
Another technique (similar to PCA) to guarantee reversibility: Margolus
neighborhood.

Two well known two-dimensional examples that use this neighborhood are the
Billiard Ball CA by Margolus and a lattice gas CA called HPP.



In the Margolus neighborhood the updating is done in two steps:
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1. Partition the plane into 2 × 2 blocks and apply some permutation π1 of S
4

inside each block.
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2. Shift the partitioning horizontally and vertically, and apply another permu-
tation π2 of S

4 on the new blocks.
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The composition of the two block permutation is one iteration of the CA. It is
trivially reversible.

Usually the two permutations are the same π1 = π2.



Example 1.

Two states and the following permutation π = π1 = π2 on all rounds:

This is a simple half turn of the block: the color of a corner moves to the
opposite corner.



Interpreting the black state as a particle, the particle moves diagonally across
Z2 with constant speed. The direction depends on the position inside the 2× 2
block. The particles do not interact:
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Interpreting the black state as a particle, the particle moves diagonally across
Z2 with constant speed. The direction depends on the position inside the 2× 2
block. The particles do not interact:



Conveniently drawing a particle as a diagonal arrow pointing to its direction of
motion (=towards the center of the 2× 2 block), the permutation becomes



Our sample iteration becomes:



Our sample iteration becomes:



Our sample iteration becomes:



Our sample iteration becomes:



Our sample iteration becomes:



Our sample iteration becomes:

In this CA every particle moves uninterrupted in its direction, and there are no
interactions between particles. Each block can contain up to four particles, all
moving to different directions.



Example 2. Let us introduce particle interaction in the case when two parti-
cles collide head-on. The new permutation π = π1 = π2 is the following:

The only change is in a block with two diagonally aligned black and white cells:
In such head-on collision both particles turn 90◦.



The resulting CA is the HPP lattice gas.
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The resulting CA is the HPP lattice gas.

HPP provides a simplistic simulation of gas or fluid dynamics. The particles
represent molecules. HPP is reversible as is the physical system it attempts
to simulate.



HPP also has conservation laws:

(1) The total mass (=number of particles) remains invariant. Hence also the
total energy is preserved, since each particle has the same kinetic energy.

(2) The total momentum of the system is preserved. (Momentum is the
sum of the velocity vectors of the particles.) The only update where particle
directions change is in a two-particle block where the total momentum before
and after the update is zero.

Our next section studies such conserved quantities as the mass, energy and
momentum in HPP.



Example 3. Let π = π1 = π2 be as follows:

Again the numbers of tokens are conserved. Now a collision of any number of
particles makes them reverse their directions, except when exactly two particle
collide head on then they turn 90◦.

This CA by N.Margolus simulates the billiard ball model of computation
(BBM) by E. Fredkin.



The BBMCA can simulate collisions of balls of identical positive radius. The
collisions are “soft” meaning that a collision takes time.
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The BBMCA can simulate collisions of balls of identical positive radius. The
collisions are “soft” meaning that a collision takes time.

The yellow ball indicates where the ball without a collision would be.
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The BBMCA can simulate collisions of balls of identical positive radius. The
collisions are “soft” meaning that a collision takes time.



Potential trajectories of balls are wires. Presence/absence of a ball represents
the bit 1/0.

A collision changes the trajectories of balls =⇒ logic gate
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One can make static walls from which balls bounce:
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One can make static walls from which balls bounce:



Using walls one can turn wires (=potential trajectories) and delays can be
created by increasing the length of the wire by additional turns.

Wires can cross:
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A switch gate performs conditional routing:
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We can use the switch gate in the opposite direction to select between two
inputs, under the condition that the non-selected input is 0.
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We can use the switch gate in the opposite direction to select between two
inputs, under the condition that the non-selected input is 0.

The switch gate above works with “hard” balls (=bouncing does not cause
delays) but with the “soft” balls as in BBMCA the timing of the output c
depends on whether p = 0 or p = 1.



Here’s a switch gate that works with BBMCA. The delay from input to output
is always the same 100 generations.



The trajectory of c = 1 when p = 0.



The trajectory of p = 1 when c = 0.



The trajectories when both c = 1 and p = 1.



The Fredkin gate is a controlled switch gate with three inputs and corre-
sponding outputs. If the control wire is c = 1 then the the other two signals
are swapped, otherwise not:
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The Fredkin gate is universal as it implements AND, NOT and OR:

qin = 0 =⇒ qout = cin AND pin,

qin = 1 =⇒ pout = cin OR pin,

qin = 1, pin = 0 =⇒ qout = NOT cin,



The Fredkin gate is a controlled switch gate with three inputs and corre-
sponding outputs. If the control wire is c = 1 then the the other two signals
are swapped, otherwise not:
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The Fredkin gate can be implemented using four switch gates, two of which are
used in the opposite direction:
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Remark: The Margolus neighborhood can be used in other dimensions than
d = 2. For example, in the one-dimensional case one partitions Z into segments
of length two, applies a bijective function π : S2 −→ S2 in each segment, and
repeats the operation using a partitioning that is translated by one cell:
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One can also use the idea of the Margolus neighborhood with other partitions:
Divide the space in any regular manner and apply locally a bijection in each
part independently of other parts. For the next round the partition is changed
to allow information propagation in space.


