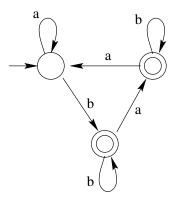
Automata and Formal Languages. Homework 4 (7.10.2024)

1. Let L be the language recognized by the following DFA:



Construct a DFA that recognizes the language

- (a) $h^{-1}(L)$ where h is the homomorphism h(0) = bab, h(1) = aba.
- (b) L/baa^* .
- 2. Prove that if $L \subseteq \Sigma^*$ is regular so is the language
 - (a) $\operatorname{Prefix}(L) = \{ u \in \Sigma^* \mid \exists v \in \Sigma^* : uv \in L \},\$
 - (b) Suffix(L) = { $v \in \Sigma^* \mid \exists u \in \Sigma^* : uv \in L$ },
 - (c) Subword(L) = { $w \in \Sigma^* \mid \exists u, v \in \Sigma^* : uwv \in L$ }.
- 3. Show that the family of regular languages is <u>not</u> closed under the following operations:
 - (a) Sort(L) = $\{a^n b^m \mid L \text{ contains a word with exactly } n \text{ letters } a \text{ and } m \text{ letters } b \},\$
 - (b) $\text{Shuffle}(L) = \{u \mid \text{ letters of } u \text{ can be reordered to give a word in } L \}.$

For example,

$$Sort(\{bab, aba, bba\}) = \{abb, aab\},$$

Shuffle($\{bab, aba, bba\}$) = $\{abb, bab, bba, aab, aba, baa\}.$

- 4. Prove that the given language L is not regular. You may rely on any results proved in the class or in the homework sessions.
 - (a) $L = \{a^{3p} \mid p \text{ is a prime number }\},\$
 - (b) $L = \{a^{n^2+1} \mid n \ge 1\},\$
 - (c) $L = \{w \in \{a, b\}^* \mid \text{ the number of } a\text{'s in } w \text{ and the number of } b\text{'s in } w \text{ are not relatively prime with each other } \}.$

- 5. Show that the family of regular languages is closed under the following operations:
 - (a) $\operatorname{Half}(L) = \{ w \mid ww \in L \},\$
 - (b) Merge $(L_1, L_2) = \{u_1 v_1 u_2 v_2 \dots u_k v_k \mid u_1 u_2 \dots u_k \in L_1, v_1 v_2 \dots v_k \in L_2 \}.$

(Language Half(L) contains all words such that ww is in L, and language Merge(L_1, L_2) contains all words that can be obtained by shuffling together the letters of some words $u \in L_1$ and $v \in L_2$. The merge needs not to be perfect, i.e., the words u_i and v_i in the definition are elements of Σ^* and not necessarily single letters.)

- 6. Prove that if A_1 and A_2 are DFA with the same input alphabets and with n_1 and n_2 states, respectively, then there is
 - (a) a DFA with n_1n_2 states that recognizes $L(A_1) \cup L(A_2)$, and
 - (b) a DFA with n_1n_2 states that recognizes $L(A_1) \cap L(A_2)$.
- 7. Consider the language

$$L = \{a^{n}b^{m}c^{k} \mid n, m, k \ge 0, \text{ and if } n = 1 \text{ then } m = k \}.$$

- (a) Prove that L is not regular.
- (b) Prove that L satisfies the pumping lemma of regular languages:

$$\begin{aligned} \exists n \in \mathbb{N} \\ \forall z \in L : |z| \geq n \\ \exists u, v, w \in \{a, b, c\}^* : z = uvw, |uv| \leq n, v \neq \varepsilon \\ \forall i \in \mathbb{N} \\ uv^i w \in L. \end{aligned}$$