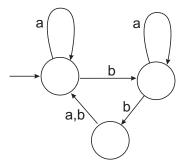

Automata and Formal Languages. Homework 1 (9.9.2024)

- 1. Find
 - (a) two different words of length five that have exactly same proper subwords,
 - (b) a word over alphabet $\{a, b\}$ that is not a concatenation of two palindromes,
 - (c) a word of length five that contains as subword all words of length two over the alphabet $\{a, b\}$.
- 2. Construct a DFA that recognizes the language
 - (a) $L = \{w \in \{a, b\}^* \mid w \text{ contains at least one } a\}$
 - (b) $L = \{w \in \{a, b\}^* \mid w \text{ starts with } b \text{ or } ab \}$
 - (c) $L = \{ w \in \{a, b\}^* \mid w \text{ ends in } aa \}$
- 3. Describe the words accepted by the following two DFA:


4. A language $L \subseteq \Sigma^+$ is a code if

$$u_1u_2\ldots u_n = v_1v_2\ldots v_m$$
 where all $u_i, v_i \in L$

implies that n = m and $u_i = v_i$ for all i = 1, ..., n. In other words, it is not possible to express any word in two different ways as a concatenation of elements of the code. Determine which of the following languages are codes.

- (a) $L = \{a, ba, ab\},\$
- (b) $L = \{ab, bab\},\$
- (c) $L = \{ab^n \mid n \ge 0\}.$

- 5. Let L be a regular language recognized by a DFA with n states.
 - (a) Prove that $L \neq \emptyset$ if and only if $\exists w \in L$ such that |w| < n.
 - (b) Prove that L is infinite if and only if $\exists w \in L$ such that $n \leq |w| < 2n$.
- 6. Prove that if u and v are words such that uv = vu then there exists a word w such that $u = w^n$ and $v = w^m$ for some $n, m \ge 0$. (Hint. Use mathematical induction on the length of the word.)
- 7. Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Word $w \in \Sigma^*$ is called *synchronizing* for A if $\delta(q, w) = \delta(p, w)$ for all $q, p \in Q$.
 - (a) Construct a DFA that recognizes the synchronizing words of the DFA

(b) Prove that the synchronizing words of any DFA form a regular language.