maps every line into a line, every triangle into a triangle (we say that it preserves lines and
triangles), and the angle between two lines remains the same. Also betweenness and midpoints are
preserved.

Theorem 2.2 An isometry preserves lines, triangles, betweenness, midpoints, sizes of angles, and per-
pendicularity and parallelism of lines.

Proof. Let � be an isometry. Let us prove the preservation of

� betweenness and midpoints: If three points P; Q and R are collinear, with point R between points
P and Q, then d(P; R) + d(R; Q) = d(P; Q). But then we have also

d(P 0; R0) + d(R0; Q0) = d(P 0; Q0)

where P 0 = �(P ), Q0 = �(Q) and R0 = �(R). This means that points P 0; Q0 and R0 are also
collinear, with R0 between points P 0 and Q0. So betweenness is preserved.

Since the inverse ��1 is also an isometry, the preservation works also in the inverse direction. In
other words, R is between P and Q if and only if �(R) is between �(P ) and �(Q).

In the special case that R is the midpoint between P and Q we have that d(P; R) = d(R; Q), so
also d(P 0; R0) = d(R0; Q0), which means that R0 is the midpoint between P 0 and Q0.

� triangles: Let 4ABC be a triangle and, as usual, let us denote A0 = �(A), B0 = �(B) and
C 0 = �(C). The triangle consists of those points P that are between A and B, between A and C,
or between B and C. This is equivalent to P 0 = �(P ) being between A0 and B0, between A0 and
C 0, or between B0 and C 0. Hence the image of triangle 4ABC is the triangle 4A0B0C 0.

� lines: Let m be a line, and let A and B be two points on the line. Then the line consists exactly of
those points P such that (i) P is between A and B, (ii) A is between B and P , or (iii) B is between
A and P . This is equivalent to P 0 = �(P ) being such that (i) P 0 is between A0 and B0, (ii) A0 is
between B0 and P 0, or (iii) B0 is between A0 and P 0, where A0 = �(A) and B0 = �(B), which is
equivalent to P 0 being on the line through points A0 and B0.

� parallelism and perpendicularity of lines, as well as angles between lines: Take two di�erent lines
l and m. If they are parallel then they have no common points. Because � is one-to-one, their
images �(l) and �(m) do not have any common points either, so they are parallel lines. Assume
then that l and m are not parallel, in which case they intersect in one point P at some angle �.
Let A and B be points of the lines l and m such that angle AP B is of size �. Then the triangle
4AP B is congruent with its image 4A0P 0B0 as the two triangles have same sides (SSS). Therefore
the angle A0P 0B0 is the same as the angle AP B. In particular, l and m are perpendicular if and
only if the angle is 90�, so also perpendicularity is preserved.

The trivial isometry is the identity function � that does not move any points: �(P ) = P for all P 2 R2.
Let us look into some non-trivial examples of isometries.

Example 1. Let A = (a; b) 2 R2. A translation by vector A = (a; b) shifts every point (x; y) into
position (x + a; y + b). We denote a translation by vector A as �A.
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P’

P

(a,b)

Every translation is clearly an isometry. Trivial translation �(0;0) is the trivial isometry �.

Example 2. Let C 2 R2 be a point, and � 2 R an angle. The rotation �C;� by the (directed) angle �
about C is the isometry that �xes point C, and otherwise takes point P 6= C into the point P 0 where
d(C; P ) = d(C; P 0) and � is the directed angle from CP to CP 0:

C
P

P’

Θ

In terms of analytic geometry we say that point (x; y) is mapped to point (x0; y0) where
�

x0

y0

�
=

�
cos � � sin �
sin � cos �

� �
x � cx
y � cy

�
+

�
cx
cy

�

where C = (cx; cy). Point C is called the center of the rotation. The trivial rotation �C;0 by the angle 0�

is the trivial isometry �.
If � = 180� we get a special case of the rotation called the halfturn about point C, or the reection

in point C. Every point P is mapped to the point P 0 such that the center C is the midpoint between P
and P 0:

P

C

P’

Because halfturn about point C is an important particular case, we sometimes denote it by the special
symbol �C .

Example 3. Let m be a line. The reection �m in line m is the mapping that does not move the points
of line m, but any point P outside line m is moved to the point P 0 such that line m is the perpendicular
bisector of segment P P 0.
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P’

m

It follows immediately from the de�nition that ��1
m = �m, that is, the reection �m is its own inverse.

Isometries that are their own inverses are called involutions.

Example 4. A Glide reection is a composition of a translation and a reection in line m that is parallel
with the direction of the translation. Let A = (a; b) 2 R2 a vector of translation, and let m be a line
parallel to A, that is,

m = f(c; d) + t(a; b) j t 2 Rg

where (c; d) is some point of the line. The glide reection m;(a;b) they specify reects the points in line
m and then translates them by vector A. In this particular case it does not matter in which order the
two operations are performed: we may as well translate �rst and reect later.

P’

m

P

(a,b)

Line m is called the axis of the glide reection. Notice that glide reections with trivial translation
vectors A = (0; 0) are exactly the reections.

Later we’ll see that our four examples exhaust all possibilities: translations, rotations, reections and
glide reections are the only isometries of the plane. (In fact, since reection is a special type of glide
reection we can say that all isometries are translations, rotations or glide reections.)

The composition � � � of two functions � and � is the function that �rst applies � to a point, and
then applies � to the result, that is,

(� � �)(x) = �(�(x)):

If � and � are isometries then also their composition � � � is an isometry. Indeed, for any two points P
and Q we have

d((� � �)(P ); (� � �)(Q)) = d(�(�(P )); �(�(Q))) = d(�(P ); �(Q)) = d(P; Q):
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Function composition � is an associative operation, and since the identity function � and the inverses of
all isometries are also isometries, we have the following theorem:

Theorem 2.3 The set of plane isometries forms a group I under the operation of composition.

We frequently drop the group operation sign "�" and simply write �� for � � �. We then say that �� is
the product of operations � and �. We also do not need to use parentheses in products as, because of
the associativity, �(�) = (��). We simply write this as ��. However, remember that the group of
isometries is not commutative (=abelian) as in most cases �� 6= ��.

An element � 2 I is called an involution if �2 = �. Examples of involutions include all reections in
lines, as well as all halfturns. In fact, no other involutions exist. Review the following terms of group
theory:

� generator set (=set of group elements such that every element of the group is a product of generators
and their inverses),

� cyclic group (=a group that is generated by one element)

� order of a group (=number of elements. If the group contains an in�nite number of elements then
the group is called in�nite, otherwise it is �nite.)

� subgroup (=a subset of the group that is closed under the group operation and the operation of
taking the inverse element. A subgroup itself is a group under the same group operation)

� cancellation laws (�� = � implies � = , and �� = � implies � = .)

In the rest of this chapter we try to understand the structure of the group I. We want to show that
our examples exhaust all possibilities, and to �nd out how the group operation combines these isometries.

2.2 Fixed points

The two main results of this section are the following:

1. To verify that two given isometries � and � are the same, it is su�cient to verify that they agree
on some three points that are not collinear (Corollary 2.6).

2. Every isometry is a product of at most three reections (Corollary 2.7).

We say that P is a �xed point of isometry � if �(P ) = P . We also say that � �xes point P .

Lemma 2.4 If an isometry � �xes two distinct points P and Q, then it �xes every point of the line m
that contains P and Q.

Proof. Assume that � �xes points P and Q of line m, and let R be any point of the line m. Because
� preserves lines, �(R) is on the same line with �(P ) = P and �(Q) = Q, that is, �(R) is on line m.
Because d(�(R); P ) = d(R; P ) and d(�(R); Q) = d(R; Q), we must have �(R) = R. (There are two
points at distance d(R; P ) from P , and these two points have di�erent distances from point Q. So only
one of these two points can have distance d(R; Q) from Q, namely point R.)

Consider three points P; Q and R that are not collinear, i.e. are not on the same line. As a corollary
of the next theorem we get that their images �(P ); �(Q) and �(R) uniquely determines the isometry �.
We also prove that every isometry is a product of at most three reections.
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Theorem 2.5 Let � be an isometry.

1. If � �xes three non-collinear points, then � = �.

2. If � �xes two points then � = � or � is a reection.

3. If � �xes exactly one point then � is a product of two reections.

Proof. 1. Assume that � �xes three non-collinear points P; Q and R. Let m and l be the lines that
contain P and Q, and P and R, respectively. According to Lemma 2.4, � �xes all points that belong to
lines m or l. Let X be an arbitrary point outside lines m and l. There exists a line k that goes through
X and intersects m and l at distinct points A and B.

m

l

k

P

A

X

B

Q

R

Because � �xes A and B then, according to Lemma 2.4, it also �xes all points of line k, which means
that it also �xes point X. As X was an arbitrary point, we conclude that � �xes all points of the plane,
so � = �.

2. Assume then that � �xes two distinct points P and Q, and suppose that � 6= �. Then there exists
some point R such that �(R) 6= R. Notice that P; Q and R cannot be collinear (Lemma 2.4). Denote
R0 = �(R), and let m be the perpendicular bisector of the segment RR0. Then R0 = �m(R) where �m
is the reection in line m. Because d(R0; P ) = d(R; P ) and d(R0; Q) = d(R; Q), points P and Q are on
the perpendicular bisector m. We have �m(P ) = P and �m(Q) = Q. The isometry ��1

m � hence �xes
three non-collinear points P; Q and R so, according to case 1 of the theorem, ��1

m � = �. This proves that
� = �m is a reection.

3. Assume that isometry � �xes exactly one point P . Let Q a di�erent point, so Q0 = �(Q) is di�erent
from Q. Let l be the perpendicular bisector of the segment QQ0. Triangle 4QP Q0 is isosceles, so the
point P is on the line l. Then ��1

l � �xes two points P and Q, so according to case 2 either ��1
l � = � or

��1
l � = �m for some line m. The �rst alternative � = �l is not possible because then � �xes more than

one point { it �xes all points of line l. So we must have the second alternative � = �l�m.

Corollary 2.6 If � and � are two isometries such that �(P ) = �(P ), �(Q) = �(Q) and �(R) = �(R),
and points P; Q and R are not collinear, then � = �.
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Proof. Isometry ��1� �xes non-collinear points P; Q and R, so ��1� = �. This implies � = �.

Corollary 2.7 Every isometry is a product of at most three reections.

Proof. If � �xes at least one point then, according to the theorem, � is a product of at most two
reections. Assume then that � does not �x any points. Let P be an arbitrary point, and let m be the
perpendicular bisector of the segment P �(P ). Then ��1

m � �xes point P , so ��1
m � is a product of at most

two reections and, therefore, � is a product of at most three reections.

The proofs provide a simple method of �nding the reections when we know the images P0 =
�(P ); Q0 = �(Q) and R0 = �(R) of three given non-collinear points P; Q and R. We simply �nd
reections that match the points one-by-one:

1. If P 6= P0 then we �rst reect in line m that is the perpendicular bisector of the segment P P0.
This maps P to its correct position P0. Let Q0 and R0 be the images of Q and R under the �rst
reection.

2. If Q0 6= Q0 then we reect in line l that is the perpendicular bisector of the segment Q0Q0. Notice
that point P0 is on this bisector because d(P0; Q0) = d(P; Q) = d(P0; Q0). After the second
reection, points P and Q have been mapped to their correct positions P0 and Q0. Let R00 be
the image of R after the �rst two reections.

3. If R00 6= R0 then we �nally reect in line k that is the perpendicular bisector of R00 and R0. It is
easy to see that P0 and Q0 are on this bisector:

d(P0; R0) = d(P; R) = d(P0; R00) and d(Q0; R0) = d(Q; R) = d(Q0; R00):

After steps 1{3, points P; Q and R have been mapped in their correct positions P0; Q0 and R0

2.3 Symmetries of a set of points

Let s � R2 be a set of points. We say that isometry � is a symmetry of set s i� �(s) = s.

Theorem 2.8 Let s � R2 be arbitrary. The symmetries of s form a subgroup of I, the group of isome-
tries.

Proof. Every set has at least one symmetry, namely the trivial isometry �. If �(s) = s then ��1(s) =
��1(�(s)) = s, so the inverse of each symmetry of s is also a symmetry of s. Let � and � be two
symmetries of s. Then ��(s) = �(s) = s so the product �� is also a symmetry of s.

The set of symmetries of s is called the symmetry group of s. Notice that I itself is the symmetry
group of s = R2.

Example 5. Let s be a rectangle ABCD that is not a square. Let us position s in such a way that its
center is at the origin (0; 0), and its sides are parallel to the x- and y-axes.
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Any symmetry of s must permute the corners of the rectangle. Corner A may be mapped into any of
the four corners A; B; C and D, after which the images of the other corners B; C and D are uniquely
determined. We proved in the previous section that three non-collinear points A; B and C determine the
entire isometry (Corollary 2.6), so the symmetry group s contains exactly four symmetries. These are
�, two reections �h and �v in the x- and y-axes, and the halfturn �O about the origin O. These form
Klein’s Vierergruppe V4.

Example 6. If s is a square ABCD then its symmetry group contains eight elements, so a square is
"more" symmetric than a non-square rectangle. In the square we may map the corner A into any of
the four corners, after which corner B has still two possible images. Then the images of C and D are
uniquely determined.

2.4 Products of two reections

We know that every isometry is a product of at most three reections. In order to characterize all
isometries we need to investigate the products of two or three reections. Let us start by products of two
reections.

Theorem 2.9 The product of two reections in parallel lines m and l is a translation in the direction
perpendicular to l and m by a distance that is twice the distance from l to m. Conversely, every translation
is a product of two reections in parallel lines, both perpendicular to the direction of the translation. One
of the lines can be chosen freely (as long as it is perpendicular to to the translation).

Proof. Let m and l be two parallel lines. If m = l then �m�l = � = �(0;0). Assume then that m 6= l. Let
A be the vector from l to m that is perpendicular to m and l. To prove that �m�l = �2A it is enough to
show that �m�l(P ) = �2A(P ) for every point P of line l, and that �m�l(X) = �2A(X) for some point X
outside of line l. Then the result follows from Corollary 2.6.
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Referring to the �gure above, we have that for every P 2 l

�m�l(P ) = �m(P ) = P 0 = �2A(P ):

Analogously, by reversing the roles of lines m and l, we have that for an arbitrary Q 2 m

�l�m(Q) = ��2A(Q):

Let X = �l�m(Q) = ��2A(Q). Then X is not on line l, and

�m�l(X) = �m�l�l�m(Q) = Q = �2A��2A(Q) = �2A(X):

The second part of the theorem follows directly from the �rst part: Let � be a non-trivial translation,
and let P be an arbitrary point and P 0 = �(P ). Let l and m be the lines perpendicular to the segment
P P 0 through P and the midpoint of P P 0, respectively. Then, according to the �rst part, �m�l = � .

Corollary 2.10 The product of three reections in three parallel lines is a reection in a parallel line.

Proof. Let l; m and n be any three parallel lines. Let p be a fourth parallel line whose distance from
line n is the same as the distance of line l from line m. Then �l�m and �p�n are the same translation.
Multiplying by �n from the right gives �l�m�n = �p.

Consider then two reections in lines that are not parallel:

Theorem 2.11 The product of two reections in intersecting lines is a rotation about the point of in-
tersection, and the angle of the rotation is twice the angle between the lines. Conversely, every rotation
about point C is a product of two reections in lines through point C. One of these lines can be chosen
freely.

Proof. Let l and m be lines that intersect at point C. Let � be the directed angle between them measured
from l to m. Let us prove that �m�l = �C;2� by showing that �m�l and �C;2� agree on three non-collinear
points: all points of line l, and one point X that is outside of line l.

First, as all the isometries �m, �l and �C;2� �x point C, we have �m�l(C) = C = �C;2�(C). Let
P 6= C be a point on line l, and let P 0 = �C;2�(P ). Line m is the perpendicular bisector of P P 0, so
P 0 = �m(P ) = �m�l(P ).
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So far we have proved that �m�l(P ) = �C;2�(P ) for all P 2 l. Analogously, by reversing the roles of
lines m and l, we have that �l�m(Q) = �C;�2�(Q) for an arbitrary point Q 6= C of line m. Denote
X = �l�m(Q) = �C;�2�(Q). Then X is not on line l and

�m�l(X) = �m�l�l�m(Q) = Q = �C;2��C;�2�(Q) = �C;2�(X):

To prove the second part of the theorem, consider an arbitrary rotation �C;�. Let l be an arbitrary line
through the center C of the rotation, and let m be the line through point C that meets line l in the
directed angle �=2. According to the �rst part of the theorem we have �m�l = �C;�.

Corollary 2.12 Halfturn �C is the product of two reections in any two perpendicular lines through C.
In particular, reections in perpendicular lines commute.

Corollary 2.13 The product of three reections in lines through the common point C is a reection in
a line through point C.

Proof. As in the proof of Corollary 2.10, let l; m and n be any three lines through point C. Let p be a
fourth line through C that forms with line n the same angle as line l forms with line m. Then �l�m and
�p�n are the same rotation about point C. Multiplying by �n from the right gives �l�m�n = �p.

2.5 Parity

As we proved previously, all isometries are products of some reections, in fact, of at most three reections.
The representation of an isometry as a product of reections is, however, not unique. For example, we
can always add �m�m to the end of any sequence of reections, thus increasing the number of reections
in the sequence by two. However, it turns out that the parity of the number of reections is always the
same. We call isometry � even if it is a product of an even number of reections, and odd if it is a
product of an odd number of reections. Next we want to show that no isometry can be both even and
odd at the same time, that is, even and odd products of reections can never be equal.

First we can make the following easy observation: A product of two reections is not a reection.
Indeed, we know from the results of the previous section that a product of two reections is either a
translation or a rotation. Translations have no �xed points, rotations have exactly one �xed point, and
the trivial isometry � �xes all points. In contrast, the �xed points of a reection form a line. So �m�l 6= �k
for all lines m; l and k.

The following theorem provides a method of reducing by two the number of terms in any long product
of reections:
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Theorem 2.14 A product of four reections is a product of two reections.

Proof. We use the following lemma twice:

Lemma 2.15 If m and l are two lines and P is a point, then there are lines p and q such that �m�l =
�p�q, and line q contains point P .

Proof of the lemma. If m and l are parallel, then we choose as q the line that is parallel to m and l and
goes through point P . By corollary 2.10 we have �m�l�q = �p for some line p, so �m�l = �p�q.

If m and l intersect at some point Q, then we choose as q a line through points P and Q. By
corollary 2.13 we have �m�l�q = �p for some line p, so �m�l = �p�q.

Consider a product �m�l�k�n of four reections. Let P be an arbitrary point on line n. According to
the lemma, �l�k = �p�q where line q contains point P . Then we apply the lemma again: �m�p = �r�s
where s contains point P . We have

�m�l�k�n = �m�p�q�n = �r�s�q�n;

and lines n; q and s go through point P . Then, by Corollary 2.13 the product �s�q�n = �t for some line
t. Hence

�m�l�k�n = �r�t:

Corollary 2.16 A product of three reections cannot equal a product of two reections.

Proof. Assume that
�m�l�k = �n�r:

Multiplying from left by �n gives
�n�m�l�k = �r:

According to the theorem there exist lines p and q such that

�n�m�l�k = �p�q;

so �p�q = �r, a contradiction.

Corollary 2.17 A product of an even number of reections cannot equal a product of an odd number of
reections.

Proof. By using the theorem we can reduce by two the number of reections in any product of at least
four reections. In this way, any even length sequence can be reduced into a product of two reections,
and any odd length sequence reduces into a length one or a length three sequence. As a product of two
reections cannot equal a product of one or three reections, we have the desired result.

Now we know that every isometry is either even or odd, but not both. Notice that odd isometries
correspond to "ipping" the plane over, turning all shapes into their mirror images. As every even
isometry is a product of two reections, we have
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Theorem 2.18 Even isometries are exactly the translations and the rotations.

Notice also that even isometries form a subgroup of I. Indeed, the inverse of the even isometry �m�l
is the even isometry �l�m, and the product of two even isometries �m�l and �n�p is the even isometry
�m�l�n�p. Let us denote the group of even isometries by E .

2.6 Odd isometries

Let’s turn our attention to odd isometries. The goal of this section is to prove that every odd isometry is
a glide reection (where we understand that a plain reection is also a glide reection with a zero glide.)
Recall that we use the notation �P for the halfturn about point P .

Lemma 2.19 Isometry � is a glide reection if and only if � = �P �l for some point P and line l. This
is also equivalent to � = �k�Q for some line k and point Q.

Proof. Let � be a glide reection. By de�nition, � = �m�A where the translation �A is in the direction of
line m. By Theorem 2.9 �A = �k�l where lines k and l are perpendicular to line m. We have � = �m�k�l.
Corollary 2.12 states that the product �m�k of two reections in perpendicular lines is the halfturn �P
about the intersection point P of lines m and k. We have

� = �m�k�l = �P �l

as desired. We also have �P = �k�m, so

� = �P �l = �k�m�l = �k�Q

where Q is the point where perpendicular lines m and l intersect.
For the converse claim, assume that � is the isometry �P �l for some point P and line l. Let k be the

line through point P that is parallel to line l, and let m be the line through point P that is perpendicular
to lines k and l. Then, by Corollary 2.12, �P = �m�k.

P

m

k
l

We have
� = �P �l = �m�k�l = �m�A

where �A is in the direction of line m. Hence � is a glide reection.
Analogously, if � = �k�Q, and lines m and l go through point Q, and l is parallel and m perpendicular

to k, then
� = �k�Q = �k�m�l = �m�k�l = �m�A

where A is in the direction of line m.

Now we are able to prove the main result on odd isometries:

12



Theorem 2.20 Every odd isometry is a glide reection.

Proof. Let � be an odd isometry. Then it is either a reection (which is a special type of a glide reection)
or a product of three reections. Let � = �m�l�k. Let P be an arbitrary point on line k. By Lemma 2.15
there exist lines p and q such that �m�l = �p�q and line q goes through point P . We have

� = �m�l�k = �p�q�k;

and P 2 k; q. Let n be the line through point P that is perpendicular to line p. As lines n; q and k all go
through point P , the product �n�q�k is some reection �r, see Corollary 2.13. Then �q�k = �n�r, and

� = �p�n�r:

Lines n and p are perpendicular, so the product �p�n is a halfturn �Q, where Q is the point where n and
p intersect. We have

� = �Q�r;

and it now follows from Lemma 2.19 that � is a glide reection.

Now we have classi�ed all isometries of the plane. Even isometries are translations and rotations, and
odd isometries are glide reections (including reections without glides).

2.7 Rosette groups

Rosette groups are the �nite subgroups of I. In this section we prove that the rosette groups are the
cyclic groups Cn and the dihedral groups Dn, for n � 1, de�ned as follows:

The cyclic group Cn consists of n rotations about the same center P . It is generated by the single
rotation � = �P; 360�

n
, so the elements of Cn are �; �2; : : : ; �n = �. Notice that strictly speaking there

are in�nitely many groups Cn as the center P can be any point of the plane, but they are all obviously
isomorphic with each other.

The dihedral group Dn includes Cn, and in addition it contains reections in n lines that meet at
P (the center of the rotations) at angles that are multiples of 360�

2n . Notice that the composition of two
such reections is a rotation that belongs to Cn. There are 2n elements in Dn: namely n rotations
�; �2; : : : ; �n = �, and n reections that can be expressed as ��; �2�; : : : ; �n� = �, where � is any one of
the reections.

Here are the cases with small n = 1 and 2:

� C1 = f�g and D1 = f�; �mg,

� C2 = f�; �P g and D2 = f�; �P ; �m; �lg, where m and l are perpendicular lines through point P .

Example 7. The symmetry group of a polygon with n edges and vertices (called n-gon) can contain
at most 2n elements. Indeed, any symmetry � must map vertices into vertices, and neighboring vertices
into neighboring vertices. Fixed vertex A has at most n possible images. Adjacent vertex B then has at
most two alternatives as it must be mapped into one of the two vertices next to �(A). After this, the
symmetry is uniquely determined.

Let us show that the regular n-gon has exactly 2n symmetries, and the symmetry group is the
dihedral group Dn. Let P be the center of the regular n-gon. It is clear that the rotation � = �P; 360�

n
is a

symmetry of the n-gon. If m is line through P and one of the vertices then also � = �m is a symmetry.
As the symmetries form a group, all products of � and � are symmetries. These include the n rotations
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�; �2; : : : ; �n = � generated by �, and n distinct odd isometries ��; �2�; : : : ; �n� = �. (These are distinct
as �i� = �j� =) �i = �j .) These are exactly the elements of Dn. There can be no other isometries as
no n-gon can have more than 2n symmetries.

Example 8. Cyclic group Cn is the symmetry group of a polygon that is obtained from a regular n-gon
by replacing each edge with a "directed edge", for example as follows:

Before proving that no other �nite subgroups of I exists, let us �rst �gure out multiplication rules of
even isometries.

Theorem 2.21 1. The product of two translations is a translation.

2. A rotation by angle � followed by a rotation by angle � is a rotation by angle � + �, unless � + �
is a multiple of 360�, in which case the product is a translation.

3. A translation followed by a non-trivial rotation by � is a rotation by �. Also, a non-trivial rotation
by � followed by a translation is a rotation by �.

Proof.

1. Trivial: it follows from the de�nition of translations that �A�B = �A+B.

2. If the two rotations are about the same center P then the claim is trivial: �P;��P;� = �P;�+�.
Assume then that the two rotations are about di�erent points A and B. Let m be the line through
points A and B. According to Theorem 2.11 there exist lines l and n through points A and B,
respectively, such that

�A;� = �m�l and �B;� = �n�m;

so
�B;��A;� = �n�m�m�l = �n�l:

Moreover, the directed angle from l to m is �=2 and the directed angle from m to n is �=2, so the
directed angle from l to n is (� + �)=2. If this angle is a multiple of 180� then lines l and n are
parallel, that is, if � + � is a multiple of 360� then �B;��A;� is a translation. Otherwise lines l and
n are not parallel, so �B;��A;� is a rotation by angle � + �.
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3. Let � be a translation and � a non-trivial rotation by angle �. Then � = �l�m for parallel lines
l and m, and � = �n�k where the angle from line k to line n is �=2. By Theorem 2.11 We can
choose k to be parallel to l and m. Then �� = �n�k�l�m. Because k; l and m are parallel lines,
by Corollary 2.10 the product �k�l�m is a reection �p where p is also parallel to k; l and m. The
angle from line p to line n is �=2, so �� = �n�p is a rotation by angle �.

Analogously, we could have chosen k and n so that n is parallel to l and m, in which case �l�m�n =
�q for a line q in the same direction. Then

�� = �l�m�n�k = �q�k

is a rotation by angle �.

By iterating the theorem we easily get a rule for composing an arbitrary number of rotations:

�C1;�1 � �C2;�2 � : : : � �Cn;�n

is a rotation by angle � = �1 + �2 + : : : + �n, unless � is a multiple of 360�, in which case the product
is a translation.

Corollary 2.22 If a subgroup of I contains two non-trivial rotations about di�erent centers then it also
contains a non-trivial translation

Proof. Let �A;� and �B;� be two non-trivial rotations and A 6= B. According to our theorem

��1
B;���1

A;��B;��A;� = �B;���A;���B;��A;�

is a translation. If it were the trivial translation � then

�A;��B;� = �B;��A;�

but this is not possible as it was proved in a homework problem that non-trivial rotations about di�erent
centers do not commute.

Now we are ready to prove the result mentioned in the beginning of this section:

Theorem 2.23 (Leonardo da Vinci’s Theorem) A �nite subgroup of I is either a cyclic group Cn
or a dihedral group Dn.

Proof. Let H be a �nite subgroup of I. Every non-trivial translation generates an in�nite subgroup,
so H cannot contain non-trivial translations. If  is a glide reection with glide vector A then 2 is
a translation by vector 2A, so H cannot contain any glide reections except plain reections. So only
rotations and reections are possible.

By the previous lemma, all rotations in H must have the same center P . Let � = �P;� be the rotation
having the smallest positive angle � among all rotations in H. It exists as H is �nite. Let �P;� 2 H.
For every real number � there exists an integer k such that 0 � � � k� < �. Because the rotation by
� � k� is in H, and because � is the smallest positive angle, we must have � � k� = 0. This means
that �P;� = �k. We have proved that � generates the rotations of H. This means that the set of even
isometries in H is f�; �2; : : : ; �ng = Cn for some n.
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If there are no reections in H then H = Cn. Assume then that there is at least one reection � in
H. Then there are at least n distinct odd isometries ��; ��2; : : : ; ��n in H. On the other hand, if � 2 H
is odd then �� is even, so �� = �k for some k = 1; 2; : : : ; n. This means that � = ��k, and we have
proved that H = Dn.

Corollary 2.24 The symmetry group of every polygon is a cyclic group or a dihedral group.

Proof. In the example at the beginning of the section we concluded that the symmetry group of an n-gon
contains at most 2n elements, so it is �nite.

2.8 Conjugacy

Two elements x and y of a group G are called conjugate if there exists an element � 2 G such that
x = �y��1. It is easy to see that conjugacy is an equivalence relation. Its equivalence classes are called
the conjugacy classes of the group.

It turns out that in the group I conjugate isometries are of the same type (both translations, both
rotations, both reections or both glide reections):

Theorem 2.25 Let � 2 I be an arbitrary isometry.

1. Let � = �m be the reection in line m. Then ����1 is the reection ��(m) in line �(m).

2. Let � = �B�A be the translation that moves point A to point B = �(A). Then ����1 is the
translation ��(B)��(A) that moves point �(A) to point �(B).

3. Let � = �P;� be a rotation about point P . Then ����1 is the rotation ��(P );�� about point �(P ),
where the angle is +� if � is even, and �� if � is odd.

4. Let  = m;B�A be a glide reection. Then ���1 is the glide reection �(m);�(B)��(A).

Proof.

1. Isometry ��m��1 is an odd isometry that �xes every point �(P ) of line �(m). The only odd
isometry with this property is the reection in line �(m).

2. Let � = �B�A be the translation that moves A to B. Then � = �m�l for two parallel lines m and
l. According to case 1 above, ��m��1 = ��(m) and ��l��1 = ��(l). We get

����1 = ��m�l��1 = ��m��1��l��1 = ��(m)��(l):

Isometries preserve parallelism of lines, so �(m) and �(l) are parallel lines, which means that ����1

is a translation. It moves point �(A) into ����1�(A) = �(B) so it is the translation ��(B)��(A).

3. Let � = �P;� where � 6= 0. (The case � = � is trivial.) Clearly ����1 is an even isometry with
�xed point �(P ), so ����1 must be some rotation about point �(P ), say ����1 = ��(P );�. All we
need to prove is that � = �� where the sign depends on the parity of �.

Assume �rst that � = �k for some line k. Let m and l be lines through point P such that the
directed angle from l to m is �=2, so � = �m�l. We are free to choose lines m and l in such a way
that neither is parallel to k. Let �1 and �2 be the directed angles from m to k and from k to l,
respectively. Notice that �1 + �2 is then the directed angle from m to l, that is, �1 + �2 = ��=2,
at least modulo 180�.
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We have
��(P );� = ����1 = �k�m�l�k:

This is the product of two rotations �k�m and �l�k of angles 2�1 and 2�2, respectively. According
to Theorem 2.21 the product is a rotation by 2�1 + 2�2 = ��, that is, � = �� as required.

Assume then a general �. We know that all isometries are products of (at most three) reections,
so � = �1�2 : : : �n for some reections �1; �2; : : : ; �n. Number n is even i� isometry � is even. As

����1 = �1�2 : : : �n��n�n�1 : : : �1

we can apply the single reection case n times. In each application the sign of the rotation angle
changes, so in the end we have that ����1 is a rotation by the angle (�1)n�.

4. Let  = m;B�A, where A 6= B. (If A = B then  is a reection, and that was already taken care
of.) Then ���1 is an odd isometry, so it is a glide reection, say 0. Because 0(�(m)) = �(m),
line �(m) must be the axis of 0. To �nd the glide vector of 0 we can make the calculation

00 = ���1���1 = �2��1 = ��B�A�B�A��1 = ��B�A��1��B�A��1 = ��(B)��(A)��(B)��(A);

which shows that �(B) � �(A) is the glide vector of 0.

Let s � R2. The following terminologies are widely used: If �m is a symmetry of s then m is called
a line of symmetry for s. If �P is a symmetry of s then P is a point of symmetry for s. If �C;� is a
symmetry of s then C is a center of symmetry and, more precisely, if � = 360�

n then C is a center of
n-fold symmetry.

In analyzing symmetries we frequently apply the statements of the conjugacy theorem above in the
following forms. Let � be an arbitrary symmetry of set s. Then in s:

� If m is a line of symmetry then also �(m) is a line of symmetry.

� If P is a point of symmetry then also �(P ) is a point of symmetry.

� If C is a center of (n-fold) symmetry then also �(C) is a center of (n-fold) symmetry.
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2.9 Frieze groups

Let us denote the set of translations by T . It is easily seen to be a subgroup of I. The intersection of two
subgroups is also a subgroup, so for every subgroup G of I, the set G \ T that contains the translations
of G is a subgroup of G, called the translation group of G.

We say that G � I is a frieze group if its translation group is cyclic and non-trivial, that is, if the
translations are generated by a single translation � 6= �. The name comes from the fact that frieze groups
are the symmetry groups of repetitive friezes (=ornamented bands on buildings) such as, for example

(where the pattern is repeated inde�nitely in both directions). Notice that there must exists the shortest
translation that keeps the frieze invariant | otherwise its symmetry group is not a frieze group. For
example, the symmetry group of a horizontal line is not a frieze group as it contains all horizontal
translations. It turns out that there are only seven di�erent frieze groups (when we ignore the position,
orientation and the size of the frieze) and each is the symmetry group of some s � R2.

In this section we make the following convention: The direction of the translations in the frieze group
is called the horizontal direction, and the perpendicular direction is then the vertical direction. We start
with the following key observation:

Lemma 2.26 Let G be a subgroup of I such that all translations in G are horizontal, and assume that
there is at least one non-trivial translation. (This includes all frieze groups, but also groups without a
shortest translation.) Then there exists a horizontal line m such that all elements of G are products of
reections in vertical lines, possibly followed by the reection �m in line m. These products are:

� horizontal translations,

� reections in vertical lines,

� reection �m in line m,

� halfturns about points of line m, and

� glide reections with axis m.

Proof. Let � 2 G be a �xed non-trivial translation.
First, let us prove that all non-trivial rotations in G are halfturns. Let � = �P;� 2 G be arbitrary.

Let A = �(P ), so A 6= P , and let B = �(A). According to Theorem 2.25, ����1 is the translation that
moves point �(P ) = P to point �(A) = B. Translations � and ����1 are horizontal, so points A, P and
B must be on the same line. This is possible only if � is the trivial rotation or the halfturn about P .

Next, let us prove that all reections in G are in vertical and horizontal lines. Let �l 2 G be arbitrary,
P a point of line l, A = �(P ), and B = �l(A). According to Theorem 2.25, �l���1

l is the translation
that moves point �l(P ) = P to point �l(A) = B. Again, translations � and �l���1

l are horizontal, so
points A, P and B must be on the same horizontal line. Either A = B, in which case A is on line l so l
is horizontal, or A 6= B, in which case l is the perpendicular bisector of AB so l is vertical.

Finally, let us show that glide reections of G are horizontal. Indeed, if  2 G is a glide reection with
a non-zero glide A, then 2 is the translation with the translation vector 2A. Vector 2A is horizontal, so
also the glide A is horizontal.
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In the three paragraphs above we have shown that every element of G is a product of reections
in vertical and horizontal lines. As products of reections in perpendicular directions commute (Corol-
lary 2.12), every element of G is a product

�1�2 : : : �v�(1)�(2) : : : �(h)

where each �i is a reection in a vertical line, and each �(j) is a reection in a horizontal line. Moreover,
as the product of three reections in parallel lines is a reection in a parallel line, we can reduce the
number of reections so that v; h � 2.

Next we prove that, in fact, h � 1. Assume the contrary: some

� = �1�2 : : : �v�(1)�(2) 2 G

where the reections �(1) and �(2) are in two di�erent horizontal lines. If v = 1 then � is a glide reection
with a non-zero vertical glide, and if v = 0 or v = 2 then � is a translation in a direction that is not
horizontal. These isometries do not exist in G, so we must have h � 1.

Moreover, the possible reection �(1) in a horizontal line must be in the same horizontal line m for
all isometries of G. Namely, if G would contain two isometries � = �0�(1) and � = �0�(2) where �0 and
�0 are products of reections in vertical lines and �(1) and �(2) are reections in two di�erent horizontal
lines then the product

�� = �0�(1)�0�(2) = �0�0�(1)�(2)

would contradict the previous paragraph.
So we conclude that every element of G is a product of 0,1 or 2 reections in vertical lines, or a

product of 0,1 or 2 reections in vertical lines followed by �m, the reection in the horizontal axis m of
the group. This leaves the following non-trivial possibilities:

� �m: the reection in the axis m,

� �1�m: a halfturn about a point of line m,

� �1�2�m: a glide reection with axis m,

� �1: a reection in a vertical line, and

� �1�2: a horizontal translation

Now we are ready to classify all frieze groups. Let G be a frieze group whose translations are generated
by the shortest translation �A, and let m be the horizontal line from the previous lemma, called the axis
of the frieze group. Let 2d be the length of vector A, so that �A is a product of two reections in vertical
lines at distance d. The translations in G are then exactly the products of two reections in any two
vertical lines whose distance is a multiple of d.

1) Assume �rst that �m 2 G. Let l and k be arbitrary vertical lines. Then

�l�m 2 G () �l 2 G; and
�l�k�m 2 G () �l�k 2 G;

so glide reections of G are uniquely determined by the translations, and the reections in vertical lines
are uniquely determined by the halfturns. If there are no halfturns in G then G is generated by �A and
�m, and it is the symmetry group of the in�nite strip
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Let us call it the group F1001. The four indices 1001 are interpreted as follows: the group contains the
reection �m in the axis m, does not contain any reection �l in vertical lines, does not contain any
halfturns, and contains glide reections. This information uniquely speci�es the group (for given A and
m).

Assume then that there is some halfturn �P in G. We know that point P is on line m. Because
�P �Q = �2(P �Q) is a translation, the other halfturns are now uniquely determined: they are at points of
line m whose distance from P is a multiple of d. These then also uniquely determine the reections �l in
vertical lines. Group G = F1111 is the symmetry group of

Groups F1001 and F1111 are the only groups containing the reection �m.

2) Consider then groups that do not contain �m. One alternative is that there are no isometries except
the translations: We have the symmetry group F0000 of the strip

Let us assume then that there are other symmetries. The product of a reection in a vertical line and a
halfturn is a glide reection, the product of a glide reection and a halfturn is a reection in a vertical
line, and the product of a glide reection and a reection in a vertical line is a halfturn. Conclusion: G
either contains all three types of isometries, or at most one of the types. There are four alternatives,
resulting in groups F0100, F0010, F0001 and F0111, as discussed below.

If G contains a halfturn �P = �l�m then the other halfturns are uniquely determined: they are the
products of �P and the translations in G. The distances between the centers of the halfturns are then
exactly the multiples of d. This means that group F0010 is uniquely determined, and it is the symmetry
group of the following strip:

Analogously, if G contains a reection �l in a vertical line l then the other reections are determined
as they must be the products of �l and the translations in G. The lines of the reections are at distances
that are multiples of d. So we have the group F0100 which is the symmetry group of

Consider then a glide reection  = �l�k�m 2 G with axis m. Let 2g be the length of its glide vector,
that is, g is the distance between lines l and k. Then g must be a multiple of d=2 as 2 is a translation of
length 4g. On the other hand, g cannot be a multiple of d because then there would exist a translation
in G that would cancel the glide, leaving �m, and we assumed that �m is not in G. We conclude that
g must be an odd multiple of d=2, or equivalently, the length 2g of the glide is an odd multiple of d.
All such glide reections are obtained from  by multiplying it with translations, so we have completely
characterized the glide reections. Group F0001 is the symmetry group of

20



The last open possibility is that G contains halfturns, reections in vertical lines and glide reections.
As discussed above, the glide reections are uniquely determined (the glides are by odd multiples of d),
and after we �x one center P of a halfturn, also the halfturns are uniquely determined. This also �xes the
reections as they are the products of the glide reections and the halfturns. The lines of the reections
bisect the consecutive points of reections. We have the group F0111, which is the symmetry group of
the following strip:

We have fully classi�ed the frieze groups, and we found seven di�erent types. In each case, a "frieze" with
the given symmetries was given, to prove that the seven types of frieze groups are the symmetry groups
of some sets s � R2. Notice that each of the seven groups has in�nitely many "geometric realizations",
as the axis m can be any line, the shortest translation � can be any non-trivial translation parallel to m,
and in those groups that involve halfturns or reections in vertical line, one center P of a halfturn or one
line l of a reection can be selected. But modulo these parameters, the groups are unique. It is clear that
all realizations of each group are isomorphic, and even more than that, isomorphic by isomorphisms that
preserve the type of isometry (translations correspond to translations, reections to reections, rotations
to rotations,. . . ).

We have proved the following theorem:

Theorem 2.27 Let G be a frieze group whose translations are generated by � . Then there exists a line
m parallel to � , and if G contains a halfturn there exists a point P 2 m, otherwise a line l perpendicular
to m, such that G is one of the following seven groups:

F0000 = h�i F1001 = h�; �mi F1111 = h�; �m; �P i
F0100 = h�; �li F0010 = h�; �P i
F0001 = hi F0111 = h; �P i

where  is the glide reection with axis m such that 2 = � .

2.10 Wallpaper groups

A wallpaper group G is a subgroup of I whose translations are generated by two non-parallel translations
�1 and �2. Translations commute with each other, so the translations of G are exactly the isometries
� i

1� j
2 for all integers i and j. If A and B are the vectors of translations �1 and �2 then the vectors of

translations � i
1� j

2 are iA + jB, which form a lattice
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Let us �rst show that there exists a shortest translation in G.

Lemma 2.28 Wallpaper group G has a shortest non-trivial translation. More generally, any non-empty
subset s of translations of G contains a shortest non-trivial translation.

Proof. Let A and B be the translation vectors of the generating translations �1 and �2. Let

B = rA + B0 and A = qB + A0

be the decompositions of vectors A and B into a sum of orthogonal vectors, where r; q 2 R and B0 ? A
and A0 ? B. As A and B are not parallel, vectors A0 and B0 are non-zero. Let a > 0 and b > 0 be the
lengths of vectors A0 and B0, respectively.

Consider an arbitrary translation vector Aij = iA + jB in G. Using the orthogonal decompositions
above we have

Aij = (i + jr)A + jB0 and Aij = (j + iq)B + iA0:

These are sums of two orthogonal vectors, so the length of Aij is at least jjjb, the length of jB0, and at
least jija, the length of iA0. Let c be the length of some vector X in the set s of translations we consider.
Then any vector Aij with jjj > c=b or jij > c=a is longer than vector X. Therefore there are only a
�nite number of vectors that can potentially be shorter than X. The shortest among them is the shortest
translation vector in set s.

Rosette groups, frieze groups and wallpaper groups are exactly the discrete symmetry groups: We call
a subgroup G of I discrete if it does not contain arbitrarily short translations and does not contain
arbitrarily small rotations. More precisely, G is discrete if there exists " > 0 such that

0 < jAj < " =) �A 62 G; and
0 < � < " =) �C;� 62 G:

(jAj is the length of the translation vector A.)

Theorem 2.29 Discrete subgroups of I are exactly the rosette groups, frieze groups and wallpaper groups.

Proof. ((=) Rosette groups are �nite and hence discrete. In frieze groups, the translation that generates
all translations is the shortest one, and halfturns are the only possible rotations, so frieze groups are
discrete. Let G be a wallpaper group. By Lemma 2.28, it contains a shortest translation � . For every
rotation � 2 G, the isometry � 0 = ����1 is the translation that maps the center C of � to ��(C).
Consequently, translation � 0��1 takes point �(C) into ��(C). This translation is arbitrarily short for
arbitrarily small rotation angles, so G cannot contain arbitrarily small rotations. Hence G is discrete.

(=)) Let G be a discrete subgroup of I.

(1) If G contains no non-trivial translations then it does not contain any glide reections with non-zero
glide vector. There are only rotations and reections in G. Rotations can only have a �nite number of
di�erent rotation angles as otherwise there would be arbitrarily small rotations in G. Two rotations by
the same angles but with di�erent centers generate a translation, so the rotations of G have the same
center C. Reection lines must contain C, and there are only a �nite number of possible angles between
the lines of reections. We conclude that the group is �nite, and hence it is a rosette group.

(2) Suppose then that G contains a non-trivial translation �A. Due to discreteness there can be only
a �nite number of di�erent translations by vectors shorter than A, so a shortest non-trivial translation
exists. We may assume �A is a shortest translation.
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(2a) If all translations in G are generated by �A then G is a frieze group.
(2b) Suppose then that there exists a translation �B in G that is not generated by �A. Again, by
discreteness, a shortest such translation exists, so we may assume that B has minimum length. To
complete the proof of Theorem 2.29, we use the following lemma that states that �A and �B generate all
translations in G, implying that G is a wallpaper group.

Lemma 2.30 Let G be a discrete subgroup of I, let �A be a shortest non-zero translation in G, and let
�B 2 G be a shortest translation not generated by �A. Then �A and �B generate all translations of G.

Proof. It is clear that vectors A and B are not in parallel directions (otherwise A would not be the
shortest translation vector), so every vector of R2 is a linear combination of A and B. Assume that group
G contains a translation �C such that �C 62 h�A; �Bi. Let C = xA + yB be the representation of C as
a linear combination of vectors A and B, where x; y 2 R. By subtracting integer multiples of vectors A
and B from vector C, we can reduce x and y so that �1

2 � x; y � 1
2 . But then, using the triangular

inequality, we obtain

jCj = jxA + yBj � jxjjAj + jyjjBj � (jAj + jBj)=2 � jBj:

The �rst inequality can be an equality only if x = 0 or y = 0, but in these cases the second inequality is
proper. So in each case: jCj < jBj, which contradicts the minimality of vector B.

Let us start analyzing the possibilities for the wallpaper groups. It turns out that there are 17 di�erent
types of groups. Deriving them is a lengthy case analysis. The rest of this chapter provides a complete
derivation. (See also the slide presentation from the course web page.)

Our �rst observation is an important restriction on possible rotations in wallpaper groups:

Theorem 2.31 (Crystallographic restriction) A wallpaper group G can only contain rotations by
multiples of 60� and 90�. Hence all centers of rotations are centers of n-fold rotations for n = 2; 3; 4 or
6. Moreover, a 4-fold rotation cannot co-exist with 3- or 6-fold rotations.

Proof. Let � = �A be the shortest translation in G, and let d be the length of its translation vector A.
Let � = �P;� 2 G be a non-trivial rotation, and let Q = �(P ) and R = �(Q). Then G contains also

the translation � 0 = ����1 that moves point �(P ) = P to point �(Q) = R. Translation � 0��1 then moves
point Q to point R.

��������

Θ

QP

d

τ

τ’

R

If 0� < � < 60� then the distance between points Q and R is less than d, which contradicts the fact that
� is the shortest translation in G. We conclude that every non-trivial rotation is by an angle that is at
least 60�. This also means that G can contain at most 6 di�erent rotations about point P , because if we
would have rotations by angles �1; �2; : : : ; �7 where

0� � �1 < �2 < : : : < �7 < 360�
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then necessarily 0� < �i+1 � �i < 60� for some i = 1; 2; : : : 6, a contradiction.
Let � be the smallest positive rotation angle about point P , and let � be any other rotation angle

about P . There exists an integer k such that 0 � � � k� < �. This implies that � = k�. Therefore the
rotations about point P are generated by �P;�, and � = 360�

n for some n � 6.
We still have to show that the case n = 5 of �ve-fold rotations is not possible. The rotation angle of

a �ve-fold rotation is � = 72�. Consider points P; Q and R as in the beginning of the proof. Point Q is
the center of rotation ����1 by the same angle �, and therefore G contains the rotation of �� about Q.
Let S = �0(P ).

QP

d

R S

Θ

τ

−Θ

It is easily seen that the distance between points R and S is positive but less than d for angles in the
interval 60� < � < 90�. In particular, this includes the case � = 72� of �ve-fold rotations. Since G must
contain the translation that moves R to S, this contradicts the minimality of distance d.

Finally we easily observe that if G contains a rotation � of 90� then it cannot contain any rotation �0

of 60� or 120� because ��1�0 would be a rotation whose angle is �30�.

Let us start analyzing di�erent wallpaper groups case-by-case depending on the largest order of
rotation that G contains.

1) Assume that G contains a 6-fold rotation � = �P;60� . Let � be the shortest translation in G, let
d be its length, and let P0 = �(P ). Rotating point P0 about point P de�nes points Pi = �i(P0) for
i = 1; 2; : : : 5 such that all translations �Pi�P are in G. Then each Pi is a center of a 6-fold rotation in G.
These isometries are all generated by � and � through conjugacies. We can repeat the reasoning on all
Pi, and then again on the six centers of rotation around them and so on. We conclude that G contains
6-fold rotations about centers that are the vertices of a lattice of equilateral triangles, and G contains all
translations between vertices of the lattice. Let us denote by s6 the set of the lattice points, indicated
by black circles in the following �gure:

P

P
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P P
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Let us show that the even isometries in G are exactly the even symmetries of s6. First, there can be
no translation that moves a lattice point into a non-lattice point: The distance from every point of the
plane to the closest lattice point is less than d, so if � 0 is a translation that moves lattice point P into
a non-lattice point Q = � 0(P ) then the translation that moves Q to its closest lattice point is in G and
it is shorter than � , which contradicts the minimality of � . So the translations of G are exactly that
translations that keep s6 invariant.

Consider then an arbitrary rotation �0 2 G. The crystallographic restriction states that �0 is a 2-, 3-
or 6-fold rotation. This means that �0�i is a translation for some integer i. Since translations in G are
symmetries of s6, and since � is a symmetry of s6 we conclude that �0 is also a symmetry of s6.

Conversely, if �0 is any rotation in the symmetry group of s6 then it must be a 2-, 3- or 6-fold rotation
(as the symmetry group of s6 is a wallpaper group that contains 6-fold rotations) so �0�i is a translation
for some integer i. As � is a symmetry of s6 this translation is also a symmetry of s6. All such translations
are in G, so �0 2 G as well.

We have proved that the even elements of G are exactly the even symmetries of s6. If there are no odd
isometries in G we have our �rst wallpaper group W6 = h�; �P;60�i that consists of the even symmetries
of s6. In addition to the translations and 6-fold rotation about lattice points this group also contains
3-fold rotations about the centers of the equilateral triangles, and 2-fold rotations about the midpoints
between adjacent lattice points. Notice that the lattice points are the only centers of 6-fold rotations,
because if �0 is a 60� rotation then �0��1 = � 0 is a translation and, since � 0��� 0(P ) = �� 0(P ), the lattice
point �� 0(P ) is the �xed point of �0 = � 0�.
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Group W6 is the symmetry group of the following pattern where odd isometries are prevented by "di-
recting" the lattice points counter-clockwise:

Assume then that G also contains some odd isometry �. This isometry has to take 6-fold rotation centers
of G into 6-fold rotation centers of G, that is, � is a symmetry of s6. If � is any other odd symmetry of
s6 then �� 2 G as �� is an even symmetry of s6, so also � 2 G. Conclusion: G is the symmetry group of
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s6. Note that s6 has odd symmetries (e.g. a reection � in any line through two closest lattice points),
so we have a new wallpaper group W 1

6 = h�; �P;60� ; �i. Set s6 is an example of a pattern whose symmetry
group is W 1

6 . Here is another one:

2) Assume that G contains a 3-fold rotation � = �P;120� but no 6-fold rotations. We start in the same
way as with the 6-fold rotations: Let � be the shortest translation in G, let d be its length, and let
P0; P1; : : : ; P5 be the points where P is taken by the translations � , ��1��1�, ����1, ��1, ��1�� and
���1��1, respectively. Points P0; P1; : : : ; P5 are the vertices of the regular hexagon with center P , and
they are all centers of 3-fold rotations in G. We can repeat the reasoning on each Pi instead of P , so we
obtaining again a lattice of equilateral triangles such that the vertices of the lattice are centers of 3-fold
rotations, and the translations that move lattice points to lattice points are in G.

P

P

54

P ! P

P2

3

P P

0

1

As before, let s6 be the set of vertices of this lattice. Next we show that the even isometries of G are
exactly those symmetries of s6 that are translations or 3-fold rotations. First, exactly as in the case of
W6, we see that no other translation is possible: a translation that moves a lattice point into a non-lattice
point contradicts the minimality of translation � . So the translations of G are exactly the translations
that keep s6 invariant. Consider then a rotation in G. We assumed that there are no 6-fold rotations,
and therefore there can be no 2-fold rotations either (together with a 3-fold rotation any 2-fold rotation
generates a 6-fold rotation). All other rotations would contradict the crystallographic restriction, so all
rotations in G are 3-fold. Conversely, every 3-fold rotation �0 that keeps s6 invariant must be in G because
�0��1 is a translation that keeps s6 invariant, and all such translations are in G.

If there are no odd isometries in G we have our third wallpaper group W3 = h�; �P;120�i. In addition to
the translations and 3-fold rotations about lattice points, group W3 also contains 3-fold rotations about
the centers of the equilateral triangles of the lattice. Group W3 is the symmetry group of the following
pattern:
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Assume then that G also contains odd isometries. If G contains a glide reection  then it also contains
a reection because ���1 is a reection for every glide reection  and 3-fold rotation � (homework).
Every line p of reection must contain a center of 3-fold rotation because also �(p) is a line of reection,
lines p and �(p) are not parallel so they intersect, and the product �p��(p) is a rotation about the point of
intersection. In the beginning of case 3 the �rst center P of the 3-fold rotation � was chosen arbitrarily,
so we may assume that P is on line p. Consequently P is a �xed point of a reection in G.

It follows then that every odd isometry in G is a symmetry of s6. Assume the contrary: there is an
odd � 2 G and a lattice point Q such that �(Q) is not a lattice point. Then ��Q�P �p 2 G is an even
isometry that moves point P into the non-lattice point �(Q), and this contradicts the fact that all even
isometries in G are symmetries of s6.

Let m be a line through two adjacent lattice points P and P0, and let l be the line through P such
that the angle from m to l is 30�.
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Both �m and �l are symmetries of s6, but since �l�m is a rotation by 60� they cannot both be in group G.
Let us prove that G must contain one of them. Assume the contrary: neither �m nor �l is in G, and let �
be some odd isometry in G. Then ��m and �l��1 are even symmetries of s6 that do not belong to G, so
they have to be rotations by an angle that is an odd multiple of 60� (=by 60, 180 or -60 degrees). Their
product �l��1��m = �l�m would then be a translation or a rotation by an even multiple of 60�, but we
know that �l�m is a rotation by 60�, a contradiction. We conclude that exactly one of the reections �m
and �l is in G.

Once we know one odd element of G, all other odd elements are uniquely determined by the even
elements of G. We have two new wallpaper groups: W 1

3 = h�; �P;120� ; �li, which is the symmetry group
of
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and W 2
3 = h�; �P;120� ; �mi, which is the symmetry group of

A di�erence between these groups is that W 1
3 contains a line of reection through every center of 3-fold

rotation, while in W 2
3 there are lines of symmetry only through some of the rotation centers, namely

those that are the lattice points.

3) Let us assume now that G contains a 4-fold rotation �P;90� . Then it cannot contain 3- or 6-fold
rotations. As in the previous cases: let � be the shortest translation in G, let d be its length, and let Pi
be the point where P is taken by the translation �i���i, for i = 0; 1; 2 and 3. Points P0; P1; P2 and P3
are all centers of 4-fold rotations in G, so we can repeat the reasoning on each Pi. We obtain an in�nite
lattice of centers of 4-fold rotations, but this time the lattice is a square lattice instead of a triangular
one. (See the next �gure.) All translations between lattice points are in group G.

If G would contain any other translations, then it would contain a translation that moves a non-lattice
point into the closest lattice point. This is not possible as the distance of every point of the plane from
the lattice is less than d, the length of the shortest translation. We conclude that the translations in G
are exactly the translations that keep the lattice invariant. Let us denote the points of the square lattice
by s4.
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Analogously to the case of 60� rotations, we can prove that the even isometries in G are exactly the even
symmetries of s4. We already know this for translations. Consider then an arbitrary rotation �0 2 G. The
crystallographic restriction states that �0 is a 2- or 4-fold rotation. This means that �0�i is a translation
for some integer i. Since translations in G are symmetries of s4, and since � is a symmetry of s4 we
conclude that �0 is also a symmetry of s4.

Conversely, if �0 is any rotation in the symmetry group of s4 then it must be a 2- or 4-fold rotation.
This follows from the crystallographic restriction and the fact that the symmetry group of s4 is a wallpaper
group that contains 4-fold rotations. So �0�i is a translation for some integer i and, as � is a symmetry
of s4, this translation is also a symmetry of s4. All such translations are in G, so �0 2 G as well.

If G contains no odd isometries then G is the group of even symmetries of s4. This is a new wallpaper
group W4 = h�; �P;90�i. In addition to the translations and 4-fold rotations about lattice points this
group also contains 4-fold rotations about the centers of the lattice squares, and 2-fold rotations about
the midpoints between adjacent lattice points. Let us prove that no other rotations exist in G. Consider
a center Q of a halfturn. Lattice point P is also a center of a halfturn. The product of the two halfturns
is the translation by vector 2(Q � P ). Translations are between lattice points, so Q must be a midpoint
between lattice points. The only such points are the centers of the lattice squares (which are easily seen
to be also centers of 4-fold rotations), and the midpoints between adjacent lattice points (which are easily
seen not to be centers of 4-fold rotations). No other rotations are possible.

Group W4 is the symmetry group of the following pattern:

Assume then that G also contains odd isometries. Let m be a line through some adjacent lattice points,
and let l be a line that intersects m at 45� in some midpoint M between adjacent lattice points:
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Reection �m is a symmetry of s4 whereas reection �l is not. Instead, �l exchanges lattice points and
the centers of the lattice squares. Group G cannot contain both �m and �l because then it would also
contain a 4-fold rotation about point M . Let us prove that G must contain either �m or �l. If there is an
odd isometry � 2 G that takes some lattice point into a lattice point then every odd isometry of G must
be a symmetry of s4. (Otherwise there would be an even element in G that is not a symmetry of s4.) As
G contains all even symmetries of s4 then all odd symmetries of s4 are in G as well, and this includes �m.
If, on the other hand, G contains an odd isometry � that takes all lattice points into non-lattice points
then these non-lattice points must be the centers of the lattice squares, so �l� is an even symmetry of
s4. Therefore �l� 2 G, and also �l 2 G.

We have two new wallpaper groups W 1
4 = h�; �P;90� ; �mi, which is the symmetry group of

and W 2
4 = h�; �P;90� ; �li, which is the symmetry group of
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4) Assume that G contains halfturn �P , and that all non-trivial rotations in G are halfturns. Let �1 and
�2 be two translations that generate all translations of G. Let the lattice points be the points � i

1� j
2 (P )

for all integers i; j. They are all centers of halfturns. Also the products of �P and the translations
� i

1� j
2 are halfturns about points that are midpoints between lattice points, that is, centers of the lattice

parallelograms as well as the midpoints of their sides. No other halfturns are possible as otherwise we
would get translations that are not invariants of the lattice. We conclude that we have found all even
isometries in G. If G contains no odd isometries then we have the wallpaper group W2 = h�1; �2; �P i. It
is the symmetry group of
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Assume then that G contains also some odd isometries. As in the previous cases, a single odd isometry
� 2 G uniquely determines all odd isometries because they are obtained by multiplying � with the even
elements of G. The purpose of the following lemma is to limit the possible odd isometries that any
wallpaper group can contain. It turns out that if G contains odd isometries then the translation lattice
is rhombic or rectangular:

Lemma 2.32 Let G be a wallpaper group that contains an odd isometry with axis m. Then there exist
translations �1; �2 2 G that generate all translations of G and either

(1) �1 is parallel to m and �2 is perpendicular to m, or

(2) �1 and �2 are of equal length and m is parallel to �1�2.

Moreover, in case (2), group G contains a reection.

In case (1) the translation lattice is rectangular, and m is parallel to a side of the rectangles, and in case
(2) the translation lattice is rhombic, and m is parallel to a diagonal of the rhombi:
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Case (1) Case (2)

Proof. Let �A be the shortest translation in G, and let �B 2 G be the shortest translation not generated
by �A. According to Lemma 2.30, �A and �B generate all translations of G. Let � 2 G be an odd isometry
with axis m, that is, � is a glide reection with axis m. Notice that for every translation �

����1 = �m��m:

This follows from the facts that � = �m� 0 where � 0 is a translation, and that translations commute.
Consider the translation �C = ��A��1 = �m�A�m. It has the same length as the shortest translation

�A. If �C is not generated by �A then it is the shortest translation not generated by �A, and according to
Lemma 2.30 translations �A and �C generate all translations of G. If we choose �1 = �A and �2 = �C we
have generating translations that satisfy the condition (2) of the lemma.

Assume then that �C is generated by �A. Then either C = A, in which case m is parallel to A, or
C = �A, in which case m is perpendicular to A. Consider the conjugate �D = ��B��1 (if m is parallel to
A) or �D = ���B��1 (if m is perpendicular to A). In either case, B +D is parallel to A. If jB +Dj > jAj
then B � A or B + A is shorter than B, which contradicts the minimality of vector B. We must have
B + D = 0 or B + D = �A. If B + D = 0 then B is perpendicular to A and we can choose �1 = �A,
�2 = �B and condition (1) of the lemma is satis�ed. And if B +D = �A then we choose �1 = �B, �2 = �D
(if m is parallel to A) or �1 = ��B, �2 = �D (if m is perpendicular to A). In either case, condition (2) of
the lemma is satis�ed. Notice that �B and �D generate all translations because they generate �A.

Finally, to prove the last claim, assume that case (2) applies. Because �2 is a translation that is
parallel to �1�2, we must have that �2 = (�1�2)i = � i

2� i
1 for some integer i. Since translations �1 and �2

are conjugate by �2 = ��1��1, we also have that � i
2 = �� i

1��1. This means that �2 = �� i
1��1� i

1. Divide
both sides by �2 from the left, and we have the result that ��1� i

1 is an odd involution, that is, a reection.

Our lemma limits the number of possible odd isometries of wallpaper groups su�ciently so that we
can proceed with the analysis of the wallpaper groups G with halfturns and some odd isometries.

(a) First, assume that G contains a reection �m such that the condition (2) of the previous lemma is
satis�ed. The lattice determined by the two generating translations from the lemma is rhombic. Let us
prove that line m must contain a center of a halfturn. Consider a rhombus that is intersected by m, whose
corners are centers of halfturns and whose interior does not contain any such centers. We know that m is
parallel to a diagonal of the rhombus. If m is not the diagonal then one of the corners is mapped inside
the rhombus by reection �m, which contradicts the fact that there are no rotation centers inside the
rhombus. We conclude that m bisects the rhombus along its diagonal, and therefore m contains a center
of rotation. As the �rst halfturn �P was chosen arbitrarily, we can choose it in such a way that P 2 m.
We see that line m is then uniquely determined by �1; �2 and P . All other odd elements of G are then
the products of �m and even isometries. This gives the wallpaper group W 1

2 = h�1; �2; �P ; �mi where �1
and �2 are of equal length, and m is the line through P and �1�2(P ). This group is the symmetry group
of

32



(b) Assume then that G contains a reection �m that satis�es the condition (1) of the lemma. Let us
call the direction of �1 and m the horizontal direction. We have two possibilities: (i) that m contains
a center of a halfturn, and (ii) that m does not contain a center of a halfturn. In the second case the
line m must run in the middle between two horizontal rows of rotation centers. As before, all other
odd isometries are uniquely determined by �m and the even isometries. We get two wallpaper groups
W 2

2 = h�1; �2; �P ; �mi where m is the line through P and �1(P ), and W 3
2 = h�1; �2; �P ; �mi where m is

the perpendicular bisector between points P and the center of halfturn �2�P . In both cases, �1 and �2
are perpendicular. Group W 2

2 is the symmetry group of

and group W 3
2 is the symmetry group of

(c) Finally, assume that G does not contain any reections. Let  2 G be a glide reection with axis
m. According to the last claim of Lemma 2.32, case (1) of the lemma must apply. Let �1 and �2 be two
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perpendicular translations, as indicated by the case (1) of the lemma. If the axis m contains the center
P of some halfturn �P 2 G then G contains the reection �P . We conclude that m must run in the
middle between two horizontal rows of rotation centers. Let integer i be such that 2 = � i

1. If i would
be even then  and �1 would generate a reection, so i must be odd. By multiplying  with a suitable
power of �1 we obtain a glide reection whose square is exactly �1. This is uniquely determined, so the
group G is also determined. It is W 4

2 = h�2; �P ; i where  is a glide reection such that �1 = 2 and �2
are perpendicular. This is the symmetry group of

5) As our �nal case, assume that there are no non-trivial rotations in group G. The even isometries are
then all translations generated by �1 and �2. If there are no odd isometries then the group is W1 = h�1; �2i.
This group is the symmetry group of
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Let us assume then that G also contains odd isometries. If G contains a reection �m then according
to Lemma 2.32 either G has perpendicular generating translations �1 and �2 and m is parallel to �1, or
G has generating translations �1 and �2 of equal length and m is parallel to �1�2. In the second case we
obtain group W 1

1 = h�1; �2; �mi that is the symmetry group of
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and in the �rst case we obtain the symmetry group W 2
1 = h�1; �2; �mi of

Assume then that G does not contain any reections but contains a glide reection with axis m. Case
(1) of Lemma 2.32 must apply. Then we can choose the glide reection  in such a way that �1 = 2.
This gives the last wallpaper group W 3

1 = h; �2i. A pattern with this symmetry group is for example

We have exhausted all possibilities of wallpaper groups. We found 17 groups: Two with 6-fold rotations,
three with 4-fold rotations, three with 3-fold (but no 6-fold) rotations, �ve with halfturns (but no higher
order rotations) and four without non-trivial rotations.

Theorem 2.33 Let G be a wallpaper group. Then G is among the 17 groups discussed above.
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2.11 Final remarks on discrete symmetry groups

The rosette groups, frieze groups and the wallpaper groups have standard names given by crystallog-
raphers, and standardized by the International Union of Crystallography. Another naming system was
developed by Fejes T�oth. The following table summarizes these notations:

Our notation Fejes T�oth Crystallographic
Cn Cn n
Dn Dn nm, if m is odd,

nmm, if m is even
F1001 F 1

1 p1m1
F1111 F 1

2 pmm2
F0000 F1 p111
F0100 F 2

1 pm11
F0010 F2 p112
F0001 F 3

1 p1a1
F0111 F 2

2 pma2
W6 W6 p6
W 1

6 W 1
6 p6m

W3 W3 p3
W 1

3 W 1
3 p3m1

W 2
3 W 2

3 p31m
W4 W4 p4
W 1

4 W 1
4 p4m

W 2
4 W 2

4 p4g
W2 W2 p2
W 1

2 W 1
2 cmm

W 2
2 W 2

2 pmm
W 3

2 W 3
2 pmg

W 4
2 W 4

2 pgg
W1 W1 p1
W 1

1 W 1
1 cm

W 2
1 W 2

1 pm
W 3

1 W 3
1 pg

Observe that each rosette, frieze or wallpaper group type is actually a family of subgroups of I. For
example, for each P 2 R2, the halfturn around point P generates the cyclic group C2, but of course each
choice of P provides a distinct subgroup of I. In fact, each group type represents a family of a�nely
conjugate subgroups, as explained briey below:

� An a�ne transformation of the plane is a transformation that preserves parallelism of lines. It is
the composition of a linear transformation and a translation, that is, a mapping

f :
�

x
y

�
7! M

�
x
y

�
+

�
a
b

�

where M is a 2 � 2 matrix. The transformation is one-to-one if and only if M is invertible, i.e.,
det(M) 6= 0. Isometries are exactly the distance preserving a�ne maps. Distance preservation
is equivalent to M being an orthogonal matrix, i.e., equivalent to MMT = I where MT is the
transpose of M and I is the 2�2 identity matrix. Even and odd isometries correspond to orthogonal
matrices M whose determinant is +1 and -1, respectively.
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� Two subgroups G1 and G2 of I are said to be equal up to a�ne conjugacy if there exists a one-to-one
a�ne transformation f such that G1 = fG2f�1, that is, elements of G1 are exactly the functions
f�f�1 for � 2 G2. (In particular, this requires that f�f�1 are isometries for all � 2 G2, which is
not the case for all a�ne f and all isometries � 2 I.)

� If G1 and G2 are wallpaper groups, frieze groups or rosette groups then equality up to a�ne
conjugacy exactly means that they are of the same wallpaper, frieze or rosette group type.

� A�ne conjugacy preserves isometry types: If � and f�f�1 are both isometries then they are of
the same type: both translations, both rotations, both reections or both glide reections. (To see
this, note that the parity of the isometry is preserved by a�ne conjugacy, and that P is a �xed
point of � if and only if f(P ) is a �xed point of f�f�1.) But as mentioned above, f�f�1 may also
not be an isometry.

� As groups, C2 and D1 are isomorphic. But they are not equal up to a�ne conjugacy. Likewise,
frieze groups F0000 and F0001 are isomorphic (both are in�nite cyclic groups, one is generated by
a translation the other one by a glide reection) but we consider them di�erent as they are not
a�nely conjugate.

3 Tilings

Intuitively, a tiling is a covering of the plane without overlaps using some tiles. We start by giving more
precise de�nitions. You may want to review some basic concepts of topology (especially the standard
Euclidean topology of R2) such as

� open and closed sets,

� neighborhood of a point (=any open set containing the point),

� interior of a set (=largest open set contained in the set),

� closure of a set (=smallest closed set containing the set),

� boundary of a set (=intersection of the closures of the set and its complement),

� compactness,

� continuity of functions (inverse images of open sets are open),

� homeomorphism (=continuous bijection whose inverse is also continuous).

� connectedness (a set is connected i� it is not the union of two disjoint open sets),

Recall that since the Euclidean topology of R2 is metric, it is Hausdor�, and compactness is equivalent
to being closed and bounded. Also, in R2 an open set is connected if and only if it is path-connected,
that is, each pair of its points can be joined by a path (=homeomorphic image of the unit interval) inside
the set. Let us denote by

Br(P ) = fX 2 R2 j d(X; P ) < rg

the open disk of radius r centered at P , and if P is the origin O, we simply denote Br = Br(O). The
closure of an open disk is a closed disk

Br(P ) = fX 2 R2 j d(X; P ) � rg;

and Br = Br(O).
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3.1 Basic de�nitions

A tile is a subset of R2 that is a topological disk. This means that it is the image of the closed disk
B1 under some homeomorphism. Homeomorphisms preserve topological properties, so tile t immediately
inherits topological properties from the disk B1:

� t is compact (=closed and bounded),

� the interior of t is connected, and the complement of t is connected,

� the boundary of t is the boundary of its interior,

� the boundary of t is a simple closed curve, that is, homeomorphic to the unit circle

fX 2 R2 j d(X; O) = 1g:

This de�nition of a tile is very general. Later, additional restrictions will be added as needed. For
example, we may restrict our attention to tiles that are polygons. Here are some examples of tiles:

but these are not tiles:

(They are with non-connected interior, non-connected complement, boundary that is not the boundary
of the interior, and unbounded, in this order.)

A tiling T is a family of tiles that covers the plane

(1) without gaps (every P 2 R2 belongs at least one tile), and

(2) without overlaps (the interiors of the tiles are pairwise disjoint).

Notice that the boundaries of the tiles do not need to be disjoint. But it follows that every point that
belongs to more than one tile cannot belong to the interior of any tile. Notice also that the number
of tiles in any tiling must be in�nite (union of a �nite number of bounded sets would be bounded) but
countable (the interior of each tile contains a point with rational coordinates).

This de�nition of tilings is very general. It does not restrict the number of di�erent shapes used in
any way, so one tiling can, for example, contain arbitrarily small tiles. The left picture below represents
a part of a tiling, while the rightmost picture is not a tiling since the horizontal line in the center is not
covered by any tile.

38



Let T = ft1; t2; : : :g be a tiling. Its symmetry group G consists of those isometries � that take every
tile of T onto a tile of T , that is, for every i = 1; 2; : : : there exists j such that �(ti) = tj. It is easy to
see that symmetry groups of tilings (even under our very general de�nition of tiles) are discrete: the only
possibilities are our familiar rosette, frieze and wallpaper groups.

Theorem 3.1 The symmetry group of a tiling is discrete.

Proof. Let G be the symmetry group of tiling T = ft1; t2; : : :g. Then there must exist a positive number
" such that the length of every non-trivial translation in G is at least ". Indeed, the interior of tile t1
contains a disk B"(P ) for some " > 0, so any translation � that is shorter than " takes P into the interior
of t1. This means that �(t1) = t1, which is possible only if � = �.

Consider then rotations. Suppose �rst there is a non-trivial translation � in G. If there are arbitrarily
small rotations in G then there are arbitrarily small translations among ��1����1, which contradicts the
conclusion in the previous paragraph.

Suppose than that G contains only the trivial translation. Then all rotations have the same center P
of rotation (Corollary 2.22). Suppose there would be arbitrarily small rotations around P .

Let t 2 T be a tile that contains point P . We have t � Bk(P ) for a su�ciently large number k. Let
Q be a point whose distance from P is at least k such that Q belongs to the interior of some tile t0 2 T .
(Just choose any point Q su�ciently far away from P . If Q is not in the interior of any tile then Q is on
the boundary of some t0. There are interior points of t0 close to Q. We can choose any one of them.)

The circle c = fX 2 R2 j d(P; X) = d(P; Q)g does not intersect t, but it contains an interior point Q
of t0. Let us prove that c � t0. Assume the contrary: there exists a point R 2 c such that R 62 t0. The
complement of t0 is open so, for all su�ciently small angles �, we have �P;�(R) 62 t0.

Let " > 0 be a small number so that �P;�(Q) is an interior point of t0 and �P;�(R) 62 t0 for all angles �
with j�j < ". Choose one positive angle � < " such that � = �P;� 2 G. Because � is a symmetry of the
tiling such that �(Q) is an interior point of t0, we must have that �(t0) = t0. This means that �i(Q) 2 t0

for all integers i. Choose number i such that ji� � �j < " where � is the angle such that �P;�(Q) = R.
Then �i(Q) 2 t0 but, on the other hand,

�i(Q) = �P;i�(Q) = �P;i����P;�(Q) = �P;i���(R) 62 t0;

a contradiction.
We have proved that c � t0. Then the complement of t0 is not connected: Interior points of t are in

the disk Bk(P ) so they are separated by t0 from the points outside the circle c. This contradicts the fact
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that t0 should be a topological disk. Conclusion: there can only be a �nite number of rotations in G, so
G is a �nite subgroup of I, and therefore a rosette group.

Note that it is essential in the proof that the tiles are topological disks, and hence do not contain
holes. If we would allow tiles that are topological rings then we would have, for example, the following
"tiling" whose symmetry group is not discrete.

Each rosette group, frieze group and wallpaper group is the symmetry group of some tiling. We see
some examples in the homeworks. As another example, below is a piece of a tiling whose symmetry
group is D5. This can be easily generalized to obtain a tiling whose symmetry group is Dn or Cn, for
any n � 5.

Our main interest is in tilings using only a �nite number of di�erent shapes. More precisely, tiles
fp1; p2; : : : ; pkg are prototiles of a tiling T = ft1; t2; : : :g if every tile ti 2 T is congruent to some pj .
By congruent we mean that there is an isometry (even or odd!) that takes ti onto pj. We say that
the prototiles fp1; p2; : : : ; pkg admit the tiling T . Tiling T is called k-hedral, where k is the number
of prototiles pj. In the special cases of k = 1 and k = 2 the tiling is called monohedral and dihedral,
respectively. Note that some tiles may be "ipped over" copies of the prototiles, that is, the isometry
that takes the prototile on a tile may be odd. In some cases we may be interested in those k-hedral
tilings where the tiles are congruent to prototiles by even isometries, but in these cases this will be stated
explicitly. Here is an example of a monohedral and a dihedral tiling:
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Let T = ft1; t2; t3; : : :g be a tiling. If h : R2 �! R2 is a homeomorphism then also h(T ) = fh(t1); h(t2); h(t3); : : :g
is a tiling. We say that tilings T and h(T ) are topologically equivalent. This is easily seen to be an equiv-
alence relation among tilings.

Every isometry is a homeomorphism, so if � is an isometry then �(T ) = f�(t1); �(t2); �(t3); : : :g is a
tiling. We say that that �(T ) is congruent to tiling T . Also congruence is an equivalence relation among
tilings.

Finally, a similarity s : R2 �! R2 is a composition of an isometry and a stretch (that is, a function that
maps (x; y) 7! (kx; ky) for some k > 0). In other words, a similarity s by factor k > 0 is a function such
that for any two points P; Q 2 R2 we have d(s(P ); s(Q)) = k � d(P; Q). Similarities are homeomorphisms,
so s(T ) = fs(t1); s(t2); s(t3); : : :g is a tiling. We say that tilings T and s(T ) are similar. Intuitively,
similarity of two tiling means that they look the same when one of them is watched under a suitable
magnifying class. Usually (unless otherwise noted) we consider similar tilings to be the same tiling.

The following �gure contains four topologically equivalent monohedral tilings. First two are congruent
with each other, and they are similar to the third one:

Two tiles t1 and t2 of tiling T are called equivalent in T if there exists a symmetry of T that takes
t1 onto t2. This is clearly an equivalence relation among tiles ti. Equivalence classes are called the
transitivity classes of T . If tiling T has only one transitivity class then the tiling is called isohedral
(or tile-transitive). More generally, if there are k transitivity classes then the tiling is called k-isohedral.
Notice that any isohedral tiling is monohedral as equivalent tiles are congruent. But there are monohedral
tilings that are not isohedral. Analogously, a k-isohedral tiling is always k-hedral (but it can also be n-
hedral for some n < k). Here are examples of an isohedral tiling and a monohedral tiling that is not
isohedral, or even k-isohedral for any �nite k.
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It is easy to see (in the homeworks!) that the symmetry group of a k-hedral tiling is a wallpaper
group if and only if the tiling is n-isohedral for some n. (But there are also tilings that are not k-hedral
for any k and whose symmetry group is a wallpaper group.)

3.2 Tilings by regular polygons

We restrict the study in this section to tilings that are by regular polygons, and that are edge-to-edge,
that is, the intersection of two tiles is either empty, single vertex of the polygons, or the entire edge of
the two neighboring polygons. Two tiles are called edge neighbors (vertex neighbors) if their intersection
is an edge (edge or vertex, respectively) of the polygons. Corners of the polygons are called the vertices
of the tiling.

Consider a vertex P where r regular polygons of orders n1; n2; n3; : : : ; nr meet, in this order (counted
clockwise or counterclockwise). Then we say that the vertex is of type n1 � n2 � : : : � nr. For example,
vertices of types 3 � 3 � 6 � 6, 3 � 4 � 4 � 6 and 3 � 4 � 6 � 4 look like

Notice that types 3�4�4�6 and 4�6�3�4 and 4�3�6�4 are all identical, as they are obtained by changing the
starting point and/or the direction of reading the polygons. We also adapt the usual shorthand notations
for repetitions, so that 3 � 3 � 6 � 6 may be abbreviated as 32 � 62.

The interior angle of a regular n-gon is 180�(1� 2
n). Consequently, if P is a vertex of type n1 �n2 �: : : �nr

then
rX

i=1

�
1 �

2
ni

�
= 2: (1)
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This follows from the fact that the interior angles of the polygons that meet at P must sum up to 360�.
Assume �rst that the tiling is monohedral, with all tiles regular n-gons. Then (1) becomes

r(1 �
2
n

) = 2;

which implies n = 2r
r�2 . Because n is positive, we must have r � 3, and because n � 3 we must have

r � 6. With r = 3; 4; 5 and 6 we get n = 6; 4; 10
3 and 3. Number n is an integer so we only have three

solutions. These are the familiar regular tilings

Theorem 3.2 The only edge-to-edge monohedral tilings by regular polygons are the three regular tilings
above.

Consider then the case when the tiling is not necessarily monohedral. Possible types of vertices are
limited by (1). We only have the following numerical solutions to (1), and the corresponding possibilities
for the vertex types:

type archimedean
3 � 3 � 3 � 3 � 3 � 3 A
3 � 3 � 3 � 3 � 6 A
3 � 3 � 3 � 4 � 4 A
3 � 3 � 4 � 3 � 4 A
3 � 3 � 4 � 12
3 � 3 � 6 � 6
3 � 4 � 3 � 12
3 � 4 � 4 � 6
3 � 4 � 6 � 4 A
3 � 6 � 3 � 6 A
3 � 7 � 42
3 � 8 � 24
3 � 9 � 18
3 � 10 � 15
3 � 12 � 12 A
4 � 4 � 4 � 4 A
4 � 5 � 20
4 � 6 � 12 A
4 � 8 � 8 A
5 � 5 � 10
6 � 6 � 6 A
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The last column indicates whether the vertex type appears in some archimedean tiling: An edge-to-edge
tiling by regular polygons is termed archimedean if all vertices of the tiling are of the same type. The
three regular tilings are all archimedean, corresponding to vertex types 63, 44 and 36. In addition, it
turns out that there are only eight other examples of archimedean tilings, corresponding to the vertex
types marked by "A" in the table above.

Theorem 3.3 (Kepler 1619) There are exactly eleven di�erent archimedean tilings, one of each type
indicated by "A" in the table above.

Proof. The eight non-regular archimedean tilings are shown below. It is easy to very that they are indeed
archimedean, and one can easily verify that the types of their vertices match the types marked by "A".
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To prove that no other archimedean tilings exist we have to show that (i) the vertex types without
"A" in the table are not possible in archimedean tilings, and (ii) each type with "A" leads to a unique
tiling. Let us use the following terminology: a polygon is incident to its vertices and edges, and an edge
is incident to its endpoints. Two vertices are adjacent if they are the two endpoints of an edge.

(i) Vertex type x � y � z where x is odd and y 6= z is not possible in any archimedean tiling: The edge
neighbors of an x-gon across two consecutive edges are a y-gon and a z-gon. (Note: This is true even if
x = y or x = z.) So y-gons and z-gons alternate as the edge neighbors of an x-gon when we go around
its edges clockwise. But since x is odd this is not possible: we necessarily end up with two consecutive
neighbors of the same type.

y
z

y

z

y

z

z

x

This reasoning rules out six vertex types 3 � 7 � 42, 3 � 8 � 24, 3 � 9 � 18, 3 � 10 � 15, 4 � 5 � 20 and 5 � 5 � 10.
By a similar argument, vertex type x � y � u � z is not possible when x is odd, y 6= z, and no three of

the numbers are equal. Clearly x 6= y or x 6= z. The two situations are symmetric, so we may assume
that x 6= z. Then two consecutive edge neighbors of an x-gon are an y-gon and a z-gon, or | if x = y
| possibly a y-gon and a u-gon. In either case, every other edge neighbor is a y-gon, and every other
neighbor is not a y-gon, which is not possible as x is odd.

y

yy
x

u or zu or z

u or zu or z

This rules out the remaining four vertex types 3 � 3 � 4 � 12, 3 � 3 � 6 � 6, 3 � 4 � 3 � 12 and 3 � 4 � 4 � 6.

(ii) Let us prove that any archimedean tiling T is similar to one of the given eleven tilings, namely the
one with the same vertex type. We start by selecting one arbitrary vertex P of T and one arbitrary
vertex P 0 of the known archimedean tiling A of the correct vertex type. There clearly exists a similarity
function s that maps P onto P 0 in such a way that the polygons incident to P in T are mapped onto
the polygons incident to P 0 in A. Let us show that (with one exception in type 3 � 3 � 3 � 3 � 6) similarity
s maps the entire tiling T onto tiling A.

It is enough to consider the vertices that are adjacent to P , and to show that all tiles incident to
those vertices are mapped by s onto similar tiles on tiling A. Namely then we can repeat the reasoning
on the adjacent vertices to conclude that all vertices adjacent to them are mapped correctly, and so on,
by mathematical induction, that all tiles at any distance from P are mapped onto tiles of A.
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Consider �rst tilings of vertex types 3 �12 �12, 4 �6 �12, 4 �8 �8, and 6 �6 �6, that is, the cases x �y �z where
three polygons meet at the vertices. Let Q be any of the three vertices adjacent to P . Two polygons
incident to Q are also incident to P so they are known. This means that also the third polygon incident
to Q is known and it must be mapped by s onto the corresponding tile in the archimedean tiling A.

z
P

x

��
��
��
��

y

y

z
x

As discussed above, this is enough to prove that the entire tiling T is mapped onto A.
Vertex types 4 � 4 � 4 � 4 and 3 � 3 � 3 � 3 � 3 � 3 are also trivial: the polygons are all congruent and they

must be correctly mapped onto the corresponding tiles in A.
Consider then the vertex types 3 �4 �6 �4 and 3 �6 �3 �6. Let Q be a vertex adjacent to P . Two polygons

that are edge neighbors and incident to Q are known. The other two are then also uniquely determined:
in the �rst case one of the known polygons is a square, and the polygon opposite to it at Q must be a
square as well, and in the case of 3 � 6 � 3 � 6 one of the known polygons is a triangle, and the polygon
opposite to it at Q is a triangle. In both cases the polygons incident to Q are uniquely determined, and
therefore mapped by s onto similar tiles in the tiling A.

There remain three vertex types to analyze, namely 3 � 3 � 3 � 3 � 6, 3 � 3 � 3 � 4 � 4 and 3 � 3 � 4 � 3 � 4.
Consider type 3 � 3 � 3 � 4 � 4 �rst: The following �gure shows the order in which the vertices adjacent to
P can be processed to determine the polygons incident to them. One can easily verify that the polygons
are uniquely determined if the vertices are processed in the alphabetical order A; B; C; D; : : :. So the tiles
are all mapped correctly onto tiling A.

P

A

BC

DE

Analogously, if the vertex type is 3 � 3 � 4 � 3 � 4 the vertices should be processed in the order indicated in
this �gure:
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P

B

C

A D

E

FGH

Finally, consider the vertex type 3 � 3 � 3 � 3 � 6. In all previous cases, any similarity s that takes a vertex P
and the incident polygons of T onto a vertex P 0 and its incident polygons of A is necessarily a similarity
between entire tilings T and A. But in the case of vertices of the type 3 � 3 � 3 � 3 � 6 this is no longer
true. Instead, there exist two similarities from vertex P onto vertex P 0: one even and one odd similarity.
And exactly one of them is a similarity between tilings T and A. In the following �gure, the polygons
incident to vertices A and B are uniquely determined. Then, the hexagon incident to vertex C must be
one of the two dotted hexagons in the illustration. (The third alternative would lead to two hexagons
that are vertex neighbors, and is therefore impossible.)

P

A

B
C

In either case, the similarity s can be chosen in such a way that the hexagon incident to C is mapped
correctly onto tiling A. The similarity is even or odd depending on the position of the hexagon. There-
after, the remaining polygons are uniquely determined. In this case we have to verify the uniqueness of
the polygons up to vertices of distance two from P . After this the uniqueness of the entire tiling follows
by mathematical induction:

P

A

B
C

D

E

Notice that the previous proof indicates that the 11 archimedean tilings are vertex transitive: for any
two vertices P1 and P2 of the tiling, there exists a symmetry of the tiling that takes P1 onto P2. With
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