
The extension theorem

Taking a limit, in all our substitutions we were able to position the patches so
that level k patch is a sub-patch of the level k + 1 patch that extends to all
directions. Then it is clear that there is a “limit” tiling that has all the levels
as sub-patches.

But it can be shown that even if the obtained patches do not contain previous
ones as sub-patches, a valid tiling exists as long as arbitrarily large disks can
be covered. This extends the compactness argument of Wang tiles to
geometric tiles.

Theorem (extension theorem). A finite protoset P of topological disks
admits a tiling if and only if, for every r > 0, a disk of radius r can be covered
by copies of the prototiles. More precisely: there is a collection of tiles, all
congruent to elements of P , such that

(i) the interiors of the tiles are pairwise disjoint, and

(ii) a disk of radius r is included in the union of the tiles.



Remark: The theorem only considers finite protosets of topological disks.

Example. The following single “tile” tiles arbitrarily large disks but does not
tile the plane. (The tile is not a topological disk.)



Example. The following infinite prototile set (all topological disks) tiles arbi-
trarily large disks but does not tile the plane.



The periodicity theorem

For Wang tiles we have proved that “One-periodic =⇒ two-periodic”:

Theorem. If a Wang tile set admits a tiling with a period, then it also admits
a tiling with two periods in non-parallel directions.

Also this can be generalized to geometric tiles. What we require is that:

� Tiles are polygons,

� Considered tilings are edge-to-edge,

� The prototile set is finite.

Theorem (periodicity theorem). Let P be a finite set of polygons. As-
sume that there exists an edge-to-edge tiling by the protoset P that is one-way
periodic (=invariant under some translation). Then there also exists an edge-
to-edge tiling by P that is two-way periodic (=invariant under translations by
two linearly independent vectors).



Hat: an aperiodic monotile

The hat is an aperiodic monotile: there exists monohedral tilings of the
plane where all tiles are congruent to the hat, but none of these tilings are
periodic (=invariant under a non-zero translation).

In the tilings both even and odd isometric copes of the hat are used (=the hat
may be flipped upside down).

The hat “lives” in the grid that is formed by overlapping the regular tilings by
equilateral triangles and regular hexagons.



The grid is the dual of the 3 · 4 · 6 · 4 Archimedean tiling, obtained by joining
the centers of adjacent tiles of the Archimedean tiling.



The grid is the dual of the 3 · 4 · 6 · 4 Archimedean tiling, obtained by joining
the centers of adjacent tiles of the Archimedean tiling.



The grid is the dual of the 3 · 4 · 6 · 4 Archimedean tiling, obtained by joining
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A kite in the grid has

� two short edges (length 1),

� two long edges (length
√
3).

The hat inherits these edge lengths. As a polygon the hat has also one edge
of length 2 (formed by two consecutive parallel short edges of kites), but this
segment is considered as two edges of length 1.

=⇒ The hat has 6 long edges and 8 short edges.



Reading the edges as vectors, going around the hat clockwise, gives 6 long
vectors and 8 short vectors that sum up to 0⃗.

But: also the sum of the long vectors is 0⃗ and the sum f the short vectors is 0⃗.

Reason: The six long vectors are three pairs of opposite vectors.



Thus one can deform the hat by scaling the lengths of

� all long edges by some a ≥ 0 and

� all short edges by some b ≥ 0.

(but not a = b = 0)

The scaled long edge vectors sum up to zero and and the scaled short edge
vectors sum up to zero.

=⇒ The scaled edges define a boundary of a deformed tile.



We especially need the extremal cases where a = 1, b = 0; or a = 0, b = 1:



We especially need the extremal cases where a = 1, b = 0; or a = 0, b = 1:

In fact we only use the left one, chevron.



Deforming the tiles in a valid hat tiling produces a corresponding valid tiling
by deformed tiles:

Let T be a hat tiling, and let V ⊆ R2 be its vertex set.
Assume w.l.o.g. that 0⃗ ∈ V .

• Along any cycle that follows the edges in the tiling: the sum of the long
vectors is 0⃗ and the sum of the short vectors is 0⃗.

• In the deformed tiling, vertex V ∈ V will be moved to position V ′ ∈ R2 as
follows: Take any path along the edges from 0⃗ to V . Scale the long and short
edges along this path by factors a and b. The path still starts at 0⃗ but the new
end point will be V ′. The position of V ′ does not depend on the choice of the
path!



It turns out (case analysis, details skipped) that hats in any valid tiling are
aligned on the underlying grid of kites. (It is enough to prove that surrounding
hats of any given hat are aligned in the same grid: by induction then all hats
are aligned.)

=⇒ there are 12 available orientations of the hat: six by rotation, and
another six by rotating the flipped over hat.



In the hat, one pair of
oppositely oriented kites is
covered twice – all other
kite orientations are cov-
ered once.

The four hat orientations in
each column cover the same
kite orientation twice.

Because all kite orientations
appear with equal propor-
tions in the underlying grid,
a valid tiling must have one
third of its tiles from each
of the three columns.



Hat −→ chevron deformation preserves the orientations of the long edges.

From the 12 orientations of the hat we obtain six different orientation of the
chevron:

A chevron tiling that is obtained by deforming a hat tiling has one third of its
chevrons from each of the three columns.



The triangular part of the kite grid is formed by three families of parallel lines.



The triangular part of the kite grid is formed by three families of parallel lines.

We number the directions 1,2 and 3, and call the lines in direction i ∈ {1, 2, 3}
the i-lines of the grid.

The distance between consecutive i-lines is 3.



The pairs of parallel long edges of the hat are always on consecutive i-lines.



A de Bruijn segment on a hat tile in direction i is a line drawn inside the
tile connecting the centers of the two long edges of the hat that are parallel to
i-lines.



In a hat tiling, de Bruijn segments continue across edges, defining infinite de
Bruijn lines.

Each tile is crossed by a unique de Bruijn line in each direction i, and the lines
in the same direction do not cross each other.

The set of tiles along a de Bruijn line in direction i is called an i-strip.



A deformed tiling by chevrons is also aligned on a triangular grid with the same
three directions. In this grid the i-lines are at distance 3

2 from each other, that
is, twice as dense as in the kite grid.



Also the chevron has a pair of parallel edges in each direction. Joining the
centers of parallel sides by a line segment gives a de Bruijn segment:

Depending on the orientation of a chevron, the de Bruijn segment either connects
consecutive i-lines or it skips over one line.



In a valid tiling the segments define infinite de Bruijn paths in directions
i ∈ {1, 2, 3}, and the tiles along each such path is called an i-strip.



Recall that (in a tiling by chevrons that is obtained by deforming a hat tiling)
one third of the chevrons come from each of the three columns in

Consider, for example, the direction of vertical lines. In one third of the tiles
the de Bruijn segment

� moves to the next i-line but goes a step higher (first column),

� moves to the next i-line but goes a step lower (last column),

� skips over one i-line but stays on the same height (middle column).

On the average, the vertical hight remains the same, and the horizontal move-
ment is by 4

3 lines per tile crossed (=two units since the distance between con-
secutive lines is 3

2).



Assume that there exists a two-periodic tiling T by the hats. Construct the
corresponding deformed tiling T ′ by chevrons.

Let p⃗ and q⃗ be generators of the periods of T , meaning that

P = Zp⃗ + Zq⃗

is set of the periods of T .

Let V ⊆ R2 be the set of vertices of T , and assume that 0⃗ ∈ V .

Then P ⊆ V .

Let V ′ ⊆ R2 be the set of vertices of T ′, and let

f : V −→ V ′

assign to each vertex v⃗ of T the corresponding vertex f (v⃗) of T ′.
(Corresponding means: For any path along edges of T from 0⃗ to v⃗ the path
obtained by erasing all short edges leads from 0⃗ to f (v⃗.)



Claim: For any v⃗ ∈ P and x⃗ ∈ V we have that

f (x⃗ + v⃗) = f (x⃗) + f (v⃗).

Proof.



Claim: For any v⃗ ∈ P and x⃗ ∈ V we have that

f (x⃗ + v⃗) = f (x⃗) + f (v⃗).

In particular:

� f (v⃗) is a period of T ′ for any v⃗ ∈ P , and

� f is a linear on P : f (ip⃗ + jq⃗) = if (p⃗) + jf (q⃗) for all i, j ∈ Z

Denote
P ′ = f (P) = Zf (p⃗) + Zf (q⃗).

Elements of P ′ are periods of T ′ (but there might exist also other periods).

Let f̂ : R2 −→ R2 be the unique linear function that maps

p⃗ 7→ f (p⃗) and q⃗ 7→ f (q⃗).

Then f̂ and f are identical on P (but may differ on V \ P).



Consider i-strips of T for directions i ∈ {1, 2, 3}.

• Translational symmetries of T map i-strips onto i-strips.
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itself.

• For each i, let v⃗i be a vector of length 3 perpendicular to i-lines, and let u⃗i
be a unit vector parallel to i-lines. We can choose these so that

v⃗1 + v⃗2 + v⃗2 = 0⃗ and u⃗1 + u⃗2 + u⃗3 = 0⃗.
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Consider i-strips of T for directions i ∈ {1, 2, 3}.

• Translational symmetries of T map i-strips onto i-strips.

• For each i there is a translational symmetry τi that maps some tile of some
i-strip onto another tile of the same i-strip. This τi then maps each i-strip onto
itself.

• For each i, let v⃗i be a vector of length 3 perpendicular to i-lines, and let u⃗i
be a unit vector parallel to i-lines. We can choose these so that

v⃗1 + v⃗2 + v⃗2 = 0⃗ and u⃗1 + u⃗2 + u⃗3 = 0⃗.

• Let τi be by vector p⃗i = kiv⃗i + yiu⃗i. Here ki ∈ Z is the number of tiles that
τi moves forward on an i-strip, and yi ∈ R.

• We can replace p⃗i by its multiples so we may assume that k1 = k2 = k3 = k:

p⃗i = kv⃗i + yiu⃗i



• The corresponding translational symmetries of the chevron tiling T ′ are by
vectors f (p⃗i) = f̂ (p⃗i), and they also shift along i-strips by k tiles.
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• The corresponding translational symmetries of the chevron tiling T ′ are by
vectors f (p⃗i) = f̂ (p⃗i), and they also shift along i-strips by k tiles.

• Averaging over all i-strips we have that f̂ (p⃗i) is perpendicular to i-lines and
has length 2k. This is because one third of the chevrons come from each of the
three columns.

• The length 2k is the same for all directions i, so that

f̂ (p⃗1) + f̂ (p⃗2) + f̂ (p⃗3) = 0⃗.

• By linearity of f̂ then
f̂ (p⃗1 + p⃗2 + p⃗3) = 0⃗,

and since f̂ is full-rank linear map,

p⃗1 + p⃗2 + p⃗3 = 0⃗.

• Finally, as p⃗i = kv⃗i + yiu⃗i and v⃗1 + v⃗2 + v⃗2 = 0⃗, we have that

y1u⃗1 + y2u⃗2 + y3u⃗3 = 0⃗.

This further implies that y1 = y2 = y3.



Conclusion:

• pi are of equal length and at angles 120◦ to each other,
• f̂ (pi) are of equal length and at angles 120◦ to each other.

So f̂ is a similarity map. (It scales distances by some constant.)
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Because the area of the hat is twice the area of the chevron, the value of the
similarity scaling factor is c =

√
2.

(All distances between points get divided by
√
2.)



Conclusion:

• pi are of equal length and at angles 120◦ to each other,
• f̂ (pi) are of equal length and at angles 120◦ to each other.

So f̂ is a similarity map. (It scales distances by some constant.)

Because the area of the hat is twice the area of the chevron, the value of the
similarity scaling factor is c =

√
2.

(All distances between points get divided by
√
2.)

But: Periodicity vectors p⃗ and f̂ (p⃗) are between vertices of the same triangle
lattice. In such a lattice the distances cannot have ratio

√
2.

Theorem. The hat tile does not admit a two-way periodic tiling.



A valid tiling can be generated using a substitution:



First two iterations:



Deformed tiles are also aperiodic monotiles:

Deforming the hat with scaling factors a ≥ 0 and b ≥ 0 produces equivalent
tiles that are also aperiodic, except when

(i) a = 0, or

(ii) b = 0, or

(iii) b/a =
√
3.

In the cases (i) and (ii) the long and short edges vanish, respectively. In the
case (iii) the long and short edges become equally long.

• In all cases deforming a tiling by the hat becomes a tiling by the deformed
tile.
=⇒ all deformed tiles admit monohedral tilings.

• Conversely, in all cases except (i), (ii) and (iii) in a valid tiling by the deformed
tiles long edges meet long edges and short edges meet short edges. Then the
tiling can be inversely deformed back to a tiling by the hat.
=⇒ the deformed tile does not admit a periodic tiling.



A periodic tiling when the long edges (red) and the short edges (blue) are equally
long:



In the periodic tiling both even and odd orientations of the tile are used.

If only even orientations are allowed then the tile still tiles the
plane but only non-periodically!



In the periodic tiling both even and odd orientations of the tile are used.

If only even orientations are allowed then the tile still tiles the
plane but only non-periodically!

A bumps and dents construction can be used to enforce all tile orientation to
have the same parity:

With this tile (spectre) then

� there exists a tiling,

� no tiling involves both even and odd variants of the tile,

� there is no valid periodic tiling.



The grid of kites is bipartatite:



This allows to create a spectre with simpler bump/dent construction:



A patch tiled with the deformed kite (enforcing all tiles to have even orientations,
bipartite coloring shown), and with the two types of spectres:



Open problems

Hat is a 13-gon.

Question. What is the smallest n such that there exists an aperiodic n-gon ?
Does there exist an aperiodic pentagon ?

(Remrk. Tilings by convex pentagons have been recently classified, and
there is no single aperiodic convex pentagon.



The conversion

Wang tiles −→ polygons

with bumps and dents is effective (=algorithmic). The vertices of the resulting
polygons can be taken to have rational number coordinates.

So, the undecidability results proved for Wang tiles hold for polygonal prototiles
as well:

Theorem. The following decision problems are undecidable:

� ”Does a given protoset of polygons with rational coordinates admit a periodic
tiling ?”,

� ”Does a given protoset of polygons with rational coordinates admit a tiling
?”.

Proof.



It is not known if there exists a decision algorithm to determine if a given single
polygonal prototile admits a valid (periodic) tiling.

Question. Are the following decision problems decidable ?

� ”Does given single polygon with rational coordinates admit a tiling ?”

� ”Does given single polygon with rational coordinates admit a periodic tiling
?”



One may also consider similar questions for polyominoes (=tiles that are
edge-to-edge attachments of unit squares to each other.)

Theorem. The tiling problem is undecidable for protosets of 5 polyominoes.

In particular, this also implies the undecidability of the tiling problem among
sets of 5 polygons.

On the other hand, the tiling problem is known to be decidable for single poly-
ominoes if only translations are allowed, that is, the tiles must be placed in the
given orientation.



Here is a related question by H. Heesch. Consider a single prototile t that does
not admit a tiling of the plane.

The Heesch number of t is the maximum number of times the tile can be
completely surrounded by copies of t. More precisely, for a topological disk
d ⊆ R2, a corona of d is a collection C of tiles, all congruent to t, such that

� the interiors of the elements of C are pairwise disjoint, and disjoint from d,
and

� d ∪
⋃
s∈C

s is a topological disk whose interior contains d.

In other words, tiles in the corona C surround set d completely.

Example. The squares form a corona of the set d in the middle:

d



A a second corona of d is a corona of the set that is the union of d and its first
corona. Inductively, a k+1’st corona is a corona of the topological disk formed
by d and its first k coronas.

In the Heesch problem we start with a single copy of t and form its 1st, 2nd,
3rd, etc. coronas. If the k’th corona exists for every k then by the extension
theorem the entire plane can be tiled. But if t does not admit a plane tiling
then there exists the largest k such that the first k coronas exist. This k is
called the Heesch number of tile t.

Example. The following figure illustrates two coronas of a tile:



Example. A regular hexagon with incoming arrows on three sides and outgo-
ing arrows on two sides admits three coronas:

(In the picture, the arrows are represented by bumps and dents.)

Due to the imbalance in the number of incoming and outgoing arrows the full
plane cannot be tiled by this tile. (Similar to a prof at the homeworks for Wang
tiles.)



Example. Heesch number five (by Casey Mann):

The tile consists of five regular haxagons glued together, with bumps and dents
on 10 and 11 sides:



The imbalance in the number of bumps and dents guarantees that no valid tiling
of the plane is possible.



Example. Recently, a tile with Heesch number 6 was published:



Heesch’s question. Does there exist a number k such that the Heesch
number of every tile that does not admit a tiling is at most k ? If such a k
exists, what is the smallest such k ?

Note that if the Heesch numbers are bounded by some constant k then there is an
algorithm (in any reasonable set-up such as edge-to-edge tilings by polygons
where one can try all possible coronas) to determine if a given single tile admits
a tiling: To test if a tiling exists, all we need to do is to try all possible ways of
building k + 1 coronas. A valid tiling exists if and only if k + 1 coronas exist.


