Automata and Formal Languages. Homework 9 (11.11.2024)

- 1. Let L be the language generated by the grammar $(\{S\}, \{a, b\}, P, S)$ where P contains the productions $S \longrightarrow aSSa \mid SbbS \mid \varepsilon$. Moreover, let $h : \{a, b\}^* \longrightarrow \{a, b\}^*$ be the homomorphism defined by h(a) = ab and h(b) = ba. Construct a context-free grammar that generates the language $h(L^*) \cup LL$.
- 2. Is the family of context-free languages closed under the following language operations ? Prove.
 - (a) Palindrome $(L) = \{ w \mid w \in L \text{ and } w \text{ is a palindrome } \}.$
 - (b) $L^R = \{ w \mid w^R \in L \}.$
 - (c) $\operatorname{Half}(L) = \{ w \mid ww \in L \}.$
 - (d) $\operatorname{Pref}(L) = \{ w \mid wu \in L \text{ for some word } u \}.$
- 3. Let $L = \{a^n b^m c^k \mid m \neq n \text{ or } m \neq k \}$. Prove that L is context-free but its complement is not context-free.
- 4. Prove that $L = b^* c^* d^* \cup \{a^n b^m c^m d^m \mid n, m \ge 0\}$ is a non-context-free language that satisfies the pumping lemma of context-free languages.
- 5. Let

$$L_1 = \{a^{2n}b^n \mid n \ge 1\}^* \text{ and } L_2 = \{b^na^n \mid n \ge 1\}^*b.$$

(Note the Kleene closure.) Prove that L_1 and L_2 are context-free but their quotient L_1/L_2 is not context-free.

6. For any language $L \subseteq \Sigma^*$, we define

Shuffle $(L) = \{ w \in \Sigma^* \mid \exists u \in L : w \text{ is obtained from } u \text{ by permuting its letters } \}$

to be the language of words that can be obtained by re-ordering the letters in the words of L. (Recall Problem 3 in homework set #4.)

- (a) Prove that there is a regular language L over the three letter alphabet $\{a, b, c\}$ such that Shuffle(L) is not context free.
- (b) Prove that if $\Sigma = \{a, b\}$ and L is regular then Shuffle(L) is context-free.
- 7. Show that there are algorithms that solve the following problems. (Hint: use effective closure properties and known algorithms from the lecture notes)
 - (a) Does a given context-free grammar generate a word that contains *aba* as a subword ?
 - (b) Does every word generated by a given context-free grammar contain subword *aba* ?
 - (c) Does a given regular language contain infinitely many palindromes?