
Introduction

Theoretical computer science is the mathematical foundation of com-
putation.

It investigates the power and limitations of computing devices.

In order to be able to use rigorous mathematical proofs, abstract mathe-
matical models of computers are introduced. Models should be

� as simple as possible so that they can be easily analysed, but

� powerful enough to be able to perform any computation task.

Introduction

It turns out that that real computers can be modeled with very simple ab-
stract machines. The models ignore the implementation details of individual
computers and concentrate on the actual computation process.

In the last part of the course we investigate one such model — called Turing
machine — and using it we are able prove that there are problems that no
computer can solve.

Introduction

It turns out that that real computers can be modeled with very simple ab-
stract machines. The models ignore the implementation details of individual
computers and concentrate on the actual computation process.

In the last part of the course we investigate one such model — called Turing
machine — and using it we are able prove that there are problems that no
computer can solve.

Before Turing machines we investigate some weaker models of computation. We
start with the most restricted models, called finite automata. Then we move
up to intermediate level by introducing pushdown automata. We analyse
the computation power of different models, and study their limitations.

All our abstract machines manipulate strings of symbols. Formal languages
are basic mathematical objects used throughout this course. The power of
any computation model will be determined by analysing how complex formal
languages it can describe.

� Finite automata are able to define only very simple languages, called reg-
ular languages.

� Pushdown automata describe more complicated context-free languages.

� Full-powered computers like Turing machines can define any recursively
enumerable language.

You will become very familiar with all these language types.

Let us start with basic notions:

An alphabet is a finite non-empty set of symbols. Often upper case greek
letters are used to denote alphabets: Σ, ∆, Γ,. . .

The symbols that are used depend on the application in mind. In our examples
we often use letters of the English alphabet or digits or other characters found
on computer keyboards. But any other symbols could be used as well.

Here are some examples of alphabets:

Σ1 = {a, b},
Σ2 = {0, 1, 2},
Σ3 = {♣,♢,♡,♠}

A word is a finite sequence of symbols. Examples of words over the alphabet
Σ = {a, b} are abaab, aaa and b. Lower case variable names u, v, w, x, y, . . .
are used to represent words.

If w is a word then |w| denotes its length, i.e., the number of symbols in it.
Note that the length of a word can be 0. Such word is called the empty word,
and denoted by ε. (We cannot just write nothing: no one would know that the
empty word is there!)

A word is a finite sequence of symbols. Examples of words over the alphabet
Σ = {a, b} are abaab, aaa and b. Lower case variable names u, v, w, x, y, . . .
are used to represent words.

If w is a word then |w| denotes its length, i.e., the number of symbols in it.
Note that the length of a word can be 0. Such word is called the empty word,
and denoted by ε. (We cannot just write nothing: no one would know that the
empty word is there!)

For example,

|abaab| =
|♣♡♡| =
|ε| =

A word is a finite sequence of symbols. Examples of words over the alphabet
Σ = {a, b} are abaab, aaa and b. Lower case variable names u, v, w, x, y, . . .
are used to represent words.

If w is a word then |w| denotes its length, i.e., the number of symbols in it.
Note that the length of a word can be 0. Such word is called the empty word,
and denoted by ε. (We cannot just write nothing: no one would know that the
empty word is there!)

For example,

|abaab| = 5
|♣♡♡| = 3
|ε| = 0

The concatenation of two words is the word obtained by writing the first
word followed by the second one as a single word.

For example, the concatenation of data and base is the word database.
(Finnish language is very good in forming concatenated compound words!)

The concatenation of two words is the word obtained by writing the first
word followed by the second one as a single word.

For example, the concatenation of data and base is the word database.
(Finnish language is very good in forming concatenated compound words!)

The notation for concatenation is similar to normal multiplication. The multi-
plication sign does not need to be written if the meaning is clear, i.e. uv is the
concatenation of words u and v. For example,

ab · aab =

The concatenation of two words is the word obtained by writing the first
word followed by the second one as a single word.

For example, the concatenation of data and base is the word database.
(Finnish language is very good in forming concatenated compound words!)

The notation for concatenation is similar to normal multiplication. The multi-
plication sign does not need to be written if the meaning is clear, i.e. uv is the
concatenation of words u and v. For example,

ab · aab = abaab

If v = a and w = ab, then vw =

The concatenation of two words is the word obtained by writing the first
word followed by the second one as a single word.

For example, the concatenation of data and base is the word database.
(Finnish language is very good in forming concatenated compound words!)

The notation for concatenation is similar to normal multiplication. The multi-
plication sign does not need to be written if the meaning is clear, i.e. uv is the
concatenation of words u and v. For example,

ab · aab = abaab

If v = a and w = ab, then vw = aab

The empty word is the identity element of concatenation, much the same way
as number 1 is the identity element of multiplication: For any word w,

wε =
εw =

The empty word is the identity element of concatenation, much the same way
as number 1 is the identity element of multiplication: For any word w,

wε = w
εw = w

The set of all words over the alphabet Σ with the concatenation operation is a
monoid. This just means that

� concatenation is associative: (uv)w = u(vw),

� the empty word ε is the identity: wε = εw = w.

It is the free monoid generated by Σ.

A concatenation of a word with itself is denoted the same way as the multipli-
cation of a number with itself: For any integer n and word w the word wn is
the concatenation of n copies of w. For example, if w = abba then

w2 =
a5 =
ε3 =

ab2a3b =
w0 =
ε0 =

A concatenation of a word with itself is denoted the same way as the multipli-
cation of a number with itself: For any integer n and word w the word wn is
the concatenation of n copies of w. For example, if w = abba then

w2 = abbaabba
a5 = aaaaa
ε3 = ε

ab2a3b = abbaaab
w0 = ε
ε0 = ε

An important difference between concatenation and multiplication is that con-
catenation is not commutative. There are words v and w for which

vw ̸= wv.

(Find some examples!)

A prefix of a word is any sequence of leading symbols of the word. For example,
word abaab has 6 prefixes:

A prefix of a word is any sequence of leading symbols of the word. For example,
word abaab has 6 prefixes: ε, a, ab, aba, abaa, abaab

A prefix of a word is any sequence of leading symbols of the word. For example,
word abaab has 6 prefixes: ε, a, ab, aba, abaa, abaab

A suffix of a word is any sequence of trailing symbols of the word. The suffixes
of word abaab are:

A prefix of a word is any sequence of leading symbols of the word. For example,
word abaab has 6 prefixes: ε, a, ab, aba, abaa, abaab

A suffix of a word is any sequence of trailing symbols of the word. The suffixes
of word abaab are: ε, b, ab, aab, baab, abaab

A prefix of a word is any sequence of leading symbols of the word. For example,
word abaab has 6 prefixes: ε, a, ab, aba, abaa, abaab

A suffix of a word is any sequence of trailing symbols of the word. The suffixes
of word abaab are: ε, b, ab, aab, baab, abaab

A subword of a word is any sequence of consecutive symbols that appears in
the word. The subwords of abaab are:

A prefix of a word is any sequence of leading symbols of the word. For example,
word abaab has 6 prefixes: ε, a, ab, aba, abaa, abaab

A suffix of a word is any sequence of trailing symbols of the word. The suffixes
of word abaab are: ε, b, ab, aab, baab, abaab

A subword of a word is any sequence of consecutive symbols that appears in
the word. The subwords of abaab are:

ε, a, b, ab, aa, ba, aba, baa, aab, abaa, baab, abaab

A prefix of a word is any sequence of leading symbols of the word. For example,
word abaab has 6 prefixes: ε, a, ab, aba, abaa, abaab

A suffix of a word is any sequence of trailing symbols of the word. The suffixes
of word abaab are: ε, b, ab, aab, baab, abaab

A subword of a word is any sequence of consecutive symbols that appears in
the word. The subwords of abaab are:

ε, a, b, ab, aa, ba, aba, baa, aab, abaa, baab, abaab

A prefix, suffix or subword of a word is called proper if it is not the word itself.
Each word w has |w| different proper prefixes and suffixes.

The mirror image of a word is the word obtained by reversing the order of
its letters. The mirror image of word w is denoted by wR. For example,

(abaab)R =
(saippuakauppias)R =

εR =

The mirror image of a word is the word obtained by reversing the order of
its letters. The mirror image of word w is denoted by wR. For example,

(abaab)R = baaba
(saippuakauppias)R = saippuakauppias

εR = ε

A word w whose mirror image is the word itself is called a palindrome. In
other words, word w is a palindrome iff w = wR. For example

saippuakauppias

is a palindrome.

A formal language is a set of words from a fixed alphabet. The language is
finite if it contains only a finite number of words, otherwise it is infinite.

A formal language is a set of words from a fixed alphabet. The language is
finite if it contains only a finite number of words, otherwise it is infinite.

We are mainly interested in infinite languages. Let our alphabet be Σ = {a, b}.
Examples of languages over Σ include

{a, ab, abb}

{a, aa, aaa, aaaa, . . . } = {an | n ≥ 1}

{anbn | n ≥ 0}

{w | w = wR} = {w | w is a palindrome }

{ap | p is a prime number }

{ε}

∅

Note that

� ε is a word,

� {ε} is a language containing one element (the empty word), and

� ∅ is a language containing no words.

They are all different!

Note that

� ε is a word,

� {ε} is a language containing one element (the empty word), and

� ∅ is a language containing no words.

They are all different!

The language of all words over alphabet Σ is denoted by Σ∗.
The language of all non-empty words over Σ is denoted by Σ+:

Σ+ = Σ∗ \ {ε}.

For example,

{a, b}∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . . }
{♡}∗ = {ε,♡,♡2,♡3,♡4, . . . }
{♡}+ = {♡,♡2,♡3,♡4, . . . }

A problem with infinite languages is how to describe them. We cannot just list
the words as as we do in the case of finite languages. Formal language theory
presents techniques for specifying infinite languages.

Deterministic Finite Automata (DFA)

DFA provide a simple way of describing languages. DFA are accepting devices:
you give a word as input and after a while the DFA tells whether the input
word is in the language (DFA accepts the word) or whether it is not in the
language (DFA rejects it).

To decide whether to accept or reject the input word the DFA scans the letters
of the word from left to right. The DFA has a finite internal memory available.
At each input letter the state of the internal memory is changed depending on
the letter scanned.

The previous memory state and the next input letter together deter-
mine what the next state of the memory is.

The word is accepted if the internal memory is in an accepting state after
scanning the entire word.

baa

with
Control Unit

a babab

finite memory

Input tape

Let us be precise: A DFA A = (Q,Σ, δ, q0, F) is specified by 5 items:

� Finite state set Q. At all times the internal memory is in some state
q ∈ Q.

Let us be precise: A DFA A = (Q,Σ, δ, q0, F) is specified by 5 items:

� Finite state set Q. At all times the internal memory is in some state
q ∈ Q.

� Input alphabet Σ. The machine only operates on words over alphabet
Σ.

Let us be precise: A DFA A = (Q,Σ, δ, q0, F) is specified by 5 items:

� Finite state set Q. At all times the internal memory is in some state
q ∈ Q.

� Input alphabet Σ. The machine only operates on words over alphabet
Σ.

� Transition function δ. The transition function describes how the ma-
chine changes its internal state. It is a function

δ : Q× Σ −→ Q

from (state, input letter) -pairs to states. If the machine is in state q and
next input letter is a then the machine changes its internal state to δ(q, a)
and moves to the next input letter.

Let us be precise: A DFA A = (Q,Σ, δ, q0, F) is specified by 5 items:

� Finite state set Q. At all times the internal memory is in some state
q ∈ Q.

� Input alphabet Σ. The machine only operates on words over alphabet
Σ.

� Transition function δ. The transition function describes how the ma-
chine changes its internal state. It is a function

δ : Q× Σ −→ Q

from (state, input letter) -pairs to states. If the machine is in state q and
next input letter is a then the machine changes its internal state to δ(q, a)
and moves to the next input letter.

� Initial state q0 ∈ Q is the internal state of the machine before any letters
have been read.

Let us be precise: A DFA A = (Q,Σ, δ, q0, F) is specified by 5 items:

� Finite state set Q. At all times the internal memory is in some state
q ∈ Q.

� Input alphabet Σ. The machine only operates on words over alphabet
Σ.

� Transition function δ. The transition function describes how the ma-
chine changes its internal state. It is a function

δ : Q× Σ −→ Q

from (state, input letter) -pairs to states. If the machine is in state q and
next input letter is a then the machine changes its internal state to δ(q, a)
and moves to the next input letter.

� Initial state q0 ∈ Q is the internal state of the machine before any letters
have been read.

� Set F ⊆ Q of final states specifies which states are accepting and which
are rejecting. If the internal state of the machine, after reading the whole
input, is some state of F then the word is accepted, otherwise rejected.

Let us be precise: A DFA A = (Q,Σ, δ, q0, F) is specified by 5 items:

� Finite state set Q. At all times the internal memory is in some state
q ∈ Q.

� Input alphabet Σ. The machine only operates on words over alphabet
Σ.

� Transition function δ. The transition function describes how the ma-
chine changes its internal state. It is a function

δ : Q× Σ −→ Q

from (state, input letter) -pairs to states. If the machine is in state q and
next input letter is a then the machine changes its internal state to δ(q, a)
and moves to the next input letter.

� Initial state q0 ∈ Q is the internal state of the machine before any letters
have been read.

� Set F ⊆ Q of final states specifies which states are accepting and which
are rejecting. If the internal state of the machine, after reading the whole
input, is some state of F then the word is accepted, otherwise rejected.

The language recognized by DFA A consists of all words that A accepts.
The language is denoted by L(A).

Example. Consider the DFA

A = ({p, q, r}, {a, b}, δ, p, {r})

where the transition function is given by the table

a b
p q p
q r p
r r r

Let us see the operation of the machine on input word w = abaab on the
blackboard.

A convenient way of displaying DFA is to use a transition diagram. It is a
labeled directed graph whose nodes represent different states of Q, and whose
edges indicate the transitions with different input symbols.

The edges are labeled with the input letters and nodes are labeled with states.

Transition δ(q, a) = p is represented by an arc labeled a going from node q into
node p:

q a p

Final states are indicated as double circles, initial state is indicated by a short
incoming arrow.

Example. The diagram representation of the DFA

A = ({p, q, r}, {a, b}, δ, p, {r})

with the transition function
a b

p q p
q r p
r r r

Example. The diagram representation of the DFA

A = ({p, q, r}, {a, b}, δ, p, {r})

with the transition function
a b

p q p
q r p
r r r

q
a a

p

b

b a,b

r

q
a a

p

b

b a,b

r

To determine whether a given word is accepted by A one follows the path
labeled with the input letters, starting from the initial state. If the state
where the path ends is a final state, the word is accepted. Otherwise it is
rejected.

q
a a

p

b

b a,b

r

To determine whether a given word is accepted by A one follows the path
labeled with the input letters, starting from the initial state. If the state
where the path ends is a final state, the word is accepted. Otherwise it is
rejected.

In our example, path labeled with input word w = abaab leads to state r so
the word is accepted. Input word abba is rejected since it leads to q which is
not a final state.

A simple characterization in English of the words that are accepted by the DFA
A above ?

Let us design transition diagrams for DFA that accept following languages over
alphabet {a, b}. (The DFA has to accept the language exactly: all words of
the language have to be accepted; all words not in the language have to be
rejected.)

1. Words that end in ab.

2. Words with odd number of a’s.

3. Words that contain aba as a subword.

4. Words that start with a and end in a.

5. Finite language {ε, a, b}.

6. All words over {a, b}, i.e. {a, b}∗.

Then the inverse problem: describe in English the language accepted by the
following DFA:

1)

a,b

a

a

b b

2)

a

a,bb a

b

3)

b

a,b

a
b

a

b

a

Not all languages can be defined by a DFA. For example, it is impossible to
build a DFA that would recognize the language

{ap | p is a prime number }

or the language
{anbn | n ≥ 0}.

Languages that can be recognized by DFA are called regular. By now, we
know many regular languages.

To enable exact mathematical notations and proofs by mathematical induction,
we extend the meaning of the transition function δ from single letters to words.

� The basic transition function δ gives the new state of the machine after a
single letter is read.

� The extended function (that we will denote by δ̂) gives the new state after
an arbitrary string of letters is read.

In other words, δ̂ is a function

δ̂ : Q× Σ∗ −→ Q,

and for every state q and word w the value of δ̂(q, w) is the state that the DFA
reaches if in state q it reads input word w.

Formally the extended function is defined recursively as follows:

1. δ̂(q, ε) = q for every state q.

(The machine does not change its state if no input letters are consumed.)

2. For all words w and letters a

δ̂(q, wa) = δ(δ̂(q, w), a).

(If p = δ̂(q, w) is the state after reading input w then δ(p, a) is the new state
after reading input wa.)

Formally the extended function is defined recursively as follows:

1. δ̂(q, ε) = q for every state q.

(The machine does not change its state if no input letters are consumed.)

2. For all words w and letters a

δ̂(q, wa) = δ(δ̂(q, w), a).

(If p = δ̂(q, w) is the state after reading input w then δ(p, a) is the new state
after reading input wa.)

Note that δ̂ is an extension of δ. They give same value for input words w = a
that contain only one letter:

δ̂(q, a) = δ(q, a).

Therefore there is no danger of confusion if we simplify notations by removing
the hat and indicate simply δ instead of δ̂.

Example.

q
a a

p

b

b a,b

r

δ(r, ab) =
δ(q, bb) =

δ(p, abaab) =

Example.

q
a a

p

b

b a,b

r

δ(r, ab) = r
δ(q, bb) = p

δ(p, abaab) = r

The language recognized by DFA A = (Q,Σ, δ, q0, F) can now be for-
mulated as follows:

L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}

(=The set of words w over alphabet Σ such that, if the machine reads input w
in the initial state q0, then the state it reaches is a final state.)

Nondeterministic finite automata (NFA)

Nondeterministic finite automata are generalizations of DFA. Instead of exactly
one outgoing transition from each state by every input letter, NFA allow sev-
eral outgoing transitions at the same time. A word is accepted by the
NFA if some choice of transitions takes the machine to a final state. Some
other choices may lead to a non-final state, but the word is accepted as long as
there exists at least one accepting computation path in the automaton.

An example of a transition diagram of an NFA:

q
a a

p r

a,ba,b

There are two transitions from state p with input letter a, into states p and q.
Note also that there are no transitions from state q with input letter b. The
number of transitions may be zero, one or more.

q
a a

p r

a,ba,b

NFA may have several different computations for the same input word. Let us
take for example word

w = abaa.

q
a a

p r

a,ba,b

NFA may have several different computations for the same input word. Let us
take for example word

w = abaa.

The following computation tree summarizes all possible computations with in-
put abaa:

a

r

q

p

q
a

a

a

a

a

ab p

q

p

p

p

Precise definition: An NFA A = (Q,Σ, δ, q0, F) is specified by 5 items:

� State set Q,

� input alphabet Σ,

� initial state q0, and

� final state set F

all have the same meaning as for a DFA.

� The transition function δ is defined differently. It gives for each state q and
input letter a a set δ(q, a) of possible next states.

Using the power set notation

2Q = {S | S ⊆ Q}

we can write
δ : Q× Σ −→ 2Q.

Example. The transition function δ of

q
a a

p r

a,ba,b

is given by the table
a b

p {p, q} {p}
q {r} ∅
r {r} {r}

Example. The transition function δ of

q
a a

p r

a,ba,b

is given by the table
a b

p {p, q} {p}
q {r} ∅
r {r} {r}

What is the language recognized by the sample NFA ? The language consists
of all words for which there exists at least one accepting computation path.

Let us extend the meaning of the transition function δ the same way we did
for DFA. We define

δ̂ : Q× Σ∗ −→ 2Q

such that δ̂(q, w) is the set of all states the machine can reach from state q
reading input word w.

Let us extend the meaning of the transition function δ the same way we did
for DFA. We define

δ̂ : Q× Σ∗ −→ 2Q

such that δ̂(q, w) is the set of all states the machine can reach from state q
reading input word w.

The exact recursive definition goes like this:

1. For every state q
δ̂(q, ε) = {q}.

(No state is changed if no input is read.)

2. For every state q, word w and letter a

δ̂(q, wa) =
⋃

r∈δ̂(q,w)

δ(r, a) = {p | there exists state r such
that r ∈ δ̂(q, w) and p ∈ δ(r, a) }.

pr
a

w

q

On single symbols δ and δ̂ have identical values:

δ(q, a) = δ̂(q, a).

Therefore there is no risk of confusion if we drop the hat and write simply δ
instead of δ̂.

Example. In our sample NFA

q
a a

p r

a,ba,b

δ(p, a) = {p, q},
δ(p, ab) = {p},
δ(p, aba) = {p, q},
δ(p, abaa) = {p, q, r}.

The language recognized by NFA A = (Q,Σ, δ, q0, F) is

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F ̸= ∅}.

(Words w such that there is a final state among the states δ(q0, w) reachable
from the initial state q0 on input w.)

Let us design NFA over alphabet Σ = {a, b} that recognize the following lan-
guages:

1. Words that end in ab.

2. Words that contain aba as a subword.

3. Words that start with ab and end in ba

4. Words that contain two b’s separated by an even number of a’s.

And the inverse problem: Describe in simple English sentence the words ac-
cepted by the following NFA:

a a,b

a,b

aa

a,b a,ba,b

Question: How does one go about checking if a given NFA accepts a given
input word w ?

For example, how would one check if the NFA

b

r

p q

b

a
a

a

b

accepts input w = abbaabb ?

Question: How does one go about checking if a given NFA accepts a given
input word w ?

For example, how would one check if the NFA

b

r

p q

b

a
a

a

b

accepts input w = abbaabb ?

One alternative is to try all possible computation paths for w and see if any of
them ends in an accepting state. But the number of paths may be very large,
and grow exponentially with the length of the input!

Question: How does one go about checking if a given NFA accepts a given
input word w ?

For example, how would one check if the NFA

b

r

p q

b

a
a

a

b

accepts input w = abbaabb ?

A better way is to scan the input only once, and keep track of the set of
possible states. For example, with our NFA and input w = abbaabb we have:

Question: How does one go about checking if a given NFA accepts a given
input word w ?

For example, how would one check if the NFA

b

r

p q

b

a
a

a

b

accepts input w = abbaabb ?

A better way is to scan the input only once, and keep track of the set of
possible states. For example, with our NFA and input w = abbaabb we have:

{p} a−→ {q, r} b−→ {p, r} b−→ {p, r} a−→ {q, r} a−→ {q} b−→ {p} b−→ {p}

The word is not accepted because one can only reach p which is not a final state.

Intuitively it may seem that NFA can recognize some languages that no DFA
can recognize. But this is not the case: NFA and DFA recognize exactly the
same family of languages (the regular languages).

Intuitively it may seem that NFA can recognize some languages that no DFA
can recognize. But this is not the case: NFA and DFA recognize exactly the
same family of languages (the regular languages).

1) First, any language recognized by some DFA is also recognized by some NFA;
namely the same automaton. (Every DFA is also an NFA.)

Intuitively it may seem that NFA can recognize some languages that no DFA
can recognize. But this is not the case: NFA and DFA recognize exactly the
same family of languages (the regular languages).

1) First, any language recognized by some DFA is also recognized by some NFA;
namely the same automaton. (Every DFA is also an NFA.)

2) Conversely, every language that is recognized by an NFA is also recognized
by some DFA. To prove this we show how to construct a DFA that is equivalent
to a given NFA, i.e., it recognizes the same language.

Intuitively it may seem that NFA can recognize some languages that no DFA
can recognize. But this is not the case: NFA and DFA recognize exactly the
same family of languages (the regular languages).

1) First, any language recognized by some DFA is also recognized by some NFA;
namely the same automaton. (Every DFA is also an NFA.)

2) Conversely, every language that is recognized by an NFA is also recognized
by some DFA. To prove this we show how to construct a DFA that is equivalent
to a given NFA, i.e., it recognizes the same language.

The idea of the proof is to keep track of all possible states that the NFA can
be in after reading the input. So we construct a DFA whose states are sets of
states of the original NFA.

The states of the new DFA will be sets

{q1, q2, . . . , qk}

where q1, q2, . . . , qk are states of the NFA.

The interpretation of the state {q1, q2, . . . , qk}: Input w takes the DFA into
state {q1, q2, . . . , qk} if and only if q1, q2, . . . , qk are precisely the states one can
reach with input w in the NFA.

Before the general case, let us look at one example

Example. Let us construct a DFA that recognizes the same language as our
sample NFA

b

r

p q

b

a
a

a

b

Before the general case, let us look at one example

Example. Let us construct a DFA that recognizes the same language as our
sample NFA

b

r

p q

b

a
a

a

b

The construction is called the powerset construction.

b

q,rp q

a,b

a a a
b

p,r

ba

b

Remark. This is just one DFA that recognizes the same language; it is not
necessarily the smallest one.

Let us proof the general case:

Theorem (The powerset construction). Given an NFA A one can effectively
construct a DFA A′ such that L(A) = L(A′).

Proof.

Let us proof the general case:

Theorem (The powerset construction). Given an NFA A one can effectively
construct a DFA A′ such that L(A) = L(A′).

Remark. “Effective construction” means that there is an algorithm (=me-
chanical procedure) to construct the DFA A′ when the NFA A is given as
input. The construction mechanically processes the NFA A, without any need
to understand what A does. This is a stronger statement than simply stating
that “there exists” a DFA that is equivalent to A.

Let us practice the powerset construction with the following NFA:

q
a,b b

p r

b

a

A simple extension of NFA: Allow transitions with words instead of just letters.

a

ab

bab

ba

For example
babbaabbab = bab · ba · ab · bab

is accepted.

A simple extension of NFA: Allow transitions with words instead of just letters.

a

ab

bab

ba

For example
babbaabbab = bab · ba · ab · bab

is accepted.

Transitions with longer words can cut into single-letter transitions by adding
new states:

a

a
b b

ab

b a

The construction cannot be used for transitions with the empty word ε.

NFA with ε-moves

In the next section, it turns out to be useful to allow NFA with spontaneous
transitions. When an NFA executes a spontaneous transition (called an ε-
move) it changes its state without reading any input letter. Any number of
consecutive ε-moves are allowed.

Here’s an example of an NFA with ε-moves:

3

1 2 4

b

ba

a

ɛ ɛ

NFA with ε-moves

In the next section, it turns out to be useful to allow NFA with spontaneous
transitions. When an NFA executes a spontaneous transition (called an ε-
move) it changes its state without reading any input letter. Any number of
consecutive ε-moves are allowed.

Here’s an example of an NFA with ε-moves:

3

1 2 4

b

ba

a

ɛ ɛ

The automaton accepts any sequence of a’s followed by any repetition of ab’s
followed by any number of b’s:

L(A) = {ai(ab)jbk | i, j, k ≥ 0}.

Formally, an NFA with ε-moves (or ε-NFA for short) is A = (Q,Σ, δ, q0, F)
where Q, Σ, q0 and F are as before, and δ is a function

Q× (Σ ∪ {ε}) −→ 2Q

that specifies for each state q transitions with all input letters a, and the empty
word ε.

• δ(q, a) is the set of all states p such that there is a transition from q to p with
input a, and

• δ(q, ε) is the set of states p such that there is a spontaneous transition from
q to p.

Example.

3

1 2 4

b

ba

a

ɛ ɛ

The transition function

δ : Q× (Σ ∪ {ε}) −→ 2Q

is

Example.

3

1 2 4

b

ba

a

ɛ ɛ

The transition function

δ : Q× (Σ ∪ {ε}) −→ 2Q

is
a b ε

1 {1} ∅ {2}
2 {3} ∅ {4}
3 ∅ {2} ∅
4 ∅ {4} ∅

We extend δ to function δ̂ that gives reached states for all input words:

δ̂ : Q× Σ∗ −→ 2Q

Set δ̂(q, w) contains all possible states after the automaton reads input word w,
starting at state q. When processing w any number of ε-moves may be used.

We extend δ to function δ̂ that gives reached states for all input words:

δ̂ : Q× Σ∗ −→ 2Q

Set δ̂(q, w) contains all possible states after the automaton reads input word w,
starting at state q. When processing w any number of ε-moves may be used.

In the recursive definition of δ̂ we use the concept of an ε-closure. For any
state q we let

ε-CLOSURE (q)

be the set of states reached from q using only ε-moves.

Example.

3

1 2 4

b

ba

a

ɛ ɛ

The ε-closures of the states are

ε-CLOSURE (1) =
ε-CLOSURE (2) =
ε-CLOSURE (3) =
ε-CLOSURE (4) =

The set ε-CLOSURE(q) contains exactly the reachable states from q in the
graph

ɛ
1

3

2 4
ɛ

Example.

3

1 2 4

b

ba

a

ɛ ɛ

The ε-closures of the states are

ε-CLOSURE (1) = {1, 2, 4}
ε-CLOSURE (2) = {2, 4}
ε-CLOSURE (3) = {3}
ε-CLOSURE (4) = {4}

The set ε-CLOSURE(q) contains exactly the reachable states from q in the
graph

ɛ
1

3

2 4
ɛ

For any subset of states S ⊆ Q we denote ε-CLOSURE (S) for the set of
states reachable from any element of S using only ε-moves:

ε-CLOSURE (S) =
⋃
q∈S

ε-CLOSURE (q).

Here is a recursive definition of δ̂(q, w):

1. For every state q
δ̂(q, ε) = ε-CLOSURE (q).

(By definition, the ε-CLOSURE consists of all states reachable with ε-moves.)

2. For every state q, word w and letter a

δ̂(q, wa) = ε-CLOSURE

 ⋃
r∈δ̂(q,w)

δ(r, a)

 = ε-CLOSURE (S)

where
S = {p | ∃ r ∈ δ̂(q, w) : p ∈ δ(r, a)}.

ɛ
q r

a
w

p x

Example.

3

1 2 4

b

ba

a

ɛ ɛ

δ̂(1, ε) = {1, 2, 4}
δ̂(2, ε) = {2, 4}
δ̂(3, ε) = {3}
δ̂(4, ε) = {4}
δ̂(1, a) =

δ̂(1, ab) =

δ̂(1, aba) =
. . .

Example.

3

1 2 4

b

ba

a

ɛ ɛ

δ̂(1, ε) = {1, 2, 4}
δ̂(2, ε) = {2, 4}
δ̂(3, ε) = {3}
δ̂(4, ε) = {4}
δ̂(1, a) = {1, 2, 3, 4}
δ̂(1, ab) = {2, 4}
δ̂(1, aba) = {3}

. . .

The language recognized by ε-NFA A is

L(A) = {w ∈ Σ∗ | δ̂(q0, w) ∩ F ̸= ∅}

The values of δ̂(q, a) for single letters a are of special interest to us. First of all,
they are not necessarily identical to δ(q, a), so we cannot remove the hat as we
did with DFA and NFA:

• δ(q, a) contains only states you can reach with one transition labeled by a. It
does not allow using ε-moves.

• δ̂(q, a) contains all states you can reach from q by doing any number of ε-
moves and one a-transition, in any order:

a
q ɛ ɛ

Introducing spontaneous transitions does not increase the power of NFA. Next
we show that ε-NFA accept exactly the same regular languages as DFA and
NFA:

Theorem. For any given ε-NFA A one can effectively construct an NFA A′

such that L(A′) = L(A).

Proof.

Example. Let us construct an NFA equivalent to

3

1 2 4

b

ba

a

ɛ ɛ

Example. Let us construct an NFA equivalent to

ɛ

a

a

b

b

Now we know how to convert any ε-NFA into an equivalent NFA, and how to
convert any NFA into an equivalent DFA, so we can convert any ε-NFA into a
DFA. All three automata models recognize the same languages.

Regular expressions

Regular expressions provide a different technique to define languages. Instead of
being accepting devices such as finite automata they are generating devices.

By Kleene’s theorem (proved later) regular expressions define exactly reg-
ular languages (=the same languages recognized by finite automata).

We need some operations on languages.

• The concatenation L1L2 of languages L1 and L2 is the language containing
all words obtained by concatenating a word from L1 and a word from L2:

L1L2 = {uv | u ∈ L1 and v ∈ L2}

For example

{ab, b}{aa, ba} =

We need some operations on languages.

• The concatenation L1L2 of languages L1 and L2 is the language containing
all words obtained by concatenating a word from L1 and a word from L2:

L1L2 = {uv | u ∈ L1 and v ∈ L2}

For example

{ab, b}{aa, ba} = {abaa, abba, baa, bba}

• For every n ≥ 0 we define Ln to be the set of words obtained by concatenating
n words from language L. A precise recursive definition:

L0 = {ε}
Ln = Ln−1L for every n ≥ 1.

For example,

{ab, b}3 =

• For every n ≥ 0 we define Ln to be the set of words obtained by concatenating
n words from language L. A precise recursive definition:

L0 = {ε}
Ln = Ln−1L for every n ≥ 1.

For example,

{ab, b}3 = {ababab, ababb, abbab, abbb, babab, babb, bbab, bbb}

• The Kleene closure L∗ of language L is the set containing words obtained
by concatenating any number of words from L together:

L∗ =

∞⋃
i=0

Li.

For example,

{ab, b}∗ = {ε, ab, b, abab, abb, bab, bb, ababab, ababb, . . . }

Note that if L = Σ then L∗ = Σ∗ is the set of all words over alphabet Σ. We
have already used this notation earlier!

• The positive closure L+ of L is

L+ =

∞⋃
i=1

Li,

i.e., concatenations of one or more words from L. For example,

{ab, b}+ = {ab, b, abab, abb, bab, bb, ababab, ababb, . . . }.

We have always
L∗ = L+ ∪ {ε}.

Also, we have always
L+ = LL∗.

• When are languages L∗ and L+ identical ?

• When are languages L∗ and L+ finite ?

• What language is ∅∗ ? What about ∅+ ?

• The union L1 ∪ L2 of languages L1 and L2 is just the usual union as sets.

Next we define regular expressions over alphabet Σ. They are syntactic
expressions that represent certain languages. If r is a regular expression then
we denote the language it represent as L(r).

Next we define regular expressions over alphabet Σ. They are syntactic
expressions that represent certain languages. If r is a regular expression then
we denote the language it represent as L(r).

∅ is a regular expression representing the empty language.

Next we define regular expressions over alphabet Σ. They are syntactic
expressions that represent certain languages. If r is a regular expression then
we denote the language it represent as L(r).

∅ is a regular expression representing the empty language.

ε is a regular expression and it represents the singleton language {ε}.

Next we define regular expressions over alphabet Σ. They are syntactic
expressions that represent certain languages. If r is a regular expression then
we denote the language it represent as L(r).

∅ is a regular expression representing the empty language.

ε is a regular expression and it represents the singleton language {ε}.

Every letter a of Σ is a regular expression representing the singleton language
{a}.

Next we define regular expressions over alphabet Σ. They are syntactic
expressions that represent certain languages. If r is a regular expression then
we denote the language it represent as L(r).

∅ is a regular expression representing the empty language.

ε is a regular expression and it represents the singleton language {ε}.

Every letter a of Σ is a regular expression representing the singleton language
{a}.

If r and s are arbitrary regular expressions then (r+s), (rs) and (r∗) are regular
expressions. If L(r) = R and L(s) = S then

L(r + s) = R ∪ S
L(rs) = RS
L(r∗) = R∗

We may remove parentheses from regular expressions using the following prece-
dence rules:

• the Kleene star ∗ has highest precedence,

• the concatenation has second highest precedence,

• the union + has lowest precedence.

We may remove parentheses from regular expressions using the following prece-
dence rules:

• the Kleene star ∗ has highest precedence,

• the concatenation has second highest precedence,

• the union + has lowest precedence.

Because concatenation and union are associative, we may

• simplify r(st) and (rs)t into rst, and

• simplify r + (s + t) and (r + s) + t into r + s + t.

Example.
(((ab)∗) + (a(ba)))((a∗)b) = ((ab)∗ + aba)a∗b.

Often we do not distinguish between a regular expression r and its language
L(r). We simplify notations by talking about language r.

Other shorthand notations:

• Expression rr∗ may be denoted as r+.

• Expression
n︷ ︸︸ ︷

rr . . . r may be abbreviated as rn.

Example. Construct a regular expression for the following languages over the
alphabet Σ = {a, b}:

1. L = {ab, ba}.

2. All words of Σ.

3. All words that start with a and end in b.

4. All words that contain aba as a subword.

5. Words that start with ab and end in ba.

6. Words that contain two b’s separated by an even number of a’s.

Example. Conversely, describe in English the following languages:

1. a∗(ab)∗b∗

2. (ab + b)∗

3. (ε + b)(ab)∗(ε + a)

Regular expressions can define exactly the same languages as DFA, NFA and
ε-NFA, i.e., the regular languages.

Theorem (Kleene 1956). Language L is recognized by some DFA (NFA,
ε-NFA) if and only if there exists a regular expression for it.

Proof.

Theorem (Kleene 1956). Language L is recognized by some DFA (NFA,
ε-NFA) if and only if there exists a regular expression for it.

Proof. To prove the theorem we show two directions:

(A) We show how to effectively construct for any given regular expression an
equivalent ε-NFA.

(B) We show how to effectively construct for any given DFA an equivalent
regular expression.

Together with our earlier proofs ε-NFA −→ NFA and NFA −→ DFA, con-
structions (A) and (B) allow us to transform any of the 4 devices into each
other:

ɛ NFA DFA

regular expressions
(A) (B)

-NFA

(A) Regular expression −→ ε-NFA.

By induction on the size of the regular expression r we construct an ε-NFA A
that has a single final state such that L(A) = L(r).

1. Base case. Below are diagrams for automata that recognize ∅, {ε} and
{a}. Every machine has exactly one final state:

a

r=ar=0 r=

2. Inductive step. Assume we have ε-NFAA1 andA2 for regular expressions
s and t, both with a single final state.

This is how we construct an ε-NFA for the union s + t:

1
q

q
2f

1f

2
2

A

1
A

This is an ε-NFA for the concatenation st:

2
A f2

q
2

A1
q

1 1f

Finally, let A accept s. This is an ε-NFA for the Kleene star s∗:

fq A

All constructions above work, and the resulting ε-NFA have exactly one final
state. Using these constructions we can build an ε-NFA for any given regular
expression. This completes the proof of (A).

Example. Let us construct an ε-NFA for regular expression

(abb∗ + a)∗.

(B) DFA −→ Regular expression

Let
A = (Q,Σ, δ, q0, F)

be the given DFA. States can be renamed as integers from 1 to n:

Q = {1, 2, . . . , n}.

In this construction we build regular expressions for the following languages Rk
ij:

Rk
ij = {w | w takes the automaton from state i to state j without

passing through any states greater than k.}.

”Passing through” a state means that the node is along the computation path,
excluding the starting and ending points.

Rk
ij = {w | w takes the automaton from state i to state j without

passing through any states greater than k.}.

Example. In

a

b

1

a,b

32
a

b

the word bbab belongs to R2
33 but the word word baaab does not.

Also the word bbaba is not in R2
33 since its computation path does not end in

state 3.

We construct regular expressions rkij for the languages R
k
ij. We start with k = 0

and then move up to larger values of k.

We construct regular expressions rkij for the languages R
k
ij. We start with k = 0

and then move up to larger values of k.

1) k = 0. Language R0
ij contains all words that take the automaton from state

i into state j without going through any states at all. Only possible input
words are ε (if i = j) and single letters a (if δ(i, a) = j).

If a1, a2, . . . , ap are the input letters with transitions from state i to j then R0
ij

has regular expression

• a1 + a2 + · · · + ap if i ̸= j and p ≥ 1,

• ∅ if i ̸= j and p = 0,

• ε + a1 + a2 + · · · + ap if i = j and p ≥ 1,

• ε+ if i = j and p = 1.

Example. In

a

b

1

a,b

32
a

b

we have

r011 =
r012 =
r013 =
r021 =
r022 =
r023 =
r031 =
r032 =
r033 =

Example. In

a

b

1

a,b

32
a

b

we have

r011 = ε + b
r012 = a
r013 = ∅
r021 = ∅
r022 = ε
r023 = a + b
r031 = b
r032 = a
r033 = ε

2) k > 0, and assume we have constructed regular expressions for all Rk−1
ij .

Consider an arbitrary computation path from state i into state j that only goes
through states {1, 2, . . . , k}. Let us cut the path into segments at points where
it goes through state k:

i jk

All segments only go through states {1, 2, . . . , k − 1}. The first segment is in
the set Rk−1

ik , and the last segment belongs to Rk−1
kj . All middle segments start

and end in state k, so they belong to Rk−1
kk . Number of middle segments can be

arbitrary.

i jk

So words of Rk
ij that visit k at least once form the language Rk−1

ik

(
Rk−1

kk

)∗
Rk−1

kj .

We also must include words that do not visit state k even once, i.e., Rk−1
ij .

i jk

So words of Rk
ij that visit k at least once form the language Rk−1

ik

(
Rk−1

kk

)∗
Rk−1

kj .

We also must include words that do not visit state k even once, i.e., Rk−1
ij .

In total: Rk
ij = Rk−1

ik

(
Rk−1

kk

)∗
Rk−1

kj ∪ Rk−1
ij

So the language Rk
ij is defined by the regular expression

rkik = rk−1ik (rk−1kk)∗ rk−1kj + rk−1ij

Example.

a

b

1

a,b

32
a

b

r011 = ε + b r111 = r211 = r311 =

r012 = a r112 = r212 = r312 =

r013 = ∅ r113 = r213 = r313 =

r021 = ∅ r121 = r221 = r321 =

r022 = ε r122 = r222 = r322 =

r023 = a + b r123 = r223 = r323 =

r031 = b r131 = r231 = r331 =

r032 = a r132 = r232 = r332 =

r033 = ε r133 = r233 = r333 =

The regular expression rnij represents all strings that take the automaton from
state i to state j through any states. If i = 1 is the initial state then rn1j
represents strings whose computation paths finish in state j.

If states j1, j2, . . . , jf are the final states of the DFA then the language recog-
nized by the automaton is represented by the expression

rn1j1 + rn1j2 + · · · + rn1jf .

These are all words that take the machine from the initial state to some final
state, using any states whatsoever on the way.

Example.

a

b

1

a,b

32
a

b

The language recognized by this DFA is given by regular expression

r312 + r313 =

The construction provides huge regular expressions even for small automata.
It is a good idea to simplify the expressions rkij as you go along. Following
simplifications are especially useful.

For any regular expressions r, s and t, both sides of following simplification
rules describe the same language:

ε∗ −→ ε
εr, rε −→ r
(r + ε)∗ −→ r∗

∅r, r∅ −→ ∅
∅ + r, r + ∅ −→ r
r(s + t) −→ rs + rt
(s + t)r −→ sr + tr
(r + ε)r∗, r∗(r + ε) −→ r∗

Also, one may only construct only those expressions rkij that are actually needed.

For example, in our sample DFA we only need two regular expressions r312 and
r313 at level k = 3.

At level k = 2 we only need to construct expressions that are used at level 3:
In our case r212, r

2
13, r

2
33 and r232. And so on.

Example. Let us find a regular expression equivalent to the following DFA:

1 2 3
b

a

a,b

a

b

Another language equation based method to construct a regular expression
from a DFA. Again,we number the states from 1 to n:

Q = {1, 2, . . . , n},

and assume that 1 is the initial state.

For every i, j ∈ Q, denote

Li = {w ∈ Σ∗ | δ(1, w) = i}

and
Kij = {a ∈ Σ | δ(i, a) = j}.

Then the following equalities of languages hold:

L1 = L1K11 ∪ L2K21 ∪ . . . ∪ LnKn1 ∪ {ε},
L2 = L1K12 ∪ L2K22 ∪ . . . ∪ LnKn2,

...
Ln = L1K1n ∪ L2K2n ∪ . . . ∪ LnKnn.

In each equation the language on the left and on the right are identical. The
languages Kij can be read directly from the given DFA – they are a represen-
tation of the transitions. The languages Li are unknowns that we want to solve
from the system of equations.

L1 = L1K11 ∪ L2K21 ∪ . . . ∪ LnKn1 ∪ {ε},
L2 = L1K12 ∪ L2K22 ∪ . . . ∪ LnKn2,

...
Ln = L1K1n ∪ L2K2n ∪ . . . ∪ LnKnn.

Note that the languages Kij do not contain the empty word ε. It turns out for
suchKij the languages Li are uniquely determined from the system of equations.

The following lemma states this for the case n = 1:

Lemma. Let K,L ⊆ Σ∗ be languages, and assume that ε ̸∈ K. Then
X = LK∗ is the unique language for which the equality X = XK ∪ L holds.

Proof.

L1 = L1K11 ∪ L2K21 ∪ . . . ∪ LnKn1 ∪ {ε},
L2 = L1K12 ∪ L2K22 ∪ . . . ∪ LnKn2,

...
Ln = L1K1n ∪ L2K2n ∪ . . . ∪ LnKnn.

Using the Lemma on the first equation one may solve L1, substitute the solution
to the other equations, solve L2 from the second equation, substitute it, and so
on.

Example. Let us use the method of language equations to find a regular
expression for the language recognized by

a

b

1

a,b

32
a

b

The pumping lemma

We have learned four types of devices for defining formal languages, and we
have proved that all of them are able to describe exactly same languages, called
regular languages.

We have procedures for converting any device into an equivalent device of any
other type. The conversion procedures are mechanical algorithms in the sense
that one can write a computer program that performs any conversion.

We say the devices are effectively equivalent.

It is usually fairly straightforward to prove that some language L is regular:
one only needs to design a finite automaton (DFA, NFA or ε-NFA) or a regular
expression, and to show that it defines language L.

But what about the opposite problem: How does one show that some lan-
guage L is not regular? One needs to show that there does not exist any device
that defines L, but one cannot try all DFA one-by-one because there are in-
finitely many of them.

(In general, proving that something cannot be done is harder than proving that
it can be done, and that makes the negative question more interesting.)

Example. The language

L = {anbn | n ≥ 0}

contains all words that begin with any number of a’s, followed by equally many
b’s. Let us show that there does not exist any DFA that recognizes L.

Example. The language

L = {anbn | n ≥ 0}

contains all words that begin with any number of a’s, followed by equally many
b’s. Let us show that there does not exist any DFA that recognizes L.

Informally: A DFA that accepts L should first count the number of a’s in the
beginning of the word. But a DFA has only finitely many states, so it will get
confused: Some ai and aj take the DFA to the same state, and then it can no
longer remember whether it saw i or j letters a. Since the DFA accepts input
word aibi, it also accepts input word ajbi, which is not in the language. So the
DFA works incorrectly.

Example. L = {anbn | n ≥ 0}

More precisely: Assume that there exists a DFA

A = (Q,Σ, δ, q0, F)

such that L = L(A). Let n be the number of states in Q. Consider the
accepting path for the input word anbn.

0
q

1a a
q

bna
q

b

Let qj be the state of A after reading the first j input letters a.

Example. L = {anbn | n ≥ 0}

There are n + 1 states q0, q1, . . . , qn but the DFA has only n different states,
so two of the states must be identical. (This is the pigeon hole principle:
if you have more pigeons than holes then two or more pigeons have to share a
hole.)

Let qj and qk be two identical states, where j < k:

n-ka

k-ja

na
j

kj

b
q
0 n

q=qq

Example. L = {anbn | n ≥ 0}

There are n + 1 states q0, q1, . . . , qn but the DFA has only n different states,
so two of the states must be identical. (This is the pigeon hole principle:
if you have more pigeons than holes then two or more pigeons have to share a
hole.)

Let qj and qk be two identical states, where j < k:

n-ka

k-ja

na
j

kj

b
q
0 n

q=qq

The word ak−j loops the DFA at state qj = qk. The loop can be repeated
arbitrarily many times, always getting an accepting computation. For example,
if we repeat the loop 0 times we have accepting computation for the word

ajan−kbn = an−(k−j)bn.

This word is not in language L because k− j ̸= 0. Therefore the DFA A is not
correct: the language it recognizes is not L.

Similar ”confused in counting” argument works with many other languages
as well. Instead of always repeating the argument like above, we formulate
the argumentation as a theorem known as the pumping lemma. (Word
”pumping” refers to the fact that the loop can be repeated, or ”pumped”,
arbitrarily many times.)

Pumping lemma states a property that every regular language has. If a language
does not have that property then the language is not regular.

Pumping lemma. Let L be a regular language. Then there exists some
positive constant n such that every word z of length n or greater that belongs
to language L can be divided into three segments

z = uvw

in such a way that {
|uv| ≤ n, and
v ̸= ε,

(∗)

and for all i ≥ 0 the word uviw is in language L.

(So every long enough word in L contains a non-empty subword that can be
pumped arbitrarily many times, and the result always belongs to L.)

Proof of the pumping lemma. Let L be a regular language. Then it is
accepted by some DFA A. Let n be the number of states in A.

Consider an arbitrary word z ∈ L such that |z| ≥ n. We have to show how to
divide z into three segments in such a way that (∗) is satisfied.

We argue as follows: Let qj be the state of the machine after the first j input
letters of z have been read. The machine has n states so the pigeon hole principal
tells that there must exist two identical states among q0, q1, . . . , qn, say qj = qk
for some j < k ≤ n:

0
q

u

v

kj
=qq

w

We divide the input word z into three segments in a natural way: u consists of
the first j letters, v of the following k − j letters, and w is the remaining tail.
This division satisfies (∗):

|uv| = k ≤ n, and
v ̸= ε because |v| = k − j > 0.

The loop can be repeated i times for any i, so uviw ∈ L for all i ≥ 0.

The pumping lemma gives a property satisfied by every regular language. There-
fore, if language L does not satisfy the pumping lemma then L is not regular.
We can use the pumping lemma to show that certain languages are not regular.

We can not use the pumping lemma to prove that a language L is regular. The
property is not ”if and only if”: There are some non-regular languages that
satisfy the pumping lemma.

the pumping lemma

Languages that satisfy

Regular languages

All languages

If you show that L satisfies the pumping lemma then language L can still be
non-regular. But if you show that L does not satisfy the pumping lemma then
L is guaranteed not to be regular.

So we are more interested in the negation of the pumping lemma. The pumping
lemma says that if L is regular then

(∃n)(∀z . . .)(∃u, v, w . . .)(∀i)uviw ∈ L.

Therefore if L satisfies the opposite statement

(∀n)(∃z . . .)(∀u, v, w . . .)(∃i)uviw ̸∈ L

then L is not regular.

So we are more interested in the negation of the pumping lemma. The pumping
lemma says that if L is regular then

(∃n)(∀z . . .)(∃u, v, w . . .)(∀i)uviw ∈ L.

Therefore if L satisfies the opposite statement

(∀n)(∃z . . .)(∀u, v, w . . .)(∃i)uviw ̸∈ L

then L is not regular.

This is what you do to show that L is not regular:

(1) For every n, select a word z ∈ L, |z| ≥ n.

(2) Show that for every division z = uvw where |uv| ≤ n and v ̸= ε there
exists a number i such that

uviw

is not in language L.

If you can do (1) and (2) then L does not satisfy the pumping lemma, and L is
not regular.

Example. Consider again L = {anbn | n ≥ 0}.

(1) For any given n select z = anbn. The choice is good since z ∈ L and |z| ≥ n.

(2) Consider an arbitrary division of z into three part z = uvw where

|uv| ≤ n and v ̸= ε.

Then necessarily u = aj and uv = ak for some j and k, and j < k.

Choosing i = 0 gives
uviw = uw = an−(k−j)bn

which does not belong to L.

Example 2. Let us prove that

L = {am2 | m ≥ 1} = {a, a4, a9, a16, . . . }

is not regular.

Example 2. Let us prove that

L = {am2 | m ≥ 1} = {a, a4, a9, a16, . . . }

is not regular.

(1) For given n let us choose

z = an
2
.

Example 2. Let us prove that

L = {am2 | m ≥ 1} = {a, a4, a9, a16, . . . }

is not regular.

(1) For given n let us choose

z = an
2
.

(2) Consider an arbitrary division z = uvw that satisfies

|uv| ≤ n and v ̸= ε.

Let k denote the length of v. It follows from that 0 < k ≤ n.

Pump v with i =

Example 2. Let us prove that

L = {am2 | m ≥ 1} = {a, a4, a9, a16, . . . }

is not regular.

(1) For given n let us choose

z = an
2
.

(2) Consider an arbitrary division z = uvw that satisfies

|uv| ≤ n and v ̸= ε.

Let k denote the length of v. It follows from that 0 < k ≤ n.

Pump v with i = 2. Then

uviw = uvvw = an
2+k

Because
n2 = n2 + 0 < n2 + k ≤ n2 + n < (n + 1)2

number n2 + k is not a square of any integer. (It falls between two consecutive
squares.) Therefore uv2w does not belong to L.

Some more examples:

1. Is the language L = {ww | w ∈ {a, b}∗} regular ?

2. Is the language L = {ww | w ∈ {a}∗} regular ?

3. Is the language L = {ap | p is a prime number} regular ?

Closure properties

It follows from the definition of regular expressions that the union L1 ∪ L2

of any two regular languages L1 and L2 is regular. Namely, if r1 and r2 are
regular expressions for L1 and L2 then r1 + r2 is a regular expression for the
union L1 ∪ L2.

In the same way, the concatenation of two regular languages is always regular:
r1r2 is a regular expression for the concatenation.

We say that the family of regular languages is closed under union and con-
catenation.

In general, let Op denote some language operation, that is, an operation
whose operands and result are all formal languages.

We say that a family F of languages is closed under the operation Op if

L1, L2, · · · ∈ F =⇒ Op(L1, L2, . . .) ∈ F .

(E.g., the family of regular languages is closed under operation Op if the result
after applying Op on regular languages is always a regular language.)

In general, let Op denote some language operation, that is, an operation
whose operands and result are all formal languages.

We say that a family F of languages is closed under the operation Op if

L1, L2, · · · ∈ F =⇒ Op(L1, L2, . . .) ∈ F .

(E.g., the family of regular languages is closed under operation Op if the result
after applying Op on regular languages is always a regular language.)

Next we investigate the closure properties of regular languages under some
common operations. We start the familiar boolean operations: union, inter-
section and complement. We already know the closure under union.

Consider next the complement. Let L ⊆ Σ∗ be a regular language over
alphabet Σ. Is its complement

L̄ = Σ∗ \ L = {w ∈ Σ∗ | w ̸∈ L}

necessarily regular?

Consider next the complement. Let L ⊆ Σ∗ be a regular language over
alphabet Σ. Is its complement

L̄ = Σ∗ \ L = {w ∈ Σ∗ | w ̸∈ L}
necessarily regular?

The answer is yes, the family of regular languages is closed under complement.

Consider a DFA A that recognizes L. Without loss of generality we may
assume that A uses alphabet Σ, the same alphabet relative to which the com-
plement is defined.

Every input word w takes A to some state q. The word w is accepted if and
only if state q is among the final states.

Let us change A by making every final state a non-final state, and vice versa:

final ←→ non-final

The new DFA accepts word w if and only if the original DFA did not accept w.
So the new DFA recognizes the complement of L.

Example. Let us find a DFA for the complement

{a, b}∗ \ L(A)

of the language L(A) recognized by DFA

q
a a

p

b

b a,b

r

Example. Let us find a DFA for the complement

{a, b}∗ \ L(A)

of the language L(A) recognized by DFA

q
a a

p

b

b a,b

r

This DFA recognizes the complement of L(A):

q
a a

p

b

b a,b

r

What about intersection ? Elementary set theory (de Morgan’s law) tells
us how to use union and complement to do intersection. For any languages L1

and L2

L1 ∩ L2 = L̄1 ∪ L̄2

So

L1 and L2 regular =⇒ L̄1 and L̄2 regular =⇒ L̄1 ∪ L̄2 regular =⇒ L̄1 ∪ L̄2 regular

Remark. All closures so far are effective in the sense that we can algorith-
mically construct the result of the operation on any given regular languages.

• The union can be constructed by inserting a plus sign between the regular
expressions of the input languages,

• the complement can be formed by swapping the final states of a DFA,

• the intersection can be done by performing a sequence of effective operations
for union and complementation.

It is irrelevant which description we use for the operands: they may be given as
a DFA, NFA, ε-NFA or regular expression. All formats are effectively equivalent
since we can mechanically convert any device into an equivalent device of any
other type.

We say that the family of regular languages is effectively closed under op-
eration Op if there exists an algorithm (=mechanical procedure) that produces
the result of the operation for any given regular input languages. The format of
the inputs and outputs can be arbitrary since we have algorithms for converting
from one format to any other.

We have proved the following theorem:

Theorem. The family of regular languages is effectively closed under union,
concatenation, Kleene star, complementation and intersection.

The closure properties can be used in proving languages regular. It is enough
to show how to build the language from known regular languages using above
operations.

Example. The language L containing all words over the English alphabet

Σ = {a, b, c, . . . , z}

that do not contain the word utu as a subword is regular. Namely, it is the
complement of the language

Σ∗utuΣ∗

of all words that do contain utu as a subword.

We can also use closure properties to show that some languages are not regular.

Example. Let us show that

L = {ancmbn | n,m ≥ 0}

is not regular.

Assume the contrary: assume that L is regular. Then also the language

L ∩ a∗b∗

is regular because the family of regular languages is closed under intersection
and a∗b∗ is regular. But we already know that

L ∩ a∗b∗ = {anbn | n ≥ 0}

is not regular. Therefore our assumption that L is regular has to be false.

Another example. The language

L = {ap−1 | p is a prime number }

is not regular.

+ If you start with known regular languages, apply operations (under which
reg. languages are closed) and end up with language L, then L is a regular
language.

+ If you start with L, apply operations to L and known regular languages, and
end up with a language that is known to be non-regular, then L is non-regular.

+ If you start with known regular languages, apply operations (under which
reg. languages are closed) and end up with language L, then L is a regular
language.

+ If you start with L, apply operations to L and known regular languages, and
end up with a language that is known to be non-regular, then L is non-regular.

BUT DO NOT USE THE WRONG DIRECTION:

− Starting with L and applying operations on L and regular languages you end
up with a known regular language. This does not prove a thing about L: it can
be either regular or non-regular.

− Starting with known non-regular languages you apply operations and end up
with L. Also this does not prove anything about L.

Next we introduce some new language operations.

Let Σ and ∆ be two alphabets. A homomorphism is a function

h : Σ −→ ∆∗,

that assigns to each letter a ∈ Σ a word h(a) ∈ ∆∗.

Homomorphisms are applied to words by coding each letter separately and
concatenating the results together:

h(a1a2 . . . an) = h(a1)h(a2) . . . h(an)

Example. Homomorphism

h(a) = 0,
h(b) = 01

is from Σ = {a, b} to ∆ = {0, 1}. We have

h(ba) =
h(babba) =
h(ε) =

Example. Homomorphism

h(a) = 0,
h(b) = 01

is from Σ = {a, b} to ∆ = {0, 1}. We have

h(ba) = 010
h(babba) = 01001010
h(ε) = ε

Homomorphisms are applied to languages as well: The homomorphic image
h(L) of a language L consists of all homomorphic images of all L’s words:

h(L) = {h(w) | w ∈ L} =
⋃
w∈L

{h(w)}

Homomorphisms are applied to languages as well: The homomorphic image
h(L) of a language L consists of all homomorphic images of all L’s words:

h(L) = {h(w) | w ∈ L} =
⋃
w∈L

{h(w)}

Example. Our sample homomorphism

h(a) = 0,
h(b) = 01

gives

h(b + ab + bbb) = h({b, ab, bbb}) =
h(b∗) = h({ε, b, bb, bbb, . . . }) =
h(a∗b + bb) =

Homomorphisms are applied to languages as well: The homomorphic image
h(L) of a language L consists of all homomorphic images of all L’s words:

h(L) = {h(w) | w ∈ L} =
⋃
w∈L

{h(w)}

Example. Our sample homomorphism

h(a) = 0,
h(b) = 01

gives

h(b + ab + bbb) = h({b, ab, bbb}) = {01, 001, 010101} = 01 + 001 + 010101
h(b∗) = h({ε, b, bb, bbb, . . . }) = {ε, 01, 0101, 010101, . . . } = (01)∗

h(a∗b + bb) = 0∗01 + 0101

A substitution is a generalization of the notion of homomorphism. A substi-
tution assigns a language to each letter. For example

s(a) = 0 + 11
s(b) = 0∗10∗

A substitution is a generalization of the notion of homomorphism. A substi-
tution assigns a language to each letter. For example

s(a) = 0 + 11
s(b) = 0∗10∗

A substitution s is regular if s(a) is a regular language for each a ∈ Σ. It is
a finite substitution if s(a) is a finite language for each a ∈ Σ.

A substitution is a generalization of the notion of homomorphism. A substi-
tution assigns a language to each letter. For example

s(a) = 0 + 11
s(b) = 0∗10∗

A substitution s is regular if s(a) is a regular language for each a ∈ Σ. It is
a finite substitution if s(a) is a finite language for each a ∈ Σ.

Substitution s is applied to words by applying it to each letter separately
and concatenating the results (which are languages!) together:

s(a1a2 . . . an) = s(a1)s(a2) . . . s(an).

A substitution is a generalization of the notion of homomorphism. A substi-
tution assigns a language to each letter. For example

s(a) = 0 + 11
s(b) = 0∗10∗

A substitution s is regular if s(a) is a regular language for each a ∈ Σ. It is
a finite substitution if s(a) is a finite language for each a ∈ Σ.

Substitution s is applied to words by applying it to each letter separately
and concatenating the results (which are languages!) together:

s(a1a2 . . . an) = s(a1)s(a2) . . . s(an).

Finally, substitution s applied to a language L is the language consisting
of all words that can be obtained by applying the substitution on L’s words:

s(L) = {u | u ∈ s(w) for some w ∈ L } =
⋃
w∈L

s(w).

A substitution is a generalization of the notion of homomorphism. A substi-
tution assigns a language to each letter. For example

s(a) = 0 + 11
s(b) = 0∗10∗

A substitution s is regular if s(a) is a regular language for each a ∈ Σ. It is
a finite substitution if s(a) is a finite language for each a ∈ Σ.

Substitution s is applied to words by applying it to each letter separately
and concatenating the results (which are languages!) together:

s(a1a2 . . . an) = s(a1)s(a2) . . . s(an).

Finally, substitution s applied to a language L is the language consisting
of all words that can be obtained by applying the substitution on L’s words:

s(L) = {u | u ∈ s(w) for some w ∈ L } =
⋃
w∈L

s(w).

Remark: Every homomorphism is a special type of substitution where each
s(a) consists of a single word.

Example.

s(a) = 0 + 11 f (a) = 000 + 11
s(b) = 0∗10∗ f (b) = 01 + ε

are substitutions from Σ = {a, b} to ∆ = {0, 1}.

Here, s is a regular substitution and f is a finite substitution. (Of course, every
finite substitution is also regular.)

Example.

s(a) = 0 + 11 f (a) = 000 + 11
s(b) = 0∗10∗ f (b) = 01 + ε

are substitutions from Σ = {a, b} to ∆ = {0, 1}.

Here, s is a regular substitution and f is a finite substitution. (Of course, every
finite substitution is also regular.)

f (ba) =
s(aba) =
s(ε) =

Example.

s(a) = 0 + 11 f (a) = 000 + 11
s(b) = 0∗10∗ f (b) = 01 + ε

are substitutions from Σ = {a, b} to ∆ = {0, 1}.

Here, s is a regular substitution and f is a finite substitution. (Of course, every
finite substitution is also regular.)

f (ba) = (01 + ε)(000 + 11) = {01000, 0111, 000, 11}
s(aba) = (0 + 11)0∗10∗(0 + 11)
s(ε) = {ε}

s(ba + aba) = s(ba) ∪ s(aba) =
f (ba∗) =
s(ab + b∗) =
s(ε) =
s(∅) =

Example.

s(a) = 0 + 11 f (a) = 000 + 11
s(b) = 0∗10∗ f (b) = 01 + ε

are substitutions from Σ = {a, b} to ∆ = {0, 1}.

Here, s is a regular substitution and f is a finite substitution. (Of course, every
finite substitution is also regular.)

f (ba) = (01 + ε)(000 + 11) = {01000, 0111, 000, 11}
s(aba) = (0 + 11)0∗10∗(0 + 11)
s(ε) = {ε}

s(ba + aba) = s(ba) ∪ s(aba) = 0∗10∗(0 + 11) + (0 + 11)0∗10∗(0 + 11)
f (ba∗) = (01 + ε)(000 + 11)∗

s(ab + b∗) = (0 + 11)0∗10∗ + (0∗10∗)∗

s(ε) = {ε}
s(∅) = ∅

Lemma. For any substitution s and languages L and K

s(L ∪K) = s(L) ∪ s(K),
s(LK) = s(L)s(K),
s(L∗) = s(L)∗.

Lemma. For any substitution s and languages L and K

s(L ∪K) = s(L) ∪ s(K),
s(LK) = s(L)s(K),
s(L∗) = s(L)∗.

Corollary. If L is a regular language and s a regular substitution then s(L) is
(effectively) a regular language. In other words, the family of regular languages
is effectively closed under regular substitutions.

Proof. Induction on the size of the regular expression r for the language L.

Lemma. For any substitution s and languages L and K

s(L ∪K) = s(L) ∪ s(K),
s(LK) = s(L)s(K),
s(L∗) = s(L)∗.

Corollary. If L is a regular language and s a regular substitution then s(L) is
(effectively) a regular language. In other words, the family of regular languages
is effectively closed under regular substitutions.

Proof. Induction on the size of the regular expression r for the language L.

A regular expression for s(L) is obtained by replacing every occurrence of every
letter a in the regular expression r for L by the regular expression ra for the
language s(a). For example,

s(a∗b + bb) = s(a∗b) + s(bb)
= s(a∗)s(b) + s(b)s(b)
= s(a)∗s(b) + s(b)s(b)
= r∗arb + rbrb.

Corollary. The family of regular languages is closed under homomorphisms.

Proof. Every homomorphism is a regular substitution.

Corollary. The family of regular languages is closed under homomorphisms.

Proof. Every homomorphism is a regular substitution.

Example. Using homomorphisms and substitutions

h(a) = 0 s(a) = 0 + 11 f (a) = 000 + 11
h(b) = 01 s(b) = 0∗10∗ f (b) = 01 + ε

we have

h((ab∗aa + b)∗ + aba) =
s(ab∗ + bba) =
f (∅ + ε + a) =

Corollary. The family of regular languages is closed under homomorphisms.

Proof. Every homomorphism is a regular substitution.

Example. Using homomorphisms and substitutions

h(a) = 0 s(a) = 0 + 11 f (a) = 000 + 11
h(b) = 01 s(b) = 0∗10∗ f (b) = 01 + ε

we have

h((ab∗aa + b)∗ + aba) = (0(01)∗00 + 01)∗ + 0010
s(ab∗ + bba) = (0 + 11)(0∗10∗)∗ + 0∗10∗0∗10∗(0 + 11)
f (∅ + ε + a) = ∅ + ε + 000 + 11

Closure under homomorphisms and regular substitutions can be used in proving
non-regularity of languages.

Example. Let us prove that

L = {(ab)p | p is a prime number }

is not regular. We already know that

Lp = {ap | p is a prime number }

is not regular, so let us reduce L into Lp.

Closure under homomorphisms and regular substitutions can be used in proving
non-regularity of languages.

Example. Let us prove that

L = {(ab)p | p is a prime number }

is not regular. We already know that

Lp = {ap | p is a prime number }

is not regular, so let us reduce L into Lp.

Assume that L is regular. Then also h(L) is regular where h is the homomor-
phism

h(a) = a,
h(b) = ε.

But h(L) = Lp, which is not regular. Therefore L is not regular either.

Our next language operation: the inverse homomorphism.

Let h be a homomorphism from Σ to ∆. The inverse homomorphism h−1 is
defined on languages of alphabet ∆.

For any L ⊆ ∆∗,
h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}

(The language h−1(L) consists of all words over Σ that are mapped by the
homomorphism h into L.)

If L contains only one word we may simply write h−1(w) instead of h−1({w}).

Example. Using the homomorphism

g(a) = 01,
g(b) = 011,
g(c) = 101

we have

g−1(011101) =
g−1(01101) =
g−1(010) =
g−1((10)∗1) =

Example. Using the homomorphism

g(a) = 01,
g(b) = 011,
g(c) = 101

we have

g−1(011101) = {bc}
g−1(01101) = {ac, ba}
g−1(010) = ∅
g−1((10)∗1) = ca∗

Theorem. The family of regular languages is (effectively) closed under inverse
homomorphism.

Proof. Let L be a regular language, and h a homomorphism. Let A be a DFA
recognizing L. We construct a DFA A′ that recognizes h−1(L).

Theorem. The family of regular languages is (effectively) closed under inverse
homomorphism.

Proof. Let L be a regular language, and h a homomorphism. Let A be a DFA
recognizing L. We construct a DFA A′ that recognizes h−1(L).

A′ has the same states as A. Also the initial state and final states are identical.
Only the transitions are different: an input symbol a from state q takes A′ into
the same state that the input word h(a) takes A from the same state q:

δ′(q, a) = δ(q, h(a)).

q

a

p

h(a)

p

q

In A′ In A

Computations by A′ simulate computations by A: After reading input

w = a1a2 . . . an

A′ is in the same state as A is after reading the input

h(w) = h(a1)h(a2) . . . h(an).

Since the same states are final states in both machines, DFA A′ accepts w if
and only if DFA A accepts h(w).

In other words, the language recognized by A′ is h−1(L).

Example. Let
h(0) = ab,
h(1) = abb,
h(2) = bab,

and let language L be defined by the DFA A

b

b

b

a

aa

Let us construct a DFA A′ that recognizes h−1(L).

Example. Let us prove that the language

L = {0n102n | n ≥ 0}

is not regular. Define the homomorphism h:

h(a) = 0,
h(b) = 1,
h(c) = 00.

Then
h−1(L) ∩ a∗bc∗ =

Example. Let us prove that the language

L = {0n102n | n ≥ 0}

is not regular. Define the homomorphism h:

h(a) = 0,
h(b) = 1,
h(c) = 00.

Then
h−1(L) ∩ a∗bc∗ = {anbcn | n ≥ 0}

Let us denote this language by L1. If L is regular then also L1 is regular. Define
another homomorhism g:

g(a) = a,
g(b) = ε,
g(c) = b.

Then
g(L1) =

Example. Let us prove that the language

L = {0n102n | n ≥ 0}

is not regular. Define the homomorphism h:

h(a) = 0,
h(b) = 1,
h(c) = 00.

Then
h−1(L) ∩ a∗bc∗ = {anbcn | n ≥ 0}

Let us denote this language by L1. If L is regular then also L1 is regular. Define
another homomorhism g:

g(a) = a,
g(b) = ε,
g(c) = b.

Then
g(L1) = {anbn | n ≥ 0}

But this language is not regular, so L1 cannot be regular, which means that
L cannot be regular either. We only used operations that preserve regularity
(inverse homomorphism, intersection with a regular language, homomorphism).

Constructs of type
h−1(L) ∩R

are very useful. They contain all words of R that are mapped to L by homo-
morphism h:

h−1(L) ∩R = {w ∈ R | h(w) ∈ L}

Our next language operation is called quotient.

Let L1 and L2 be two languages. Their quotient L1/L2 is the language con-
taining all words obtained by removing from the end of L1’s words suffix that
belongs to L2.

L1/L2 = {w | wu ∈ L1 for some u ∈ L2}

Our next language operation is called quotient.

Let L1 and L2 be two languages. Their quotient L1/L2 is the language con-
taining all words obtained by removing from the end of L1’s words suffix that
belongs to L2.

L1/L2 = {w | wu ∈ L1 for some u ∈ L2}

Example. Let

L1 = abaa + aaa,
L2 = a + baa,
L3 = a∗ba∗.

Then

L1/L2 =
L2/L2 =
L3/L1 =
L3/L3 =
L2/L1 =

Our next language operation is called quotient.

Let L1 and L2 be two languages. Their quotient L1/L2 is the language con-
taining all words obtained by removing from the end of L1’s words suffix that
belongs to L2.

L1/L2 = {w | wu ∈ L1 for some u ∈ L2}

Example. Let

L1 = abaa + aaa,
L2 = a + baa,
L3 = a∗ba∗.

Then

L1/L2 = aba + aa + a
L2/L2 = ε + ba
L3/L1 = a∗ + a∗ba∗

L3/L3 = a∗

L2/L1 = ∅

Theorem. The family of regular languages is closed under quotient with
arbitrary languages.

In other words, if L1 is a regular language, and L2 any language (not necessarily
even regular) then L1/L2 is regular.

Proof.

Theorem. The family of regular languages is closed under quotient with
arbitrary languages.

In other words, if L1 is a regular language, and L2 any language (not necessarily
even regular) then L1/L2 is regular.

Proof. Let L1 be a regular language, and A a DFA recognizing L1. Let L2

be an arbitrary language. We show that there is a DFA A′ that recognizes the
quotient L′ = L1/L2.

Theorem. The family of regular languages is closed under quotient with
arbitrary languages.

In other words, if L1 is a regular language, and L2 any language (not necessarily
even regular) then L1/L2 is regular.

Proof. Let L1 be a regular language, and A a DFA recognizing L1. Let L2

be an arbitrary language. We show that there is a DFA A′ that recognizes the
quotient L′ = L1/L2.

DFA A′ has the same states and transitions as A. Also the initial state is the
same. Only the final states are different: A state q is made final in A′ if and
only if some word u ∈ L2 takes A from state q to some original final state.

w
q

some u from L
2

Clearly word w is accepted by A′ if and only if some wu is accepted by A for
some u ∈ L2. But this is equivalent to saying that w belongs to L1/L2: it is
obtained from word wu ∈ L1 by deleting word u ∈ L2 from the end. So

L(A′) = L1/L2.

Example. Let L1 be the regular language recognized by DFA

b

aa b

b

a

and let
L2 = {anbn | n ≥ 0}.

Language L1/L2 is recognized by a DFA that has same transitions as A above.
We only have to figure out which states are final:

b

aa b

b

a

Example. Let L1 be the regular language recognized by DFA

b

aa b

b

a

and let
L2 = {anbn | n ≥ 0}.

Language L1/L2 is recognized by a DFA that has same transitions as A above.
We only have to figure out which states are final:

b

aa b

b

a

Remark. Closure under quotient is not effective. If L2 is some complicated
language we may not have any way of determining which states to make final.

However, if both L1 and L2 are regular languages then L1/L2 can be constructed
effectively.

Example. The quotient L/R can also be expressed using homomorphisms,
finite substitutions, intersections and concatenations applied to L and R.

Let L,R ⊆ Σ∗. Let
Σ′ = {a′ | a ∈ Σ}

be a disjoint copy of Σ. (There is a′ in place of a for each a ∈ Σ). For any word
u = a1 . . . an let us denote u′ = a′1 . . . a

′
n.

Define homomorphism h from Σ to Σ′ by h(a) = a′ for all a ∈ Σ. Then for any
word u ∈ Σ∗ we have h(u) = u′. (So h marks all letters of a word.)

Example. The quotient L/R can also be expressed using homomorphisms,
finite substitutions, intersections and concatenations applied to L and R.

Let L,R ⊆ Σ∗. Let
Σ′ = {a′ | a ∈ Σ}

be a disjoint copy of Σ. (There is a′ in place of a for each a ∈ Σ). For any word
u = a1 . . . an let us denote u′ = a′1 . . . a

′
n.

Define homomorphism h from Σ to Σ′ by h(a) = a′ for all a ∈ Σ. Then for any
word u ∈ Σ∗ we have h(u) = u′. (So h marks all letters of a word.)

Define substitution s from Σ to Σ ∪ Σ′ as follows: s(a) = {a, a′} for all a ∈ Σ.
(The substitution s may mark some letters of a word.)

s(L) ∩ Σ∗h(R) = {uv′ | uv ∈ L and v ∈ R}

Example. The quotient L/R can also be expressed using homomorphisms,
finite substitutions, intersections and concatenations applied to L and R.

Let L,R ⊆ Σ∗. Let
Σ′ = {a′ | a ∈ Σ}

be a disjoint copy of Σ. (There is a′ in place of a for each a ∈ Σ). For any word
u = a1 . . . an let us denote u′ = a′1 . . . a

′
n.

Define homomorphism h from Σ to Σ′ by h(a) = a′ for all a ∈ Σ. Then for any
word u ∈ Σ∗ we have h(u) = u′. (So h marks all letters of a word.)

Define substitution s from Σ to Σ ∪ Σ′ as follows: s(a) = {a, a′} for all a ∈ Σ.
(The substitution s may mark some letters of a word.)

s(L) ∩ Σ∗h(R) = {uv′ | uv ∈ L and v ∈ R}

Define homomorphism g from Σ ∪ Σ′ to Σ by g(a) = a and g(a′) = ε for all
a ∈ Σ. (Now g erases all marked letters.)

g(s(L) ∩ Σ∗h(R)) = L/R.

Decision algorithms

In this section we present algorithms for determining whether a given regular
language is empty, finite or infinite. We also present an algorithm for deter-
mining whether two given regular languages are identical, i.e., whether they
contain exactly same words.

First we make the same observation as before: it does not matter in which
form the input language is represented. As a regular expression, DFA, NFA or
ε-NFA. All representations are effectively equivalent.

Theorem. There is an algorithm to determine if a given regular language is
empty.

Theorem. There is an algorithm to determine if a given regular language is
empty.

Proof 1. Given a DFA A that recognizes L, check if there exists a path from
the initial state to a final state. Such a path exists if and only if L ̸= ∅.

Theorem. There is an algorithm to determine if a given regular language is
empty.

Proof 2. Given a DFA A with n states that recognizes L, try all input words
w ∈ Σ∗ of length |w| < n and check if any of them is accepted by A. By a
homework problem, L ̸= ∅ if and only if some w is accepted by A.

(This is a very, very slow algorithm in practice. I gave it here only to show how
the homework problem can be used here.)

Theorem. There is an algorithm to determine if a given regular language is
empty.

Proof 3. We can also check emptyness directly from a regular expression r,
without converting it to a DFA first. Observe that

� If r = ε or r = a ∈ Σ then L(r) is not empty.

� If r = ∅ then L(r) is empty.

� If r = r1 + r2 then L(r) is empty if and only if both L(r1) and L(r2) are
empty.

� If r = r1r2 then L(r) is empty if and only if L(r1) or L(r2) is empty.

� If r = (r1)
∗ then L(r) is not empty. (Even ∅∗ is non-empty.)

A recursive algorithm based on these facts for the emptyness of L(r):

Empty(r)
Begin

if r = ε or r = a for some letter a then return(False)

if r = ∅ then return(True)

if r = r1 + r2 then return(Empty(r1) and Empty(r2))

if r = r1r2 then return(Empty(r1) or Empty(r2))

if r = r∗1 then return(False)

End

Example. Is the language represented by

(a∗∅b + a)(∅b)∗

empty ?

Consider then the equivalence problem. Some regular expressions stand for the
same language. For example, a(a + ba)∗ and (ab + a)∗a both define the same
language. How can we determine for any given two regular expressions correctly
if their languages are identical ?

Theorem. There is an algorithm to determine if two reqular languages are
the same.

Consider then the equivalence problem. Some regular expressions stand for the
same language. For example, a(a + ba)∗ and (ab + a)∗a both define the same
language. How can we determine for any given two regular expressions correctly
if their languages are identical ?

Theorem. There is an algorithm to determine if two reqular languages are
the same.

Proof. Let L1 and L2 be two regular languages (represented by finite automata
or regular expressions.) Using the effective closure properties proved earlier we
can construct a regular expression for their symmetric difference

L = (L1 \ L2) ∪ (L2 \ L1) = (L1 ∩ L̄2) ∪ (L2 ∩ L̄1).

2L
1L

Since L1 = L2 if and only if L is empty, we can use the algorithm for emptyness
to find out whether L1 and L2 are the same language.

Our last decision algorithm determines whether given regular language contains
finitely or infinitely many words. We know that every finite language is regular:

{w1, w2, . . . , wn} = L(w1 + w2 + · · · + wn).

Some regular languages are infinite, for example a∗. How do we determine
whether given regular language has infinitely many words ?

Theorem. There is an algorithm to determine if a given regular language is
infinite.

Theorem. There is an algorithm to determine if a given regular language is
infinite.

Proof 1. Given a DFA A that recognizes L, check if for some state p there
exists a path from the initial state to p, a cyacle containing p and a path from
p to a final state. Such an accepting path containing a cycle exists if and only
if L is infinite.

0
q p

Theorem. There is an algorithm to determine if a given regular language is
infinite.

Proof 2. Given a DFA A with n states that recognizes L, try all input words
w ∈ Σ∗ of length n ≤ |w| < 2n and check if any of them is accepted by A. By
a homework problem, L is infinite if and only if some w is accepted by A.

(Again, just to show how the homework problem can be used here. Do not try
this in practice.)

Theorem. There is an algorithm to determine if a given regular language is
infinite.

Proof 3. Testing if a given regular expression r represents an infinite language:

� If r = ε, r = a ∈ Σ or r = ∅ then L(r) is not infinite.

� If r = r1 + r2 then L(r) is infinite if and only if L(r1) or L(r2) is infinite.

� If r = r1r2 then L(r) is infinite if and only if L(r1) and L(r2) are non-empty,
and at least one of them is infinite.

� If r = (r1)
∗ then L(r) is infinite unless L(r1) is ∅ or {ε}.

A recursive algorithm based on these facts uses also as a subroutine our earlier
algorithms for emptyness and equivalence.

Infinite(r)
Begin

if r = ∅ or r = ε or r = a for some letter a then

return(False)

if r = r1 + r2 then

return(Infinite(r1) or Infinite(r2))

if r = r1r2 then

return((Infinite(r1) and not Empty(r2))

or (Infinite(r2) and not Empty(r1)))

if r = r∗1 then

return(not Empty(r1) and not Equal(r1,ε))

End

Example. An algorithm to test if every word accepted a given DFA A is also
accepted by another given DFA B.

Example. An algorithm to test if every word accepted a given DFA A is also
accepted by another given DFA B.

Example. An algorithm to test, for a given regular expression r, whether
every word is a concatenation of words that match r.

Myhill-Nerode theorem

A relation R on a set S is an equivalence relation if it is reflexive, symmetric
and transitive, i.e. if

� aRa for all a ∈ S,

� aRb implies bRa, and

� aRb and bRc imply aRc.

Myhill-Nerode theorem

A relation R on a set S is an equivalence relation if it is reflexive, symmetric
and transitive, i.e. if

� aRa for all a ∈ S,

� aRb implies bRa, and

� aRb and bRc imply aRc.

Example. With S = Z, the set of integers, and n is any fixed positive integer,
the congruence

a ≡ b (mod n)

is an equivalence relation. Namely,

� a ≡ a (mod n) for all a ∈ Z,
� if a ≡ b (mod n) then b ≡ a (mod n), and

� if a ≡ b (mod n) and b ≡ c (mod n)
then a ≡ c (mod n).

An equivalence relation R partitions S into disjoint equivalence classes such
that aRb if and only if a and b are in the same equivalence class. The equivalence
class containing a is denoted by [a]:

[a] = {b ∈ S | aRb}.

An equivalence relation R partitions S into disjoint equivalence classes such
that aRb if and only if a and b are in the same equivalence class. The equivalence
class containing a is denoted by [a]:

[a] = {b ∈ S | aRb}.

Example. The equivalence class containing integer i in the congruence
(mod n) relation is

[i] = {i + kn | k ∈ Z}.
There are n different equivalence classes of the integer congruence (mod):

[0] = {. . . ,−2n,−n, 0, n, 2n, . . . }
[1] = {. . . ,−2n + 1,−n + 1, 1, n + 1, 2n + 1, . . . }
.
[n− 1] = {. . . ,−n− 1,−1, n− 1, 2n− 1, 3n− 1, . . . }

The index of an equivalence relation is the number of equivalence classes. The
index can also be infinite.

Every language L ⊆ Σ∗ defines an equivalence relation RL on words of Σ∗:

w RL u

⇕

(∀x ∈ Σ∗) wx ∈ L if and only if ux ∈ L

Words w and u are in the relation RL iff exactly the same extensions x take
them to L.

Whether words w and u are in the relation RL for a given language L depends
on for which extensions x words wx and ux belong to L. Let us define the
language of good extensions x as

Ext(w,L) = {x | wx ∈ L}

Then w RL u if and only if

Ext(w,L) = Ext(u, L).

Example. Let L = aa + baa. Then

Ext(a, L) =
Ext(b, L) =
Ext(ba, L) =
Ext(ε, L) =
Ext(aa, L) =
Ext(aba, L) =

Example. Let L = aa + baa. Then

Ext(a, L) = {a}
Ext(b, L) = {aa}
Ext(ba, L) = {a}
Ext(ε, L) = {aa, baa}
Ext(aa, L) = {ε}
Ext(aba, L) = ∅

Are the following words in the relation RL ?

a and b ?
a and ba ?
a and ε ?

Example. Let L = aa + baa. Then

Ext(a, L) = {a}
Ext(b, L) = {aa}
Ext(ba, L) = {a}
Ext(ε, L) = {aa, baa}
Ext(aa, L) = {ε}
Ext(aba, L) = ∅

Are the following words in the relation RL ?

a and b ? No
a and ba ? Yes
a and ε ? No

What is the set of all words that are in relation RL with word a: [a] =?

What are the equivalence classes of relation RL ?

Example. Let L = aa + baa. Then

Ext(a, L) = {a}
Ext(b, L) = {aa}
Ext(ba, L) = {a}
Ext(ε, L) = {aa, baa}
Ext(aa, L) = {ε}
Ext(aba, L) = ∅

Are the following words in the relation RL ?

a and b ? No
a and ba ? Yes
a and ε ? No

What is the set of all words that are in relation RL with word a: [a] = {a, ba}

What are the equivalence classes of relation RL ?

{ε}, {a, ba}, {aa, baa}, {b}, {u | u is not a prefix of any word in L}

Another example. Let us find equivalence classes of RL for L = a∗b∗.

First, what are

Ext(a, L) =
Ext(a50, L) =
Ext(a50b, L) =
Ext(a50b20, L) =
Ext(b, L) =
Ext(ba, L) =

Another example. Let us find equivalence classes of RL for L = a∗b∗.

First, what are

Ext(a, L) = a∗b∗

Ext(a50, L) = a∗b∗

Ext(a50b, L) = b∗

Ext(a50b20, L) = b∗

Ext(b, L) = b∗

Ext(ba, L) = ∅

Now, what is Ext(w,L) if

w ∈ a∗ ?
w ∈ a∗b+ ?
w ̸∈ a∗b∗ ?

Another example. Let us find equivalence classes of RL for L = a∗b∗.

First, what are

Ext(a, L) = a∗b∗

Ext(a50, L) = a∗b∗

Ext(a50b, L) = b∗

Ext(a50b20, L) = b∗

Ext(b, L) = b∗

Ext(ba, L) = ∅

Now, what is Ext(w,L) if

w ∈ a∗ ? a∗b∗

w ∈ a∗b+ ? b∗

w ̸∈ a∗b∗ ? ∅

So what are the equivalence classes of RL ?

Another example. Let us find equivalence classes of RL for L = a∗b∗.

First, what are

Ext(a, L) = a∗b∗

Ext(a50, L) = a∗b∗

Ext(a50b, L) = b∗

Ext(a50b20, L) = b∗

Ext(b, L) = b∗

Ext(ba, L) = ∅

Now, what is Ext(w,L) if

w ∈ a∗ ? a∗b∗

w ∈ a∗b+ ? b∗

w ̸∈ a∗b∗ ? ∅

So what are the equivalence classes of RL ?

a∗, a∗b+, {u | u is not a prefix of any word in L}

One more example. Let us find the equivalence classes of RL for the lan-
guage

L = {w ∈ {a, b}∗ | w contains equally many a’s and b’s } .

One more example. Let us find the equivalence classes of RL for the lan-
guage

L = {w ∈ {a, b}∗ | w contains equally many a’s and b’s } .

Let us denote
|w|a = number of letters a in word w.

Consider languages

Ln = {w ∈ {a, b}∗ | |w|a − |w|b = n}

for different integers n. Clearly L = L0. Every word belongs to exactly one Ln.
Observe also that

LnLm ⊆ Ln+m.

It follows from the considerations above that if w ∈ Ln then

Ext(w,L) =

One more example. Let us find the equivalence classes of RL for the lan-
guage

L = {w ∈ {a, b}∗ | w contains equally many a’s and b’s } .

Let us denote
|w|a = number of letters a in word w.

Consider languages

Ln = {w ∈ {a, b}∗ | |w|a − |w|b = n}

for different integers n. Clearly L = L0. Every word belongs to exactly one Ln.
Observe also that

LnLm ⊆ Ln+m.

It follows from the considerations above that if w ∈ Ln then

Ext(w,L) = L−n

Therefore Ext(w,L) and Ext(u, L) are identical if and only if w and u belong
to the same set Ln. In other words, the equivalence classes of RL are languages
Ln for all n ∈ Z.

Note that in this case there are infinitely many equivalence classes.

Theorem. Language L is regular if and only if the index of RL is finite. The
index is the smallest possible number of states of a DFA recognizing L.

Proof.

Theorem. Language L is regular if and only if the index of RL is finite. The
index is the smallest possible number of states of a DFA recognizing L.

Proof. (=⇒) Let L be a regular language accepted by DFA A. If w and u
are two words that take the automaton to the same state q, i.e.

δ(q0, w) = δ(q0, u),

then for every extension x, words wx and ux lead to same state.

w

u

x

0 qq

This means that wRLu.

Since all words leading to same state are in relation RL, the number of equiva-
lence classes is at most the number of states, and therefore finite.

We have seen that the number of states in a DFA accepting L is at least the
index of RL.

Remark. Assign also to every DFA A its own equivalence relation RA by

w RA u⇐⇒ δ(q0, w) = δ(q0, u).

That is, words w and u are in relation RA if and only if they take the DFA A
to the same state.

We proved that if A recognizes L then the relation RA is a refinement of
relation RL. In other words,

w RA u =⇒ w RL u.

The equivalence classes of a refinement define a finer partition of the set:

Theorem. Language L is regular if and only if the index of RL is finite. The
index is the smallest possible number of states of a DFA recognizing L.

Proof. (⇐=) Assume that RL has finite index. Let L1, L2, . . . , Ln be its
equivalence classes. We construct a DFA A with n states that recognizes L.
The state set of A is labeled with the equivalence classes [w]:

Q = {L1, L2, . . . , Ln}.

The idea of the construction is that every input word w will lead to state [w],
the equivalence class containing w.

Theorem. Language L is regular if and only if the index of RL is finite. The
index is the smallest possible number of states of a DFA recognizing L.

Proof. (⇐=) Assume that RL has finite index. Let L1, L2, . . . , Ln be its
equivalence classes. We construct a DFA A with n states that recognizes L.
The state set of A is labeled with the equivalence classes [w]:

Q = {L1, L2, . . . , Ln}.

The idea of the construction is that every input word w will lead to state [w],
the equivalence class containing w.

The transitions are defined as follows:

δ([w], a) = [wa].

The transitions are well defined, that is, the definition does not depend on which
word w we selected from the equivalence class: If [w] = [u] then [wa] = [ua].

(If we would have [wa] ̸= [ua] then for some x, wax ∈ L and uax ̸∈ L or vice
versa. But then also [w] ̸= [u] since extension ax separates w and u.)

Theorem. Language L is regular if and only if the index of RL is finite. The
index is the smallest possible number of states of a DFA recognizing L.

Proof. (⇐=) Assume that RL has finite index. Let L1, L2, . . . , Ln be its
equivalence classes. We construct a DFA A with n states that recognizes L.
The state set of A is labeled with the equivalence classes [w]:

Q = {L1, L2, . . . , Ln}.
The idea of the construction is that every input word w will lead to state [w],
the equivalence class containing w.

The transitions are defined as follows:

δ([w], a) = [wa].

The transitions are well defined, that is, the definition does not depend on which
word w we selected from the equivalence class: If [w] = [u] then [wa] = [ua].

Let the initial state q0 be [ε]. Then

δ(q0, w) = [w]

for every w. The transitions were designed that way:

δ([ε], a1a2 . . . an) = δ([a1], a2a3 . . . an) = δ([a1a2], a3 . . . an)
= · · · = [a1a2 . . . an].

Finally, the final states of our automaton are

{[w] | w ∈ L}.

Again, the choice of w does not matter since if [w] = [u] and w ∈ L then also
u ∈ L.

(Otherwise the extension ε would separate them.)

Finally, the final states of our automaton are

{[w] | w ∈ L}.

Again, the choice of w does not matter since if [w] = [u] and w ∈ L then also
u ∈ L.

The automaton we constructed recognizes the language L because

δ(q0, w) = [w]

and [w] is a final state if and only if w ∈ L.

This completes the proof.

Example. Let us construct a DFA for L = a∗b∗ based on our knowledge about
the equivalence classes of RL:

a∗, a∗b+, {u | u is not a prefix of any word in L}

Example. Let us construct a DFA for L = aa+ baa based on our knowledge
about the equivalence classes of RL:

{ε}, {a, ba}, {aa, baa}, {b}, {u | u is not a prefix of any word in L}

Example. Doing the construction on the non-regular language

L = {w ∈ {a, b}∗ | w contains equally many a’s and b’s }

leads to infinitely many states, corresponding to the equivalence classes

Ln = {w ∈ {a, b}∗ | |w|a − |w|b = n}

We proved that the smallest possible number of states in a DFA recognizing L
is the same as the index of the equivalence relation RL.

A DFA with this smallest possible number of states is the minimum-state
DFA of L. This DFA is unique:

Theorem. The minimum-state DFA of a language L is unique (up to renaming
states).

Proof.

We proved that the smallest possible number of states in a DFA recognizing L
is the same as the index of the equivalence relation RL.

A DFA with this smallest possible number of states is the minimum-state
DFA of L. This DFA is unique:

Theorem. The minimum-state DFA of a language L is unique (up to renaming
states).

Proof. Let A = (Q,Σ, δ, q0, F) be a DFA with n states for the language L,
where n is the index of RL. Let us see how to rename the states so that A
becomes identical with the DFA A0 we constructed in the previous proof.

Recall: the states of A0 are the equivalence classes [w] of relation RL and
transitions are defined by

δ([w], a) = [wa].

As the automaton relation RA is a refinement of RL and has no more than n
classes, we have that RA = RL = RA0. Thus for any words w and u we have

[w] = [u]⇐⇒ δ(q0, w) = δ(q0, u)

For every w ∈ Σ∗ we rename the state δ(q0, w) as [w].

As the automaton relation RA is a refinement of RL and has no more than n
classes, we have that RA = RL = RA0. Thus for any words w and u we have

[w] = [u]⇐⇒ δ(q0, w) = δ(q0, u)

For every w ∈ Σ∗ we rename the state δ(q0, w) as [w].

• This renaming is well defined: if δ(q0, w) = δ(q0, u) then [w] = [u].

(So the name is independent of the choice of the the word w leading to the
state.)

As the automaton relation RA is a refinement of RL and has no more than n
classes, we have that RA = RL = RA0. Thus for any words w and u we have

[w] = [u]⇐⇒ δ(q0, w) = δ(q0, u)

For every w ∈ Σ∗ we rename the state δ(q0, w) as [w].

• This renaming is well defined: if δ(q0, w) = δ(q0, u) then [w] = [u].

• Every state gets a name, and every equivalence class is a name of a state.

(If a state gets no name then there is no word leading to that state. The state
can be removed, yielding a smaller equivalent DFA. This is not possible since n
is the smallest possible number of states.

Every equivalence class [w] is trivially the name of the state δ(q0, w).)

As the automaton relation RA is a refinement of RL and has no more than n
classes, we have that RA = RL = RA0. Thus for any words w and u we have

[w] = [u]⇐⇒ δ(q0, w) = δ(q0, u)

For every w ∈ Σ∗ we rename the state δ(q0, w) as [w].

• This renaming is well defined: if δ(q0, w) = δ(q0, u) then [w] = [u].

• Every state gets a name, and every equivalence class is a name of a state.

• Different states get different names: if [w] = [u] then δ(q0, w) = δ(q0, u).

(If p and q get the same name [w] then there is

� a word u such that δ(q0, u) = p and [u] = [w], and

� a word v such that δ(q0, v) = q and [v] = [w].

But since [u] = [w] = [v] we have that p = δ(q0, u) = δ(q0, v) = q.)

As the automaton relation RA is a refinement of RL and has no more than n
classes, we have that RA = RL = RA0. Thus for any words w and u we have

[w] = [u]⇐⇒ δ(q0, w) = δ(q0, u)

For every w ∈ Σ∗ we rename the state δ(q0, w) as [w].

• This renaming is well defined: if δ(q0, w) = δ(q0, u) then [w] = [u].

• Every state gets a name, and every equivalence class is a name of a state.

• Different states get different names: if [w] = [u] then δ(q0, w) = δ(q0, u).

With this renaming the state set of A becomes the same as the state set of A0.

• The initial state q0 = δ(q0, ε) is renamed as [ε], the initial state of A0.

• A state renamed as [w] is a final state of A if and only if w ∈ L, which is
equivalent to [w] being a final state in A0.

As the automaton relation RA is a refinement of RL and has no more than n
classes, we have that RA = RL = RA0. Thus for any words w and u we have

[w] = [u]⇐⇒ δ(q0, w) = δ(q0, u)

For every w ∈ Σ∗ we rename the state δ(q0, w) as [w].

• This renaming is well defined: if δ(q0, w) = δ(q0, u) then [w] = [u].

• Every state gets a name, and every equivalence class is a name of a state.

• Different states get different names: if [w] = [u] then δ(q0, w) = δ(q0, u).

With this renaming the state set of A becomes the same as the state set of A0.

• The initial state q0 = δ(q0, ε) is renamed as [ε], the initial state of A0.

• A state renamed as [w] is a final state of A if and only if w ∈ L, which is
equivalent to [w] being a final state in A0.

•With this renaming, transitions are exactly as in A0: for all w ∈ Σ∗, a ∈ Σ

δ([w], a) = [wa]

(Indeed: this simply states that δ(δ(q0, w), a) = δ(q0, wa).)

As the automaton relation RA is a refinement of RL and has no more than n
classes, we have that RA = RL = RA0. Thus for any words w and u we have

[w] = [u]⇐⇒ δ(q0, w) = δ(q0, u)

For every w ∈ Σ∗ we rename the state δ(q0, w) as [w].

• This renaming is well defined: if δ(q0, w) = δ(q0, u) then [w] = [u].

• Every state gets a name, and every equivalence class is a name of a state.

• Different states get different names: if [w] = [u] then δ(q0, w) = δ(q0, u).

With this renaming the state set of A becomes the same as the state set of A0.

• The initial state q0 = δ(q0, ε) is renamed as [ε], the initial state of A0.

• A state renamed as [w] is a final state of A if and only if w ∈ L, which is
equivalent to [w] being a final state in A0.

•With this renaming, transitions are exactly as in A0: for all w ∈ Σ∗, a ∈ Σ

δ([w], a) = [wa]

Conclusion: After the renaming, A and A0 have the same states, initial and
final states and identical transitions. Thus A = A0.

Theorem. There is an algorithm to construct the minimum-state DFA for
given regular language L.

Proof 1. A stupid but simple algorithm: enumerate all DFAs in the increasing
order of number of states. (First 1-state DFA, then 2-state DFA, etc.) For each
DFA A check whether L(A) = L. (Equivalence is decidable.) Stop when the
first equivalent DFA is found.

Theorem. There is an algorithm to construct the minimum-state DFA for
given regular language L.

Proof 2. There is also a practical state minimization algorithm that constructs
the minimum-state DFA equivalent to a given DFA A.

1. The first step is to remove all non-reachable states from A. State q
is non-reachable if there does not exist any input word that takes automaton A
to state q.

Reachable states can be found by a simple marking procedure: First mark the
initial state only. Then mark all states that there is a transition into from some
marked state. Continue this until no new states can be marked.

All non-marked states are non-reachable and can be deleted.

2. Now assume the DFA A only contains reachable states. Every state q defines
an equivalence class Eq of the automaton relation RA, consisting of all the words
that take A from q0 to the state q:

Eq = {w | δ(q0, w) = q}.

We know that RA is a refinement of the relation RL:

Eq

pE
Σ *

rE

In the minimum-state DFA the equivalence classes of the automaton are the
same as the equivalence classes of RL. In A we can combine states q and p if
their classes Eq and Ep belong to the same equivalence class of RL. We call
such states indistinguishable.

Precisely, p and q are indistinguishable if and only if

(∀w ∈ Σ∗) δ(p, w) ∈ F ⇐⇒ δ(q, w) ∈ F .

(It does not make any difference whether the DFA is in state p or q: Exactly
the same words lead to a final state. Indistinguishable states can be merged.)

Complementarily, p and q are distinguishable if and only if

(∃w ∈ Σ∗) δ(p, w) ∈ F and δ(q, w) ̸∈ F or vice versa.

(There is a word w that distinguishes p and q. Distinguishable states cannot
be merged.)

Eq

pE
Σ *

rE

Here p and q are indistinguishable, while p and r are distinguishable.

If we find all pairs of indistinguishable states and combine them we end up with
a DFA A′ whose equivalence relation RA′ is identical to RL. This A′ is the
minimum-state DFA for language L.

The problem is to find out if two states are indistinguishable. It is easier to find
states that are distinguishable. So rather than figuring out which states can be
merged we search for states that cannot be merged!

Eq

pE
Σ *

rE

We use the following property:

aw distinguishes p and q ⇐⇒ w distinguishes δ(p, a) and δ(q, a)

The algorithm maintains a partition of the state set into classes C1, . . . Ck such
that for all i ̸= j the states of Ci are distinguishable from the states of Cj (even
by the same word).

We use the following property:

aw distinguishes p and q ⇐⇒ w distinguishes δ(p, a) and δ(q, a)

The algorithm maintains a partition of the state set into classes C1, . . . Ck such
that for all i ̸= j the states of Ci are distinguishable from the states of Cj (even
by the same word).

• In the beginning we start with two classes: F (the set of final states) andQ\F
(the set of non-final states). The empty word ε distinguishes these classes.

We use the following property:

aw distinguishes p and q ⇐⇒ w distinguishes δ(p, a) and δ(q, a)

The algorithm maintains a partition of the state set into classes C1, . . . Ck such
that for all i ̸= j the states of Ci are distinguishable from the states of Cj (even
by the same word).

• In the beginning we start with two classes: F (the set of final states) andQ\F
(the set of non-final states). The empty word ε distinguishes these classes.

• At each round we look for a class C and a letter a such that for some p, q ∈ C
the states δ(q, a) and δ(p, a) belong to different classes. In this case, because
δ(q, a) and δ(p, a) are distinguished by some word w, we can distinguish q and
p by word aw. Thus we split C in such a way that any p, q ∈ C go in the same
part if and only if δ(q, a) and δ(p, a) are in the same class.

The algorithm is repeated until no class can be split further.

Claim: At the end all states that are in the same class are indistinguishable.

Proof. Assume the contrary: let w be the shortest word that distinguishes
some states (say p and q) that belong to the same class (say C). Clearly w ̸= ε
because otherwise p would be final and q non-final, or vice versa, but such pairs
were put in different classes in the beginning.

So w = au for some letter a.

But then δ(q, a) and δ(p, a) are distinguished by u that is shorter than w, and
therefore δ(q, a) and δ(p, a) are in different classes. But this means that the
class C can be split, contradicting the assumption that no classes can be split
further.

