
Context-free grammars

We move on from regular languages to context-free languages, a language
family that contains all regular languages but also some non-regular ones. For
example

{anbn | n ≥ 0}
is a context-free language. (On the other hand there are many simple languages
which are not context-free, for example {anbncn | n ≥ 0}.)

Context-free languages are recognized by automata with access to an infinite
memory that is organized as a stack (LIFO, last-in-first-out). These automata
are called pushdown automata.

We also have a generative model for the family, so-called context-free gram-
mars.

Context-free languages have applications in compiler design (parsers). The
syntax of programming languages is often given in the form of context-free
grammar, or equivalent Backus-Naur form (BN-form).

Example. Here is an example of a context-free grammar. It uses variables
A and B, and terminal symbols a and b. We have following productions
(also called rewrite rules):

A −→ AbA
A −→ B
B −→ aBa
B −→ b

In a word containing variables and terminals we can replace any variable with
the word on the right hand side of a production for that variable. For example,
in the word

aBabAbA

we may replace the first occurrence of variable A by AbA, obtaining word

Example. Here is an example of a context-free grammar. It uses variables
A and B, and terminal symbols a and b. We have following productions
(also called rewrite rules):

A −→ AbA
A −→ B
B −→ aBa
B −→ b

In a word containing variables and terminals we can replace any variable with
the word on the right hand side of a production for that variable. For example,
in the word

aBabAbA

we may replace the first occurrence of variable A by AbA, obtaining word

aBabAbAbA

Then we can decide to replace the variable B by b which gives the word

Example. Here is an example of a context-free grammar. It uses variables
A and B, and terminal symbols a and b. We have following productions
(also called rewrite rules):

A −→ AbA
A −→ B
B −→ aBa
B −→ b

In a word containing variables and terminals we can replace any variable with
the word on the right hand side of a production for that variable. For example,
in the word

aBabAbA

we may replace the first occurrence of variable A by AbA, obtaining word

aBabAbAbA

Then we can decide to replace the variable B by b which gives the word

ababAbAbA

Rewriting one variable is called a derivation step and we denote

aBabAbA⇒ aBabAbAbA⇒ ababAbAbA

Derivation is non-deterministic: usually we have many choices how to proceed.

Example. Here is an example of a context-free grammar. It uses variables
A and B, and terminal symbols a and b. We have following productions
(also called rewrite rules):

A −→ AbA
A −→ B
B −→ aBa
B −→ b

In a word containing variables and terminals we can replace any variable with
the word on the right hand side of a production for that variable. For example,
in the word

aBabAbA

we may replace the first occurrence of variable A by AbA, obtaining word

aBabAbAbA

Then we can decide to replace the variable B by b which gives the word

ababAbAbA

Rewriting one variable is called a derivation step and we denote

aBabAbA⇒ aBabAbAbA⇒ ababAbAbA

Derivation is non-deterministic: usually we have many choices how to proceed.

We can continue derivation as long as there exist variables in the word. Once
the word contains only terminal symbols the derivation terminates.

Example continues: A −→ AbA
A −→ B
B −→ aBa
B −→ b

One variable is called the start symbol- In this example, let us choose A as
the start symbol. All derivations start with the start symbol A, i.e., initially
the word is A.

The language defined by the grammar contains all words of terminal
symbols that can be obtained from the start symbol by applying the productions
on the variables.

Example continues: A −→ AbA
A −→ B
B −→ aBa
B −→ b

One variable is called the start symbol- In this example, let us choose A as
the start symbol. All derivations start with the start symbol A, i.e., initially
the word is A.

The language defined by the grammar contains all words of terminal
symbols that can be obtained from the start symbol by applying the productions
on the variables.

For example, the word aabaababa is in the language defined by our grammar
since we have the following valid derivation:

A ⇒

Example continues: A −→ AbA
A −→ B
B −→ aBa
B −→ b

One variable is called the start symbol- In this example, let us choose A as
the start symbol. All derivations start with the start symbol A, i.e., initially
the word is A.

The language defined by the grammar contains all words of terminal
symbols that can be obtained from the start symbol by applying the productions
on the variables.

For example, the word aabaababa is in the language defined by the grammar
since we have the following valid derivation:

A ⇒ AbA⇒ BbA⇒ aBabA⇒ aaBaabA⇒ aabaabA⇒ aabaabB ⇒
aabaabaBa⇒ aabaababa

Example continues: A −→ AbA
A −→ B
B −→ aBa
B −→ b

One variable is called the start symbol- In this example, let us choose A as
the start symbol. All derivations start with the start symbol A, i.e., initially
the word is A.

The language defined by the grammar contains all words of terminal
symbols that can be obtained from the start symbol by applying the productions
on the variables.

For example, the word aabaababa is in the language defined by the grammar
since we have the following valid derivation:

A ⇒ AbA⇒ BbA⇒ aBabA⇒ aaBaabA⇒ aabaabA⇒ aabaabB ⇒
aabaabaBa⇒ aabaababa

On the other hand, the word aaa is not in the language because the only way
to produce letter a is to use the production

B −→ aBa

and it creates two a’s, so the number of a’s has to be even.

Here’s the formal definition of context-free grammars.

A context-free grammar G = (V, T, P, S) consists of

� two disjoint alphabets, V and T , containing variables (=nonterminals)
and terminals, respectively,

� a finite set P of productions of the form

A −→ α

where A ∈ V is a variable, and α ∈ (V ∪ T)∗ is a word of terminals and
variables,

� a start symbol S ∈ V .

For any α, β ∈ (T ∪ V)∗ we denote

α⇒ β

if β is obtained from α by rewriting one variable in α using some production
from P . This is called a derivation step. More precisely,

xAy ⇒ xwy

for A ∈ V and x, y, w ∈ (V ∪ T)∗ if and only if

A −→ w ∈ P.

For any α, β ∈ (T ∪ V)∗ we denote

α⇒ β

if β is obtained from α by rewriting one variable in α using some production
from P . This is called a derivation step. More precisely,

xAy ⇒ xwy

for A ∈ V and x, y, w ∈ (V ∪ T)∗ if and only if

A −→ w ∈ P.

We write
α⇒∗ β

if there is a sequence of derivation steps

α = α1 ⇒ α2 ⇒ α3 ⇒ · · · ⇒ αn = β

that starts with α and leads to β. (The number of derivation steps can be zero,
so always α⇒∗ α.) We say that α derives β.

Notation α⇒+ β means that α derives β using at least one derivation step,
and α⇒n β means a derivation with n derivation steps.

A word α ∈ (V ∪ T)∗ is called a sentential form if it can be derived from
the start symbol S, i.e., if

S ⇒∗ α.

A word α ∈ (V ∪ T)∗ is called a sentential form if it can be derived from
the start symbol S, i.e., if

S ⇒∗ α.
The language L(G) generated by grammar G consists of all sentential forms
that contain only terminals. In other words, a word is in L(G) if and only if

� it can be derived from the start symbol S using the productions in P , and

� it contains only terminal symbols.

In short,
L(G) = {w ∈ T ∗ | S ⇒∗ w}.

A language is called a context-free language if it is L(G) for some context-
free grammar G.

Example 1. Consider the grammar G = (V, T, P, S) where V = {S}, T =
{a, b}, and P contains productions

S −→ aSb
S −→ ε

To make notations shorter we may use the following convention: productions of
the same variable may be combined on one line, separated by symbol |. So we
may write

S −→ aSb | ε

What is L(G) ?

Example 2. Consider the grammar G = (V, T, P,E) where V = {E,N},
T = {+, ∗, (,), 0, 1}, and P contains the productions

E −→ E + E
∣∣ E ∗ E | (E) | N

N −→ 0N | 1N | 0 | 1

Example 2. Consider the grammar G = (V, T, P,E) where V = {E,N},
T = {+, ∗, (,), 0, 1}, and P contains the productions

E −→ E + E
∣∣ E ∗ E | (E) | N

N −→ 0N | 1N | 0 | 1
For example, all following words are in the language L(G):

0
0 ∗ 1 + 111
(1 + 1) ∗ 0
(1 ∗ 1) + (((0000)) ∗ 1111)

For instance (1 + 1) ∗ 0 is derived by

E ⇒

Example 2. Consider the grammar G = (V, T, P,E) where V = {E,N},
T = {+, ∗, (,), 0, 1}, and P contains the productions

E −→ E + E
∣∣ E ∗ E | (E) | N

N −→ 0N | 1N | 0 | 1
For example, all following words are in the language L(G):

0
0 ∗ 1 + 111
(1 + 1) ∗ 0
(1 ∗ 1) + (((0000)) ∗ 1111)

For instance (1 + 1) ∗ 0 is derived by

E ⇒ E ∗ E ⇒ (E) ∗ E ⇒ (E + E) ∗ E ⇒3 (N +N) ∗N ⇒3 (1 + 1) ∗ 0

Example 2. Consider the grammar G = (V, T, P,E) where V = {E,N},
T = {+, ∗, (,), 0, 1}, and P contains the productions

E −→ E + E
∣∣ E ∗ E | (E) | N

N −→ 0N | 1N | 0 | 1
For example, all following words are in the language L(G):

0
0 ∗ 1 + 111
(1 + 1) ∗ 0
(1 ∗ 1) + (((0000)) ∗ 1111)

For instance (1 + 1) ∗ 0 is derived by

E ⇒ E ∗ E ⇒ (E) ∗ E ⇒ (E + E) ∗ E ⇒3 (N +N) ∗N ⇒3 (1 + 1) ∗ 0

Here are some words that are not in the language L(G):

1(1
()
1 ∗ 1 ∗ 1 ∗ 1∗

� From variable N all nonempty strings of symbols 0 and 1 can be derived.

� From variable E we can derive all well-formed arithmetic expressions con-
taining operations ’*’ and ’+’, parenthesises, and strings of 0’s and 1’s de-
rived from variable N .

Example 3. Grammar G = (V, T, P, S) where V = {S}, T = {a, b} and P
contains productions

S −→ aSbS | bSaS | ε
What is L(G) ?

Example 3. Grammar G = (V, T, P, S) where V = {S}, T = {a, b} and P
contains productions

S −→ aSbS | bSaS | ε
What is L(G) ?

Clearly every word that belongs to L(G) must contain equally many a’s and
b’s. (Every production adds the same number of a’s and b’s to the sentential
form.)

Let us prove (on the blackboard) that L(G) contains all words w ∈ {a, b}∗ with
equally many a’s and b’s, i.e., L(G) is the language

L = {w ∈ {a, b}∗ | w has equally many a’s and b’s }

Example 3. Grammar G = (V, T, P, S) where V = {S}, T = {a, b} and P
contains productions

S −→ aSbS | bSaS | ε
What is L(G) ?

Clearly every word that belongs to L(G) must contain equally many a’s and
b’s. (Every production adds the same number of a’s and b’s to the sentential
form.)

Let us prove (on the blackboard) that L(G) contains all words w ∈ {a, b}∗ with
equally many a’s and b’s, i.e., L(G) is the language

L = {w ∈ {a, b}∗ | w has equally many a’s and b’s }

For example, the word ababba has the derivation:

S ⇒

Example 3. Grammar G = (V, T, P, S) where V = {S}, T = {a, b} and P
contains productions

S −→ aSbS | bSaS | ε
What is L(G) ?

Clearly every word that belongs to L(G) must contain equally many a’s and
b’s. (Every production adds the same number of a’s and b’s to the sentential
form.)

Let us prove (on the blackboard) that L(G) contains all words w ∈ {a, b}∗ with
equally many a’s and b’s, i.e., L(G) is the language

L = {w ∈ {a, b}∗ | w has equally many a’s and b’s }

For example, the word ababba has the derivation:

S ⇒ aSbS ⇒ abSaSbS ⇒ abaSbS ⇒ ababS ⇒ ababbSaS ⇒ ababbaS ⇒ ababba

Let us prove that every regular language can be generated by a context-free
grammar.

Example. Consider the language L recognized by the NFA A

b

b

a
��
��
��
��
Q ��

��
P-

 q

i

Let us construct a grammar G that generates L. The variables of G are the
states {Q,P} and the terminals are {a, b}. The start symbol is the initial state
Q. Every transition of A is simulated by a production:

Q −→ bQ
Q −→ bP
P −→ aQ

For each transition q
x−→ p in A we have the production q −→ xp in G

So whenever the automaton reads a letter x and goes to state p the grammar
produces the same letter x and changes the variable to the current state p.

Example continues. b

b

a
��
��
��
��
Q ��

��
P-

 q

i

Q −→ bQ
Q −→ bP
P −→ aQ

Derivations by G correspond step-by-step to computations in A:

In A: Q
b−→ Q

b−→ P
a−→ Q

In G: Q ⇒ bQ ⇒ bbP ⇒ bbaQ

In general, q
w−→ p in A if and only if So q ⇒∗ wp in G.

To terminate the simulation we add the transition

Q −→ ε

for the final stateQ. Accepting computationsQ
w−→ Q now have corresponding

terminating derivations Q⇒∗ wQ⇒ w.

The construction can be done on any NFA, proving the following theorem:

Theorem. Every regular language is a context-free language.

Proof.

Example. Let us construct a grammar for the language recognized by

0

0

2 1��
��
A��
��

��
��
B

��
��
C

-
��

���
��*

H
HHH

HHHY

�

G = (V, T, P, S) where

� variables are V =

� terminals are T =

� the start symbol is S =

� the productions are

Example. Let us construct a grammar for the language recognized by

0

0

2 1��
��
A��
��

��
��
B

��
��
C

-
��

���
��*

H
HHH

HHHY

�

G = (V, T, P, S) where

� variables are V = {A,B,C}
� terminals are T = {0, 1, 2}
� the start symbol is S = A

� the productions are

A −→ 0B
B −→ 1C
C −→ 2B
C −→ 0A
A −→ ε

A grammar is called right linear if all productions are of forms

A −→ wB,
A −→ w

for terminal words w ∈ T ∗. In other words, the right hand side of a production
may contain only one variable, and it has to be the last symbol.

Our construction always produces a right linear grammar, so every regular
language is generated by a right linear grammar. The converse is also true: a
language generated by a right linear grammar is always regular.

Derivation trees

Derivations by context-free grammars can be visualized using derivation trees,
also called parse trees. These are rooted, oriented trees. Here is a derivation
tree for one of our sample grammars:

E

E + E

N (E)

0 N E ∗ E

1 N N

1 0

!!!!!!

aaaaaa

#
#
#

c
c

c

�
��

S
SS

�
��

S
SS

All interior nodes are labeled using variables. The label of the root is the start
symbol E of the grammar. The children of a node are the letters on the right-
hand-side of some production for the parent’s variable.

For example, the root has children E, +, E, in this order, corresponding to the
production E −→ E + E in the grammar.

A derivation tree for grammar G = (V, T, P, S) is a tree whose nodes are
labeled by symbols from the set

V ∪ T ∪ {ε}

in such a way that

� interior nodes are labeled by variables, i.e., elements of V ,

� the root is labeled by the start symbol S,

� if X1, X2, . . . , Xn are the labels of the children of a node labeled by variable
A, ordered from left to right, then

A −→ X1X2 . . . Xn

is a production in P . If n ≥ 2 then all Xi ̸= ε.

Note that label ε is needed to allow productions A −→ ε in the derivation tree.

If one reads the labels of the leaves from left to right, one obtains a word over
(V ∪ T)∗. This word is called the yield of the derivation tree. For example,
the yield of

E

E + E

N (E)

0 N E ∗ E

1 N N

1 0

!!!!!!

aaaaaa

#
#
#

c
c

c

�
��

S
SS

�
��

S
SS

is 01 + (1 ∗ 0).

If one reads the labels of the leaves from left to right, one obtains a word over
(V ∪ T)∗. This word is called the yield of the derivation tree. For example,
the yield of

E

E + E

N (E)

0 N E ∗ E

1 N N

1 0

!!!!!!

aaaaaa

#
#
#

c
c

c

�
��

S
SS

�
��

S
SS

is 01 + (1 ∗ 0).

The yield is always a sentential form, and every sentential form is a yield of a
derivation tree (obvious?)

Remark: the yield is obtained by the depth first traversal of the tree, when
the subtrees of each node are processed in the left-to-right order, outputting the
symbols at all encountered leaves. A program to print the yield of a tree rooted
at node x:

Yield(x)
Begin

if x is a leaf then print the label of x

else

begin

let x1, . . . xn be the children of x in the left-to-right order

for i=1 to n call Yield(xi)

end

End
E

E + E

N (E)

0 N E ∗ E

1 N N

1 0

!!!!!!

aaaaaa

#
#
#

c
c

c

�
��

S
SS

�
��

S
SS

A subtree of a derivation tree is the tree formed by some node and all its
descendants. A subtree is like a derivation tree except that its root may have a
different label than the start symbol. Such a tree is called an A-tree, where A
is the label of the root.

Example.
E

E + E

N (E)

0 N E ∗ E

1 N N

1 0

!!!!!!

aaaaaa

#
#
#

c
c

c

�
��

S
SS

�
��

S
SS

has, as subtrees, the following N -tree and E-tree

N

0 N

1

�
��

S
SS

E

(E)

E ∗ E

N N

1 0

#
#

#

c
c

c

�
��

S
SS

Theorem. Let G = (V, T, P, S) be a context-free grammar. Then A ⇒∗ α,
for some A ∈ V and α ∈ (V ∪ T)∗, if and only if α is the yield of an A-tree.

In particular, w ∈ L(G) if and only if w is the yield of a derivation tree and w
contains only terminal letters.

Proof. An easy induction on the length of the derivation/size of the derivation
tree.

Example. Let us construct the derivation tree corresponding to the derivation

E ⇒ E + E ⇒ N + E ⇒ 1 + E ⇒ 1 + E ∗ E
⇒ 1 +N ∗ E ⇒ 1 + 1N ∗ E ⇒ 1 + 10 ∗ E
⇒ 1 + 10 ∗N ⇒ 1 + 10 ∗ 1

Example. Let us construct the derivation tree corresponding to the derivation

E ⇒ E + E ⇒ N + E ⇒ 1 + E ⇒ 1 + E ∗ E
⇒ 1 +N ∗ E ⇒ 1 + 1N ∗ E ⇒ 1 + 10 ∗ E
⇒ 1 + 10 ∗N ⇒ 1 + 10 ∗ 1

Note that the same tree represents several derivations. For example, the deriva-
tion

E ⇒ E + E ⇒ E + E ∗ E ⇒ E +N ∗ E
⇒ N +N ∗ E ⇒ N + 1N ∗ E ⇒ N + 1N ∗N
⇒ 1 + 1N ∗N ⇒ 1 + 1N ∗ 1⇒ 1 + 10 ∗ 1

has the same derivation tree. The two derivations only differ in the order of
rewriting the variables.

Example. Let us construct the derivation tree corresponding to the derivation

E ⇒ E + E ⇒ N + E ⇒ 1 + E ⇒ 1 + E ∗ E
⇒ 1 +N ∗ E ⇒ 1 + 1N ∗ E ⇒ 1 + 10 ∗ E
⇒ 1 + 10 ∗N ⇒ 1 + 10 ∗ 1

Note that the same tree represents several derivations. For example, the deriva-
tion

E ⇒ E + E ⇒ E + E ∗ E ⇒ E +N ∗ E
⇒ N +N ∗ E ⇒ N + 1N ∗ E ⇒ N + 1N ∗N
⇒ 1 + 1N ∗N ⇒ 1 + 1N ∗ 1⇒ 1 + 10 ∗ 1

has the same derivation tree. The two derivations only differ in the order of
rewriting the variables.

A derivation is called leftmost if at every derivation step the leftmost variable
of the sentential form is rewritten. The first derivation is leftmost, and the
second one is not. Rightmost derivations are defined analogously: One always
replaces the rightmost variable.

Every derivation tree defines a unique leftmost derivation (and a
unique rightmost derivation). The leftmost derivation rewrites the variables
in the order in which the depth first traversal of the tree from left to right
encounters them. (The rightmost derivation corresponds to the depth first
traversal from right to left.)

Example. Let us write the leftmost derivation corresponding to the derivation
tree

b S a SS

a S b S

a b

a S

ε ε

S

S

ε εεb

S

Every derivation tree defines a unique leftmost derivation (and a
unique rightmost derivation). The leftmost derivation rewrites the variables
in the order in which the depth first traversal of the tree from left to right
encounters them. (The rightmost derivation corresponds to the depth first
traversal from right to left.)

Example. Let us write the leftmost derivation corresponding to the derivation
tree

b S a SS

a S b S

a b

a S

ε ε

S

S

ε εεb

S

S ⇒ aSbS ⇒ aaSbSbS ⇒ aabSaSbSbS ⇒ aabaSbSbS ⇒ aababSbS ⇒
aababbS ⇒ aababbaSbS ⇒ aababbabS ⇒ aababbabS

Conclusion: There is a one-to-one correspondence between derivation trees
and leftmost (rightmost) derivations.

Even though every derivation tree defines a unique leftmost derivation, some
words may have several different leftmost (or rightmost) derivations. This hap-
pens if a word is the yield of several different derivation trees.

Example. In our sample grammar word 1 + 0 + 1 is the yield of two different
derivation trees

E

EE +

EE +

1 0

1

E

EE +

E1

0

+ EE

1

corresponding to two different leftmost derivations

E ⇒ E + E ⇒ E + E + E ⇒ 1 + E + E ⇒ 1 + 0 + E ⇒ 1 + 0 + 1, and
E ⇒ E + E ⇒ 1 + E ⇒ 1 + E + E ⇒ 1 + 0 + E ⇒ 1 + 0 + 1,

A context-free grammar G is called ambiguous if some word has more than
one derivation tree.

Equivalently: G is ambiguous if some word has more than one leftmost deriva-
tion (or rightmost derivation).

A context-free grammar G is called ambiguous if some word has more than
one derivation tree.

Equivalently: G is ambiguous if some word has more than one leftmost deriva-
tion (or rightmost derivation).

One can prove ambiguity by finding two leftmost derivations for some word.

Proving unambiguity is harder:

� There does not exist an algorithm that would determine if a given context-
free grammar G is ambiguous or unambiguous. It an undecidable prop-
erty. (We are going to prove this before then end of the semester.)

� As a consequence, there exist unambiguous grammars whose unambiguity
cannot be proved.

For individual grammars one can come up with ad hoc proofs.

Example. Grammar G = ({S}, {a, b}, P, S) with productions

S −→ aSSb | ab.

Is this grammar ambiguous or unambiguous ?

Example. Grammar G = ({S}, {a, b}, P, S) with productions

S −→ aSSb | ab.

Is this grammar ambiguous or unambiguous ?

The grammar is unambiguous. (Proof on the blackboard)

Example. Grammar G = ({S}, {a, b}, P, S) where P contains productions

S −→ aSb | aaS | ε.

Is G ambiguous or unambiguous ?

Example. Grammar G = ({S}, {a, b}, P, S) where P contains productions

S −→ aSb | aaS | ε.

Is G ambiguous or unambiguous ?

Ambiguous: word aab has two different leftmost derivations

S ⇒ aaS ⇒ aaaSb⇒ aaab
S ⇒ aSb⇒ aaaSb⇒ aaab.

For some context-free languages there exist only ambiguous grammars. Such
languages are called inherently ambiguous.

(Note that inherent ambiguity is a property of a language while ambiguity is a
property of a grammar.)

Also inherent ambiguity is undecidable. In other words, there does not exist
an algorithm for determining if the language L(G) generated by given context-
free grammar G is inherently ambiguous or not.

An example of an inherently ambiguous context-free language:

{anbncmdm | n,m ≥ 1} ∪ {anbmcmdn | n,m ≥ 1}

Example. Grammar G = ({S}, {a, b}, P, S) where P contains productions

S −→ aSb | aaS | ε.

We saw that this grammar is ambiguous because the word aaab has two leftmost
derivations.

But is the language L(G) it generates inherently ambiguous ?

Example. Grammar G = ({S}, {a, b}, P, S) where P contains productions

S −→ aSb | aaS | ε.

We saw that this grammar is ambiguous because the word aaab has two leftmost
derivations.

But is the language L(G) it generates inherently ambiguous ?

No: the same language is generated by the unambiguous grammar ({S,A}, {a, b}, P ′, S)
with productions

S −→ aSb | A,
A −→ aaA | ε.

(Using variable A we force the grammar first to use productions S −→ aSb
before productions S −→ aaS.)

Example. Grammar G = ({S}, {a, b}, P, S) with productions

S −→ aSb | bS | ε.

Ambiguous or unambiguous ?

Example. Grammar G = ({S}, {a, b}, P, S) with productions

S −→ aSb | bS | ε.

Ambiguous or unambiguous ?

Unambiguous.

Example. Grammar G = ({S}, {a, b}, P, S) with productions

S −→ aSbS | bSaS | ε.

Ambiguous or unambiguous ?

Ambiguous because abab has two different leftmost derivations.

Example. Grammar G = ({S}, {a, b}, P, S) with productions

S −→ aSbS | bSaS | ε.

Ambiguous or unambiguous ?

Ambiguous because abab has two different leftmost derivations.

What about the corresponding language

L(G) = {w ∈ {a, b}∗ | w contains equally many a’s and b’s }.

Is it inherently ambiguous or not ?

Example. Grammar G = ({S}, {a, b}, P, S) with productions

S −→ aSbS | bSaS | ε.

Ambiguous or unambiguous ?

Ambiguous because abab has two different leftmost derivations.

What about the corresponding language

L(G) = {w ∈ {a, b}∗ | w contains equally many a’s and b’s }.

Is it inherently ambiguous or not ?

L(G) is not inherently ambiguous. The same language is generated by the
unambiguous grammar ({S, P,N}, {a, b}, P, S) with productions

S −→ aPbS | bNaS | ε
P −→ aPbP | ε
N −→ bNaN | ε

(Proof in the homework.)

Grammars G and G′ are called equivalent if they generate the same language
L(G) = L(G′). Certain types of productions are undesirable in a grammar,
and we would like to find an equivalent grammar that does not contain such
productions.

We want to remove productions of form

A −→ ε (ε-production), and
A −→ B (unit production).

We also want to remove symbols that are unnecessary in the sense that they
are not used in any terminating derivations.

The simplification is done in the following order:

1. Remove ε -productions.

2. Remove unit productions.

3. Remove variables that do not derive any terminal strings.

4. Remove symbols that cannot be reached from the start symbol.

STEP 1. Remove ε-productions.

Given a CFG G we (effectively) construct a CFG G′ that does not have any
ε-productions and

L(G′) = L(G)− {ε}

(So ε is lost from the generated language. This cannot be avoided because a
grammar without ε-productions cannot generate the word ε.)

The idea of G′ is to remove from derivation trees all subtrees whose yield is ε.

STEP 1. Remove ε-productions.

Given a CFG G we (effectively) construct a CFG G′ that does not have any
ε-productions and

L(G′) = L(G)− {ε}

(So ε is lost from the generated language. This cannot be avoided because a
grammar without ε-productions cannot generate the word ε.)

The idea of G′ is to remove from derivation trees all subtrees whose yield is ε.

Let us call a variable A nullable if A⇒∗ ε.

We can identify the nullable variable using a simple marking procedure:

� First, mark as nullable those variables A that have a production A −→ ε.

� Then keep marking variables A that have productions

A −→ α

where α is a word of variables that have all been already marked nullable.
Repeat this until no new variables can be marked.

Then we construct a new set of productions as follows: For every production of
the original grammar

A −→ X1X2 . . . Xn

where all Xi ∈ V ∪ T , the new production set will have all productions

A −→ α1α2 . . . αn

where

� αi = Xi if Xi is not nullable, or is a terminal symbol,

� αi = ε or αi = Xi if Xi is nullable,

� α1α2 . . . αn ̸= ε.

Remark: If several Xi are nullable, all combinations of αi = ε and Xi are
used. One original production can result in up to 2k new productions if the
right-hand-side contains k nullable variables.

Then we construct a new set of productions as follows: For every production of
the original grammar

A −→ X1X2 . . . Xn

where all Xi ∈ V ∪ T , the new production set will have all productions

A −→ α1α2 . . . αn

where

� αi = Xi if Xi is not nullable, or is a terminal symbol,

� αi = ε or αi = Xi if Xi is nullable,

� α1α2 . . . αn ̸= ε.

L(G′) ⊆ L(G): Each production A −→ α in G′ is obtained from a production
in G by removing nullable variables. Thus in G there is a derivation A⇒∗ α.

Any derivation in G′ can hence be turned into a derivation in G by replacing
each derivation step xAy ⇒ xαy by a derivation xAy ⇒∗ xαy.

Then we construct a new set of productions as follows: For every production of
the original grammar

A −→ X1X2 . . . Xn

where all Xi ∈ V ∪ T , the new production set will have all productions

A −→ α1α2 . . . αn

where

� αi = Xi if Xi is not nullable, or is a terminal symbol,

� αi = ε or αi = Xi if Xi is nullable,

� α1α2 . . . αn ̸= ε.

L(G′) ⊆ L(G): Each production A −→ α in G′ is obtained from a production
in G by removing nullable variables. Thus in G there is a derivation A⇒∗ α.

Any derivation in G′ can hence be turned into a derivation in G by replacing
each derivation step xAy ⇒ xαy by a derivation xAy ⇒∗ xαy.

L(G) − {ε} ⊆ L(G′): Let w ∈ L(G) − {ε}. It has a derivation tree T .
Removing from T all subtrees whose yield is ε results in a derivation tree of G′

with the same yield w.

STEP 2. Remove unit productions.

Assume we have removed all ε-productions from P . The right-hand-side of
every production in P is some non-empty word.

Let us find an equivalent grammar that does not contain ε-productions or unit
productions (=productions A −→ B for variables A,B).

The idea is similar to step 1: We anticipate all possible unit derivations, and
plug them in directly.

First, for every variable A we find all variables B, such that

A⇒∗ B.

(In this derivation only unit productions can be used.)

Such variable-to-variable derivations A⇒∗ B for any fixed A can be effectively
found using a marking procedure:

� First, mark variable A.

� Then keep marking variables B such that there is a unit production

X −→ B

where X is already marked. Repeat this until no new variables can be
marked.

A non-mandatory step: At this stage, if one wants, one may simplify the
grammar by removing duplicate variables.

If A and B are different variables such that A ⇒∗ B and B ⇒∗ A, it is clear
that both variables derive exactly same sentential forms. So we may trim the
grammar by replacing B by A everywhere, both left- and righthand sides of all
productions.

Also, productions A −→ A can be directly removed as useless.

Then we construct a new set of productions as follows: For every non-unit
production

B −→ α

of the grammar and for every variable A such that A⇒∗ B we take in the new
grammar the production

A −→ α.

The new grammar G′ then has no unit productions.

Then we construct a new set of productions as follows: For every non-unit
production

B −→ α

of the grammar and for every variable A such that A⇒∗ B we take in the new
grammar the production

A −→ α.

The new grammar G′ then has no unit productions.

L(G′) ⊆ L(G): For each production A −→ α in G′ there is a derivation A⇒∗
B ⇒ α in G. Any derivation in G′ can hence be turned into a derivation in G
by replacing each derivation step xAy ⇒ xαy by a derivation xAy ⇒∗ xαy.

Then we construct a new set of productions as follows: For every non-unit
production

B −→ α

of the grammar and for every variable A such that A⇒∗ B we take in the new
grammar the production

A −→ α.

The new grammar G′ then has no unit productions.

L(G′) ⊆ L(G): For each production A −→ α in G′ there is a derivation A⇒∗
B ⇒ α in G. Any derivation in G′ can hence be turned into a derivation in G
by replacing each derivation step xAy ⇒ xαy by a derivation xAy ⇒∗ xαy.

L(G) ⊆ L(G′): Let w ∈ L(G). Consider terminal derivations S ⇒∗ w that use
productions of G and G′. If there is a derivation step xAy ⇒ xBy that uses
a unit production A −→ B then the derivation can be shortened by removing
xBy. The remaining shorter derivation still uses productions of G and G′.
Repeat this until no applications of unit productions remain.

The final derivation then only uses productions of G′ because all non-unit pro-
ductions of G are also in G′.

STEP 3. Remove variables that do not derive any terminal
strings.

Such variables can be simply removed together with all productions containing
the variable on either side of the production. This does not effect the generated
language since the variable is not used in any terminating derivation.

To find variables that do generate some terminal string, we apply similar mark-
ing procedure as with ε-productions:

� mark all variables A such that there is a production A −→ w in P , where
w contains only terminals.

� Then keep marking variables A that have productions

A −→ α

where α is a word that contains only terminals and variables that have
already been marked. Repeat this until no new variables can be marked.

The variables that have not been marked can be removed. All productions
containing removable variables are unnecessary, and can be deleted.

STEP 4. Remove symbols (variables and terminals) that are not
reachable from the start symbol S.

Any production that contains such an unreachable symbol can be removed.

To find symbols that can be reached from S are found again using a marking
procedure:

� Initially, mark the start symbol S.

� Then, for all productions A −→ α where A is a marked variable, mark all
symbols that appear in α. Repeat this until no new variables can be marked.

All symbols that have not been marked can not be reached from the initial
symbol, and they can be removed.

Remark: After step 4 all remaining variables still derive a terminal word, so
we do not need to repeat step 3 again.

(Step 3 may introduce new unreachable symbols, so if we do step 4 before step
3, we may have to do step 4 again.)

After steps 1,2,3 and 4 we have found an equivalent (except the possible loss
of the the empty word ε) grammar that does not have ε-productions, unit
productions, or useless symbols.

After steps 1,2,3 and 4 we have found an equivalent (except the possible loss
of the the empty word ε) grammar that does not have ε-productions, unit
productions, or useless symbols.

If the empty word was in the original language and we want to include it in the
new grammar we may introduce a nonrecursive start symbol. This means
that we add a new variable S ′, make it the start symbol, and add productions

S ′ −→ S
S ′ −→ ε

where S is the old start symbol. The new grammar is equivalent to the original
one, and it has only one ε-production that can be used only once.

Example. Let us simplify the following grammar:

S −→ Aa | CbDS
A −→ ε | BA
B −→ AA
C −→ a
D −→ aAD

A grammar G is in the Chomsky normal form (or CNF) if all productions
are of the forms

A −→ BC, or
A −→ a

where A, B and C are variables, and a is a terminal.

(Right-hand-sides of productions consist of two variables, or one terminal.)

Theorem. Every context-free language L without ε is generated by a grammar
that is in the Chomsky normal form.

The conversion from a given context-free grammar to an equivalent CNF gram-
mar is effective.

A grammar G is in the Chomsky normal form (or CNF) if all productions
are of the forms

A −→ BC, or
A −→ a

where A, B and C are variables, and a is a terminal.

(Right-hand-sides of productions consist of two variables, or one terminal.)

Theorem. Every context-free language L without ε is generated by a grammar
that is in the Chomsky normal form.

The conversion from a given context-free grammar to an equivalent CNF gram-
mar is effective.

Proof. Let G be a grammar that generates L. We may assume that there are
no ε-productions or unit productions in G. (Because they can be removed, as
we have seen.)

Now all productions with one symbol on the right hand side are terminal pro-
ductions A −→ a. These are then already in the Chomsky normal form.

The only productions A −→ α that are not in the Chomsky normal form are
long, meaning that |α| ≥ 2.

For every terminal symbol a we introduce a new variable Va and a production

Va −→ a

Variable Va hence only derives word a.

(Note that the production Va −→ a we add is in the Chomsky normal form.)

The only productions A −→ α that are not in the Chomsky normal form are
long, meaning that |α| ≥ 2.

For every terminal symbol a we introduce a new variable Va and a production

Va −→ a

Variable Va hence only derives word a.

(Note that the production Va −→ a we add is in the Chomsky normal form.)

Now in each long production A −→ α we replace every terminal symbol a
by the corresponding variable Va. After this change the grammar generates
the same language L as before, and now every long production only contains
variables.

Example. The production

S −→ cAbbS

will be replace by production

S −→ VcAVbVbS

where Va and Vb are new variables. New productions Va −→ a and Vb −→ b
are also added.

Clearly the new grammar is equivalent to the original one: Every application of
the original production

S −→ cAbbS

is replaced by a sequence of derivation steps that first uses production

S −→ VcAVbVbS

and then applies productions

Vc −→ c and Vb −→ b

to replace all occurrences of variables Vc and Vb by terminals c and b.

So far we have constructed an equivalent grammar whose productions are of the
forms

A −→ B1B2 . . . Bn and
A −→ a

where n ≥ 2, and A,B1, B2, . . . , Bn are variables, and a terminal symbol.

So far we have constructed an equivalent grammar whose productions are of the
forms

A −→ B1B2 . . . Bn and
A −→ a

where n ≥ 2, and A,B1, B2, . . . , Bn are variables, and a terminal symbol.

The only productions that are not in CNF are

A −→ B1B2 . . . Bn

where n ≥ 3. For each such production we introduce n − 2 new variables
D1, D2, . . . , Dn−2, and replace the production by the productions

A −→ B1D1

D1 −→ B2D2

D2 −→ B3D3

. . .
Dn−3 −→ Bn−2Dn−2
Dn−2 −→ Bn−1Bn

One application of the original production gives the same result as applying the
new productions one after the other. The new grammar is equivalent to the
original one.

Remark: The new variables Di have to be different for different productions.

Example. Let us find a Chomsky normal form grammar that is equivalent to

S −→ SSaA | bc | c
A −→ AAA | b

Another normal form is so-called Greibach normal form, or GNF. A gram-
mar is in the Greibach normal form if all productions are of form

A −→ aB1B2 . . . Bn

where n ≥ 0 and A,B1, B2, . . . , Bn are variables, and a is a terminal symbol.

(All productions contain exactly one terminal symbol and it is the first symbol
on the right hand side of the production.)

Theorem. Every context-free language L without ε is generated by a grammar
that is in Greibach normal form.

Proof. Skipped.

Pushdown automata

A pushdown automaton (PDA) is an NFA that has access to an infinite
memory, organized as a stack. It turn out that see that the family of
languages recogized by PDA is exactly the family of context-free languages.

A PDA consists of the following:

� Stack. The stack is a word. The PDA has access only to the leftmost
symbol of the stack. (This is called the top of the stack.) During one move
of the PDA, the leftmost symbol may be removed (”popped” from the stack)
and new symbols may be added (”pushed”) on the top of the stack.

� Input tape. Similar to finite automata: the input word is normally
scanned one symbol at a time. But also ε-moves are possible.

� Finite state control unit. The control unit is a non-deterministic finite
automaton. Transitions may depend on the next input symbol and the
topmost stack symbol.

There are two types of moves: normal moves, and ε-moves.

1. Normal moves: Depending on

(a) the current state of the control unit,

(b) the next input letter, and

(c) the topmost symbol on the stack

the PDA may

(A) change the state,

(B) pop the topmost element from the stack,

(C) push new symbols to the stack, and

(D) move to the next input symbol.

2. ε-moves don’t have (b) and (D), i.e. they are done spontaneously without
using the input tape.

Example. Let
L = {anbn | n ≥ 1}.

A PDA that recognizes L has two states, Sa and Sb, and the stack alphabet
contains two symbols, A and Z0. In the beginning the machine is in initial state
Sa, and the stack contains only one symbol Z0, the start symbol of the stack.

Transitions are summarized in this table:

Top of I n p u t S y m b o l

State stack a b ε

Add one A

Sa Z0 to the stack, — —

stay in state Sa

Add one A Remove one A

Sa A to the stack, from the stack, —

stay in state Sa go to state Sb

Remove one A

Sb A — from the stack, —

stay in state Sb

Remove Z0

Sb Z0 — — from the stack,

stay in state Sb

A word is accepted if and only if the PDA has an empty stack after reading all
input symbols.

An instantaneous description (ID) records the configuration of a PDA at
given time. It is a triple

(q, w, γ)

where

� q is the state of the PDA,

� w is the remaining input, i.e. the suffix of the original input that has
not been used yet, and

� γ is a word, the content of the stack. The first letter of γ is the topmost
symbol of the stack.

ID contains all relevant information that is needed in subsequent steps of the
computation.

We denote
(q1, w1, γ1) ⊢ (q2, w2, γ2)

if there exists a move that takes the first ID into the second ID.

We denote
(q1, w1, γ1) ⊢ (q2, w2, γ2)

if there exists a move that takes the first ID into the second ID. We denote

(q1, w1, γ1) ⊢∗ (q2, w2, γ2)

if there is a sequence of moves (possibly empty) from the first ID to the second
ID. We denote

(q1, w1, γ1) ⊢+ (q2, w2, γ2)

if there is a non-empty sequence of moves (at least one move). Finally, we
denote

(q1, w1, γ1) ⊢n (q2, w2, γ2)

if the first ID becomes the second ID in exactly n moves.

We operate PDF under two different modes of acceptance, depending on what
is more convenient:

� Acceptance by empty stack: An input word is accepted if all input letters
are consumed and in the end the stack is empty.

� Acceptance by final state: We identify some states as final states. An
input word is accepted if all input letters are consumed and in the end the
PDA is in a final state.

We will see later that the two possible modes of acceptance are equivalent: If
there is a PDA that recognizes language L by empty stack then there is also a
PDA that accepts L by final state, and vice versa. The conversion between the
two modes is effective.

Example. The sample PDA to recognaize L = {anbn | n ≥ 1} accepts using
empty stack.

Top of I n p u t S y m b o l

State stack a b ε

Add one A

Sa Z0 to the stack, — —

stay in state Sa

Add one A Remove one A

Sa A to the stack, from the stack, —

stay in state Sa go to state Sb

Remove one A

Sb A — from the stack, —

stay in state Sb

Remove Z0

Sb Z0 — — from the stack,

stay in state Sb

An accepting computation on input aaabbb:

(Sa, aaabbb, Z0) ⊢

Example. The sample PDA to recognaize L = {anbn | n ≥ 1} accepts using
empty stack.

Top of I n p u t S y m b o l

State stack a b ε

Add one A

Sa Z0 to the stack, — —

stay in state Sa

Add one A Remove one A

Sa A to the stack, from the stack, —

stay in state Sa go to state Sb

Remove one A

Sb A — from the stack, —

stay in state Sb

Remove Z0

Sb Z0 — — from the stack,

stay in state Sb

An accepting computation on input aaabbb:

(Sa, aaabbb, Z0) ⊢ (Sa, aabbb, AZ0) ⊢ (Sa, abbb, AAZ0) ⊢ (Sa, bbb, AAAZ0)
⊢ (Sb, bb, AAZ0) ⊢ (Sb, b, AZ0) ⊢ (Sb, ε, Z0) ⊢ (Sb, ε, ε)

Formally, a pushdown automaton M consists of

(Q,Σ,Γ, δ, q0, Z0, F)

where

� Q is a finite state set,

� Σ is the input alphabet,

� Γ is the stack alphabet,

� q0 ∈ Q is the initial state,

� Z0 ∈ Γ is the start symbol of the stack,

� F ⊆ Q is the set of final states,

� δ is a mapping from
Q× (Σ ∪ {ε})× Γ

to finite subsets of
Q× Γ∗.

Note that δ(q, a, Z) is a set of possible outcomes: PDA are non-deterministic.

1. The interpretation of a transition

(p, γ) ∈ δ(q, a, Z)

(where p, q ∈ Q, a ∈ Σ, Z ∈ Γ, γ ∈ Γ∗):

In state q, reading input letter a, and Z on the top of the stack, the PDA may
go to state p, move to next input symbol, and replace Z by γ on top of the
stack. The leftmost symbol of γ will be the new top of the stack (if γ ̸= ε).

This transition means that moves

(q, aw, Zα) ⊢ (p, w, γα)

are allowed (for any w ∈ Σ∗, α ∈ Γ∗).

2. The interpretation of an ε-transition

(p, γ) ∈ δ(q, ε, Z)

(where p, q ∈ Q, Z ∈ Γ, γ ∈ Γ∗):

In state q and Z on the top of the stack, the PDA may go to state p and replace
Z by γ on top of the stack. Note that no input symbol is consumed, and
the transition can be used regardless of the current input symbol.

This transition means that moves

(q, w, Zα) ⊢ (p, w, γα)

are allowed (for any w ∈ Σ∗, α ∈ Γ∗).

Let us formally define the two modes of acceptance:

� A word w is accepted by PDA M using empty stack, iff

(q0, w, Z0) ⊢∗ (q, ε, ε)

for some q ∈ Q. Note that q can be any state, final or non-final.

The language recognized using empty stack is denoted by N(M), and it
consists of all words accepted using empty stack:

N(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗ (q, ε, ε)}

Let us formally define the two modes of acceptance:

� A word w is accepted by PDA M using empty stack, iff

(q0, w, Z0) ⊢∗ (q, ε, ε)

for some q ∈ Q. Note that q can be any state, final or non-final.

The language recognized using empty stack is denoted by N(M), and it
consists of all words accepted using empty stack:

N(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗ (q, ε, ε)}

� A word w is accepted by PDA M using final states, iff

(q0, w, Z0) ⊢∗ (q, ε, γ)

for some q ∈ F , and γ ∈ Γ∗. Now q has to be a final state, but the stack
does not need to be empty.

The language recognized using final states is denoted by L(M), and it con-
sists of all words accepted using final states:

L(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗ (q, ε, γ)}

Example. Our sample PDA is

M = ({Sa, Sb}, {a, b}, {Z0, A}, δ, Sa, Z0, ∅)

where
δ(Sa, a, Z0) = {(Sa, AZ0)}
δ(Sa, a, A) = {(Sa, AA)}
δ(Sa, b, A) = {(Sb, ε)}
δ(Sb, b, A) = {(Sb, ε)}
δ(Sb, ε, Z0) = {(Sb, ε)}

and all other sets δ(q, a, Z) are empty. It does not matter which set we choose
as the set of final states, since we use acceptance by empty stack. (Choose, for
example F = ∅.) We have

N(M) = {anbn | n ≥ 1}.

Example. Let us construct a PDA M such that

N(M) = {w | w ∈ {a, b}∗ and w is a palindrome }.

Example. Let us construct a PDA M such that

N(M) = {w | w ∈ {a, b}∗ and w is a palindrome }.

Idea: The PDA will read symbols from the input and push them into the stack.
At some point it guesses that it is in the middle of the input word, and starts
popping letters from the stack and comparing them against the following input
letters. If all letters match, and the stack and the input string become empty
at the same time, the word was a palindrome.

Example. Let us construct a PDA M such that

N(M) = {w | w ∈ {a, b}∗ and w is a palindrome }.
Idea: The PDA will read symbols from the input and push them into the stack.
At some point it guesses that it is in the middle of the input word, and starts
popping letters from the stack and comparing them against the following input
letters. If all letters match, and the stack and the input string become empty
at the same time, the word was a palindrome.

M = ({q1, q2}, {a, b}, {Z0, A,B}, δ, q1, Z0, ∅)
where δ is

δ(q1, ε, Z0) = {(q1, ε)}
δ(q1, a, Z0) = {(q1, AZ0), (q2, AZ0), (q2, Z0)}
δ(q1, b, Z0) = {(q1, BZ0), (q2, BZ0), (q2, Z0)}
δ(q1, a, A) = {(q1, AA), (q2, AA), (q2, A)}
δ(q1, b, A) = {(q1, BA), (q2, BA), (q2, A)}
δ(q1, a, B) = {(q1, AB), (q2, AB), (q2, B)}
δ(q1, b, B) = {(q1, BB), (q2, BB), (q2, B)}
δ(q2, b, B) = {(q2, ε)}
δ(q2, a, A) = {(q2, ε)}
δ(q2, ε, Z0) = {(q2, ε)}

State q1 is used in the first half of the input word, state q2 in the second half.

δ(q1, ε, Z0) = {(q1, ε)}
δ(q1, a, Z0) = {(q1, AZ0), (q2, AZ0), (q2, Z0)}
δ(q1, b, Z0) = {(q1, BZ0), (q2, BZ0), (q2, Z0)}
δ(q1, a, A) = {(q1, AA), (q2, AA), (q2, A)}
δ(q1, b, A) = {(q1, BA), (q2, BA), (q2, A)}
δ(q1, a, B) = {(q1, AB), (q2, AB), (q2, B)}
δ(q1, b, B) = {(q1, BB), (q2, BB), (q2, B)}
δ(q2, b, B) = {(q2, ε)}
δ(q2, a, A) = {(q2, ε)}
δ(q2, ε, Z0) = {(q2, ε)}

The three possible outcomes of some transitions have the following roles in
accepting computations:

� use the first transition, if the input letter is before the end of the first half
of the input word.

� use the second transition, if the input word has even length and the current
input letter is the last letter of the first half, and

� use the third transition, if the input word has odd length and the current
input letter is exactly in the middle of the input word.

δ(q1, ε, Z0) = {(q1, ε)}
δ(q1, a, Z0) = {(q1, AZ0), (q2, AZ0), (q2, Z0)}
δ(q1, b, Z0) = {(q1, BZ0), (q2, BZ0), (q2, Z0)}
δ(q1, a, A) = {(q1, AA), (q2, AA), (q2, A)}
δ(q1, b, A) = {(q1, BA), (q2, BA), (q2, A)}
δ(q1, a, B) = {(q1, AB), (q2, AB), (q2, B)}
δ(q1, b, B) = {(q1, BB), (q2, BB), (q2, B)}
δ(q2, b, B) = {(q2, ε)}
δ(q2, a, A) = {(q2, ε)}
δ(q2, ε, Z0) = {(q2, ε)}

Accepting computations for inputs aba and abba:

(q1, bab, Z0) ⊢

(q1, abba, Z0) ⊢

δ(q1, ε, Z0) = {(q1, ε)}
δ(q1, a, Z0) = {(q1, AZ0), (q2, AZ0), (q2, Z0)}
δ(q1, b, Z0) = {(q1, BZ0), (q2, BZ0), (q2, Z0)}
δ(q1, a, A) = {(q1, AA), (q2, AA), (q2, A)}
δ(q1, b, A) = {(q1, BA), (q2, BA), (q2, A)}
δ(q1, a, B) = {(q1, AB), (q2, AB), (q2, B)}
δ(q1, b, B) = {(q1, BB), (q2, BB), (q2, B)}
δ(q2, b, B) = {(q2, ε)}
δ(q2, a, A) = {(q2, ε)}
δ(q2, ε, Z0) = {(q2, ε)}

Accepting computations for inputs aba and abba:

(q1, bab, Z0) ⊢ (q1, ab, BZ0) ⊢ (q2, b, BZ0) ⊢ (q2, ε, Z0) ⊢ (q2, ε, ε)

(q1, abba, Z0) ⊢ (q1, bba, AZ0) ⊢ (q2, ba, BAZ0) ⊢ (q2, a, AZ0) ⊢ (q2, ε, Z0) ⊢ (q2, ε, ε)

A PDA is called deterministic (or DPDA) if every ID has at most one possible
move. This means that

� if δ(q, ε, Z) is non-empty then δ(q, a, Z) is empty for every input letter a,
and

� All δ(q, a, Z) and δ(q, ε, Z) contain at most one element.

The first condition states that there is no choice between ε-move and non-ε-
move. If one can make a move without reading an input letter, then that is the
only possible move.

A PDA is called deterministic (or DPDA) if every ID has at most one possible
move. This means that

� if δ(q, ε, Z) is non-empty then δ(q, a, Z) is empty for every input letter a,
and

� All δ(q, a, Z) and δ(q, ε, Z) contain at most one element.

The first condition states that there is no choice between ε-move and non-ε-
move. If one can make a move without reading an input letter, then that is the
only possible move.

Remark: There exist languages that are recognized by nondeterministic PDA
but not by any deterministic PDA. The situation is different than in case of
finite automata where determinism was equivalent to non-determinism.

For example, the language of palindromes cannot be recognized by any DPDA.

Theorem. If L = L(M) for some PDA M then there (effectively) exists a
PDA M ′ such that L = N(M ′).

Proof.

Theorem. If L = L(M) for some PDA M then there (effectively) exists a
PDA M ′ such that L = N(M ′).

Proof. Idea: M accepts L by final state. We construct a PDA M ′ that
simulates M , with the additional option that when M enters a final state, M ′

may enter a special erase the stack -state qe and remove all symbols from
the stack. Them M ′ accepts w by empty stack if M entered a final state.

Theorem. If L = L(M) for some PDA M then there (effectively) exists a
PDA M ′ such that L = N(M ′).

Proof. Idea: M accepts L by final state. We construct a PDA M ′ that
simulates M , with the additional option that when M enters a final state, M ′

may enter a special erase the stack -state qe and remove all symbols from
the stack. Them M ′ accepts w by empty stack if M entered a final state.

But: We have to be careful to make sure that M ′ does not accept a word
accidentally if M empties the stack without entering an accepting state. We
prevent this by inserting a new bottom of the stack symbol X0 below
the old start symbol Z0. Even if M empties the stack, M ′ will have the symbol
X0 in the stack. We have a new initial state q′0 that simply places Z0 above X0

and starts the simulation of M .

If M empties the stack without entering the final state then it is stuck. Corre-
sponding computation in M ′ gets stuck with X0 on the stack.

Theorem. If L = N(M) for some PDA M then there (effectively) exists a
PDA M ′ such that L = L(M ′).

Proof.

Theorem. If L = N(M) for some PDA M then there (effectively) exists a
PDA M ′ such that L = L(M ′).

Proof. Idea: Now M recognizes L by empty stack. We construct a PDA M ′

that simulates M and detects when the stack is empty. When that happens
the PDA enters a final state. In order to be able to detect the empty stack and
change the state, we again introduce a new bottom of the stack symbol
X0. As soon as X0 is revealed the new PDA enters a new final state qf .

Example. Let us modify our first sample PDA so that it recognizes the lan-
guage

L = {anbn | n ≥ 1}
using final states instead of the empty stack.

Next we prove that PDA recognize all context-free languages. In fact,
all context-free languages are recognized by PDA having only one state. We
prove this by showing how any context-free grammar can be simulated using
only the stack.

Example. Consider the grammar G = (V, T, P, S) where V = {S}, T =
{a, b} and P contains productions

S −→ aSbS | bSaS | ε.

Let us construct a PDA M that recognizes L(G) using empty stack.

Example. Consider the grammar G = (V, T, P, S) where V = {S}, T =
{a, b} and P contains productions

S −→ aSbS | bSaS | ε.

Let us construct a PDA M that recognizes L(G) using empty stack.

The stack symbols of M are the terminals and variables of G. At all times,
the content of the stack is a suffix of a sentential form by G, from which the
remaining input can be generated.

Initially the stack contains the start symbol of the grammar.

� If the topmost symbol of the stack is a terminal symbol it is compared
against next input letter. If they are identical, the symbol is popped from
the stack and the PDA moves to the next input letter. If they are different
the simulation halts.

� If the topmost symbol of the stack is a variable the PDA replaces it by a
right-hand-side of a production using an ε-move.

Theorem. If L = L(G) for some context-free grammar G then there (effec-
tively) exists a PDA M such that L = N(M).

Proof.

Example. Consider the grammar

G = ({S}, {a, b}, P, S)

with productions
S −→ ε | aSb

that generates L = {anbn | n ≥ 0}. The construction gives a PDA M such
that N(M) = L

Next we prove that PDA accept only context-free languages: For a given PDA
M we construct an equivalent context-free grammar G.

Theorem. If L = N(M) for some PDA M then there exists a context-free
grammar G such that L = L(G).

Proof.

Next we prove that PDA accept only context-free languages: For a given PDA
M we construct an equivalent context-free grammar G.

Theorem. If L = N(M) for some PDA M then there exists a context-free
grammar G such that L = L(G).

Proof. This construction is made complicated by the fact that the PDA may
have more than one state. We split the prof in two stages:

Theorem A. If L = N(M1) for some PDA M1 then there (effectively) exists
a PDA M2 that has only one state such that L = N(M2).

Theorem B. If L = N(M2) for some PDA M2 with one state, then there
(effectively) exists a context-free grammar G such that L = L(G).

Theorem A. If L = N(M1) for some PDA M1 then there (effectively) exists
a PDA M2 that has only one state such that L = N(M2).

Proof.

Theorem A. If L = N(M1) for some PDA M1 then there (effectively) exists
a PDA M2 that has only one state such that L = N(M2).

Proof. Idea: The computations of M1 will be simulated in such a way that
the state of M1 will be stored in the topmost element of the stack in M2. So
at all times the topmost element of the stack contains both the stack symbol of
M1 and the current state of M1.

Then every move of M1 can be simulated by M2 since it knows the state and
the topmost stack symbol of M1. After each step, the next state is written into
the new topmost element.

Theorem A. If L = N(M1) for some PDA M1 then there (effectively) exists
a PDA M2 that has only one state such that L = N(M2).

Proof. Idea: The computations of M1 will be simulated in such a way that
the state of M1 will be stored in the topmost element of the stack in M2. So
at all times the topmost element of the stack contains both the stack symbol of
M1 and the current state of M1.

Then every move of M1 can be simulated by M2 since it knows the state and
the topmost stack symbol of M1. After each step, the next state is written into
the new topmost element.

But: This is fine as long as at least one new symbol is written in the stack.
However, there is one big problem: Where is the next state stored when the
stack is only popped and nothing new is written into the stack ? New top of
the stack is the symbol that used to be second highest on the stack, and it is
not accessible for writing. The new state must have been stored in the stack
already when the second highest symbol was pushed into the stack — and this
was possibly long before it becomes the topmost symbol.

How do we know long before what is going to be the state of M1 when a
particular stack symbol is revealed to the top of the stack ? Answer: we guess
it using non-determinism of M2. At the time when the symbol becomes the
topmost element of the stack we only need to verify that the earlier guess was
correct.

In order to be able to verify the guess it has to be stored also on the stack
symbol above. Therefore stack symbols of M2 need to contain two states of M1:
one indicates the state of the machine when the symbol is the topmost element
of the stack, and the other state that indicates the state of M1 when the the
element below is the topmost element of the stack.

Therefore the stack of M2 stores triplets

Q× Γ×Q.

Symbol [q, Z, p] on top of the stack indicates that that M1 is in state q with
Z is on top of the stack and p will be the state of M1 when the element below
becomes the topmost symbol of the stack.

The stack is kept consistent, meaning that the content of the stack will always
look like

[q1, Z1, q2][q2, Z2, q3][q3, Z3, q4] . . .

(The third component of a stack symbol is the same as the first component of
the next stack symbol below.)

The values q2, q3, q4 . . . are nondeterministic ’guesses’ done by M2 about the
state of M1 when the corresponding stack elements will get exposed on top of
the stack. As the stack shrinks the correctness of the guesses gets verified.

Detailed construction on the blackboard.

Example. Let us construct a one state PDA that is equivalent to the PDA

M = ({Sa, Sb}, {a, b}, {Z0, A}, δ, Sa, Z0, ∅)

where
δ(Sa, a, Z0) = {(Sa, AZ0)}
δ(Sa, a, A) = {(Sa, AA)}
δ(Sa, b, A) = {(Sb, ε)}
δ(Sb, b, A) = {(Sb, ε)}
δ(Sb, ε, Z0) = {(Sb, ε)}

that recognizes language

N(M) = {anbn | n ≥ 1}.

Theorem B. If L = N(M2) for some PDA M2 with one state, then there
(effectively) exists a context-free grammar G such that L = L(G).

Proof.

Example. Consider the one state PDA

M = ({#}, {a, b}, {A,B,Z}, δ,#, Z, ∅)

where δ contains transitions

δ(#, ε, Z) = {(#, AZZA), (#, B)}
δ(#, a, A) = {(#, ε)}
δ(#, b, B) = {(#, ε)}

Let us construct the equivalent grammar.

We have proved four theorems providing effective equivalence of three devices:

PDA with final state acceptance mode

PDA with empty stack acceptance mode

Context-free grammar

The constructions were all effective which means that when investigating closure
properties of context-free languages or decision algorithms we may assume that
the input is given in any of the three forms.

Pumping lemma for CFL

Not all languages are context-free. A technique for proving that some language
is not context-free is a pumping lemma.

Just as in case of regular languages, pumping lemma states a property that
every context-free language satisfies. If a language does not satisfy the pumping
lemma then the language is not context-free.

Pumping lemma for CFL: Let L be a context-free language. Then there
exists a positive number n such that every word z ∈ L satisfying |z| ≥ n can
be divided into five segments

z = uvwxy

in such a way that {
|vwx| ≤ n, and
v ̸= ε or x ̸= ε

and for all i ≥ 0 the word uviwxiy is in the language L.

(The difference to the pumping lemma of regular languages is that now word z
contains two subwords v and x that are pumped. Note that subwords v and x
are always pumped the same number of times.)

Example. The language L = {ambm | m ≥ 0} satisfies the pumping lemma.

Number n = 2 can be used. Let z = ambm be an arbitrary word of the language
such that |z| ≥ 2. This means m ≥ 1. We break z into five parts as follows:

z = am−1︸ ︷︷ ︸
u

a︸︷︷︸
v

ε︸︷︷︸
w

b︸︷︷︸
x

bm−1︸ ︷︷ ︸
y

This division is good since vx = ab ̸= ε and |vwx| = |ab| ≤ 2.

Subwords v and x can be pumped arbitrarily many times: for every i ≥ 0

uviwxiy = am−1 ai ε bi bm−1 = am+i−1bm+i−1

is in language L.

Let’s analyze in detail why L = {ambm | m ≥ 0} satisfies the pumping lemma.

L is generated by a grammar with two productions

S −→ aSb | ε.

The word ambm, m ≥ 1, has a derivation

S =⇒∗ am−1Sbm−1 =⇒ am−1aSbbm−1 =⇒ am−1aεbbm−1

corresponding to the derivation tree

m-1 m-1b

a b

ε

S

a

S

S

We used three subderivations

S =⇒∗ am−1Sbm−1,
S =⇒∗ aSb,
S =⇒∗ ε.

The middle subderivation S =⇒∗ aSb derives from variable S the variable
itself.

We used three subderivations

S =⇒∗ am−1Sbm−1,
S =⇒∗ aSb,
S =⇒∗ ε.

The middle subderivation S =⇒∗ aSb derives from variable S the variable
itself. It means that the subderivation can be iterated arbitrarily many times.
Repeating it i times gives

S =⇒∗ am−1Sbm−1 =⇒i am−1aiSbibm−1 =⇒ am−1aiεbibm−1

corresponding to the derivation tree

ε

S

i times

S

bm-1m-1
a

S

S
ba

a

S
ba

S
b

In other words, pumping i times words v = a and x = b corresponds to iterating
the middle subderivaton i times.

Let us prove that the argument above can be done for any context-free language.

Proof of the pumping lemma. Idea: The proof is based on the fact that
during derivations of sufficiently long words, some variable derives a sentential
form containing the variable itself. In other words, we have derivations

S ⇒∗ uAy
A ⇒∗ vAx
A ⇒∗ w

for some words u, v, w, x, y and variable A. But the derivation A⇒∗ vAx may
be repeated arbitrarily many times, say i times:

S ⇒∗ uAy ⇒∗ uvAxy ⇒∗ uvvAxxy ⇒∗ . . .
· · · ⇒∗ uviAxiy ⇒∗ uviwxiy

This shows that uviwxiy is in language L for every i ≥ 0.

Let us prove that the argument above can be done for any context-free language.

Proof of the pumping lemma. Idea: The proof is based on the fact that
during derivations of sufficiently long words, some variable derives a sentential
form containing the variable itself. In other words, we have derivations

S ⇒∗ uAy
A ⇒∗ vAx
A ⇒∗ w

for some words u, v, w, x, y and variable A. But the derivation A⇒∗ vAx may
be repeated arbitrarily many times, say i times:

S ⇒∗ uAy ⇒∗ uvAxy ⇒∗ uvvAxxy ⇒∗ . . .
· · · ⇒∗ uviAxiy ⇒∗ uviwxiy

This shows that uviwxiy is in language L for every i ≥ 0.

A precise proof: Let G be a grammar in Chomsky normal form such that
L = L(G) (or L = L(G) ∪ {ε} if ε ∈ L).

Define: the depth of a derivation tree = the length of the longest path from
the root to a leaf.

Lemma. If a derivation tree by a CNF grammar for a word w has depth d
then |w| ≤ 2d−1.

Proof.

Lemma. If a derivation tree by a CNF grammar for a word w has depth d
then |w| ≤ 2d−1.

Proof. Mathematical induction on d:

1◦ (base case) If d = 1 then the tree must be the trivial one:

a

A

and the word it derives has length 2d−1.

Lemma. If a derivation tree by a CNF grammar for a word w has depth d
then |w| ≤ 2d−1.

Proof. Mathematical induction on d:

1◦ (base case) If d = 1 then the tree must be the trivial one:

a

A

and the word it derives has length 2d−1.

2◦ (inductive step) Let d > 1. The tree has the form

A

B
�

�
�

C
@

@
@

�
�
��

A
A
AA

�
�
��

A
A

AA

T1 T2︸︷︷︸
u

︸︷︷︸
v

and w = uv.

Lemma. If a derivation tree by a CNF grammar for a word w has depth d
then |w| ≤ 2d−1.

Proof. Mathematical induction on d:

1◦ (base case) If d = 1 then the tree must be the trivial one:

a

A

and the word it derives has length 2d−1.

2◦ (inductive step) Let d > 1. The tree has the form

A

B
�

�
�

C
@

@
@

�
�
��

A
A
AA

�
�
��

A
A

AA

T1 T2︸︷︷︸
u

︸︷︷︸
v

and w = uv. The depths of the trees T1 and T2 are at most d− 1, so that (by
the inductive hypothesis) |u| ≤ 2d−2 and |v| ≤ 2d−2. Therefore

|w| = |u| + |v| ≤ 2d−2 + 2d−2 = 2d−1.

Let k be the number of variables in G, a CNF grammar for L.

Let us choose the number n in the pumping lemma as n = 2k.

Let z ∈ L be any word such that |z| ≥ n, and let T be a derivation tree for z.

The depth of T has to be at least k + 1, since a tree of smaller depth can yield
only shorter words.

Pick one maximum length path π from the root to a leaf in T . Reading from
the leaf up, let

a, V1, V2, V3, . . . , Vk+1

be the first k + 2 labels along path π:

k
V

k+1
V

V

z

a

1

2

V

S

Since the grammar has only k variables, it follows from the pigeon hole principal
that two of the variables V1, V2, . . . , Vk+1 must be identical, say

Vs = Vt = V, for s < t.

So the derivation tree for z looks like:

v x

w

V

u y
V

S

We have valid derivations
S ⇒∗ uV y
V ⇒∗ vV x
V ⇒∗ w.

Clearly vx ̸= ε: Since the grammar G is in CNF, the lower V must have a
sibling, and the yield of that sibling is part of either v or x.

So the derivation tree for z looks like:

v x

w

V

u y
V

S

We have valid derivations
S ⇒∗ uV y
V ⇒∗ vV x
V ⇒∗ w.

Clearly vx ̸= ε: Since the grammar G is in CNF, the lower V must have a
sibling, and the yield of that sibling is part of either v or x.

Now, there are derivations for words uviwxiy for all i ≥ 0:

S ⇒∗ uV y ⇒∗ uvV xy ⇒∗ uv2V x2y ⇒∗ . . .
· · · ⇒∗ uviV xiy ⇒∗ uviwxiy

v x

w

V

u y
V

S

To complete the proof we still have to show that

|vwx| ≤ n = 2k.

v x

w

V

u y
V

S

To complete the proof we still have to show that

|vwx| ≤ n = 2k.

But vwx it is the yield of the subtree rooted at Vt (=the higher V), and the
depth of that subtree is at most k + 1.

(If there would be longer path from Vt to a leaf, then that path combined with
the path from the root S to Vt would be longer than the longest path π, a
contradiction.)

We know how long can the yields of trees of depth ≤ k + 1 be: they can have
at most 2k letters.

We use the pumping lemma to prove that certain languages are not context-
free. It works the same way as the pumping lemma for regular languages. To
show that a language is not a CFL we show that it does not satisfy the pumping
lemma. So we are more interested in the negation of the pumping lemma.

Here is the mathematical formulation for the pumping lemma:

(∃n)
(∀z ∈ L, |z| ≥ n)
(∃u, v, w, x, y : z = uvwxy, |vwx| ≤ n, vx ̸= ε)
(∀i ≥ 0)
uviwxiy ∈ L,

Its negation is the statement:

(∀n)
(∃z ∈ L, |z| ≥ n)
(∀u, v, w, x, y : z = uvwxy, |vwx| ≤ n, vx ̸= ε)
(∃i ≥ 0)
uviwxiy ̸∈ L.

Here is the mathematical formulation for the pumping lemma:

(∃n)
(∀z ∈ L, |z| ≥ n)
(∃u, v, w, x, y : z = uvwxy, |vwx| ≤ n, vx ̸= ε)
(∀i ≥ 0)
uviwxiy ∈ L,

Its negation is the statement:

(∀n)
(∃z ∈ L, |z| ≥ n)
(∀u, v, w, x, y : z = uvwxy, |vwx| ≤ n, vx ̸= ε)
(∃i ≥ 0)
uviwxiy ̸∈ L.

To prove that a language is not context-free we do the following two steps:

(1) For every n select a word z ∈ L, |z| ≥ n,

(2) for any division z = uvwxy of z into five segments satisfying |vwx| ≤ n
and vx ̸= ε, find a number i ≥ 0 such that

uviwxiy

is not in the language L.

Example. Consider the language

L = {ambmcm | m ≥ 1}.

Let us prove that L is not context-free.

Example. Consider the language

L = {ambmcm | m ≥ 1}.

Let us prove that L is not context-free.

(1) For any given n choose word z =

Example. Consider the language

L = {ambmcm | m ≥ 1}.

Let us prove that L is not context-free.

(1) For any given n choose word z = anbncn. We have z ∈ L and |z| ≥ n, as
required.

Example. Consider the language

L = {ambmcm | m ≥ 1}.

Let us prove that L is not context-free.

(1) For any given n choose word z = anbncn. We have z ∈ L and |z| ≥ n, as
required.

(2) Let z = uvwxy be an arbitrary division of z into 5 segments such that

|vwx| ≤ n and vx ̸= ε.

We must analyze possible choices of u, v, w, x, y: Since |vwx| ≤ n, words v
and x cannot contain both letters a and c. (In z, letters a are separated from
all c’s by a string of n b’s.)

Example. Consider the language

L = {ambmcm | m ≥ 1}.
Let us prove that L is not context-free.

(1) For any given n choose word z = anbncn. We have z ∈ L and |z| ≥ n, as
required.

(2) Let z = uvwxy be an arbitrary division of z into 5 segments such that

|vwx| ≤ n and vx ̸= ε.

We must analyze possible choices of u, v, w, x, y: Since |vwx| ≤ n, words v
and x cannot contain both letters a and c. (In z, letters a are separated from
all c’s by a string of n b’s.)

So letter a or c does not exist in v and x. Therefore uv2wx2y contains more
some letters than others: By adding one v and x we have increased the number
of some letters, while the number of one letter has remained n.

Conclusion: Choice i = 2 gives

uviwxiy ̸∈ L.

Another example.

L =
{
ambkcmdk | m, k ≥ 1

}

Closure properties of CFL

Recall: We say that the family of context-free languages is closed under
the language operation Op if

L1, L2, . . . are CFL =⇒ Op(L1, L2, . . .) is CFL

That is, if operation Op is applied to context-free languages, the result is also
context-free.

Closure properties of CFL

Recall: We say that the family of context-free languages is closed under
the language operation Op if

L1, L2, . . . are CFL =⇒ Op(L1, L2, . . .) is CFL

That is, if operation Op is applied to context-free languages, the result is also
context-free.

We say the closure is effective if there is a mechanical procedure (=algo-
rithm) that constructs result Op(L1, L2, . . .) for any context-free input lan-
guages L1, L2,

Inputs and outputs are given in the form of PDA or context-free grammar – it
does not matter which format is used since both devices can be mechanically
converted into each other.

Theorems. The family of CFL is effectively closed under the following oper-
ations:

� Union (if L1, L2 are CFL, so is L1 ∪ L2),

� Concatenation (if L1, L2 are CFL, so is L1L2),

� Kleene closure (if L is CFL, so is L∗),

� Substitutions with CFL (if L is CFL, and f is a substitution such that for
every letter a ∈ Σ language f (a) is CFL, then f (L) is CFL),

� Homomorphisms (if L is CFL, and h is a homomorphism then h(L) is CFL),

� Inverse homomorphisms (if L is CFL, and h is a homomorphism then h−1(L)
is CFL),

� Intersections with regular languages (if L is CFL and R is a regular lan-
guage, then L ∩R is CFL).

More theorems. The family of CFL is NOT closed under the following
operations:

� Intersection (for some CFL L1 and L2 the language L1 ∩ L2 is not CFL),

� Complementation (for some CFL L the language L̄ is not CFL),

� Quotient (for some CFL L1 and L2 the language L1/L2 is not CFL).

Proofs.

1. Union and concatenation. Let L1 be generated by grammar

G1 = (V1, T1, P1, S1),

and L2 by
G2 = (V2, T2, P2, S2).

Wemay assume that the two variable sets V1 and V2 are disjoint, i.e. V1∩V2 = ∅.
(If necessary we just rename some variables.)

Proofs.

1. Union and concatenation. Let L1 be generated by grammar

G1 = (V1, T1, P1, S1),

and L2 by
G2 = (V2, T2, P2, S2).

Wemay assume that the two variable sets V1 and V2 are disjoint, i.e. V1∩V2 = ∅.
(If necessary we just rename some variables.)

Union L1 ∪ L2 is generated by grammar

G3 = (V1 ∪ V2 ∪ {S3}, T1 ∪ T2, P3, S3)

where S3 is a new start symbol, and P3 contains all productions in P1 and P2,
and additional ”initializing” productions

S3 −→ S1 | S2.

The first derivation step by G3 produces either S1 or S2, and after that a
derivation by G1 or G2 is simulated.

Proofs.

1. Union and concatenation. Let L1 be generated by grammar

G1 = (V1, T1, P1, S1),

and L2 by
G2 = (V2, T2, P2, S2).

Wemay assume that the two variable sets V1 and V2 are disjoint, i.e. V1∩V2 = ∅.
(If necessary we just rename some variables.)

Concatenation L1L2 is generated by grammar

G4 = (V1 ∪ V2 ∪ {S4}, T1 ∪ T2, P4, S4)

where S4 is a new start symbol, and P4 contains all productions in P1 and P2,
and additional initializing production

S4 −→ S1S2.

After first derivation step the sentential form is S1S2, and from S1 and S2 we
can derive words of L1 and L2, respectively.

2. Kleene *. Let L be generated by grammar

G = (V, T, P, S).

Then L∗ is generated by grammar

G′ = (V ∪ {S ′}, T, P ′, S ′)

where S ′ is a new start symbol, and P ′ contains all productions in P plus
productions

S ′ −→ SS ′ | ε.
From S ′ one gan generate an arbitrarily long sequence of S’s:

S ′ ⇒ SS ′ ⇒ · · · ⇒ SS . . . SS ′ ⇒ SS . . . S,

and each S produces a word of L.

3. Substitution. Let L ⊆ Σ∗ be generated by grammar

G = (V,Σ, P, S),

and for each a ∈ Σ let f (a) be generated by grammar

Ga = (Va, Ta, Pa, Sa).

Assume that all variable sets V and Va are disjoint.

3. Substitution. Let L ⊆ Σ∗ be generated by grammar

G = (V,Σ, P, S),

and for each a ∈ Σ let f (a) be generated by grammar

Ga = (Va, Ta, Pa, Sa).

Assume that all variable sets V and Va are disjoint.

The following grammar generates f (L):

G′ = (V ′, T ′, P ′, S),

where

V ′ = V ∪

(⋃
a∈Σ

Va

)
contains all variables of all grammars G and Ga,

T ′ =
⋃
a∈Σ

Ta

contains all terminals of grammars Ga.

Productions P ′ include all productions that are in Pa’s, plus for every production
in P a production obtained by replacing all occurences of terminals a by the
start symbol Sa of the corresponding grammar Ga.

Example. Let L = L(G) be generated by

G = ({X}, {a, b}, P,X)

with productions
X −→ aXb | bXa | ε.

Let f be a substitution such that

� the language f (a) is generated by

Ga = ({Y }, {0, 1}, Pa, Y)

with
Y −→ 0Y Y 0 | 1,

� the language f (b) is generated by

Z −→ 0Z1Z | ε.
Then f (L) is generated by the grammar G′ = (V ′, T ′, P ′, S ′) where

Example. Let L = L(G) be generated by

G = ({X}, {a, b}, P,X)

with productions
X −→ aXb | bXa | ε.

Let f be a substitution such that

� the language f (a) is generated by Ga = ({Y }, {0, 1}, Pa, Y) with produc-
tions

Y −→ 0Y Y 0 | 1,

� the language f (b) is generated by Gb = ({Z}, {0, 1}, Pb, Z) with produc-
tions

Z −→ 0Z1Z | ε.

Then f (L) is generated by the grammar G′ = (V ′, T ′, P ′, S ′) where

V ′ =
T ′ =
S ′ =
P ′ =

4. Homomorphism. Follows from previous proof because homomorphism is
a special type of substitution.

4. Homomorphism. Follows from previous proof because homomorphism is
a special type of substitution.

We can also make a direct construction where we replace in the productions all
occurrences of terminal letters by their homomorphic images.

Example. If L is generated by a grammar with productions

E −→ E + E | N
N −→ 0N | 1N | 0 | 1

and homomorphism h is given by h(+) = ×, h(0) = ab, h(1) = ba then h(L)
is generated by

E −→
N −→

4. Homomorphism. Follows from previous proof because homomorphism is
a special type of substitution.

We can also make a direct construction where we replace in the productions all
occurrences of terminal letters by their homomorphic images.

Example. If L is generated by a grammar with productions

E −→ E + E | N
N −→ 0N | 1N | 0 | 1

and homomorphism h is given by h(+) = ×, h(0) = ab, h(1) = ba then h(L)
is generated by

E −→ E × E | N
N −→ abN | baN | ab | ba

5. Inverse homomorphism. In this case it is easier to use PDA instead of
grammars. Let L be recognized by the PDA

M = (Q,∆,Γ, δ, q0, Z0, F)

by final state, and let
h : Σ −→ ∆∗

be a homomorphism. Let us construct a PDA M ′ that recognizes the language
h−1(L) by final state, that is, it accepts all words w such that h(w) ∈ L.

5. Inverse homomorphism. In this case it is easier to use PDA instead of
grammars. Let L be recognized by the PDA

M = (Q,∆,Γ, δ, q0, Z0, F)

by final state, and let
h : Σ −→ ∆∗

be a homomorphism. Let us construct a PDA M ′ that recognizes the language
h−1(L) by final state, that is, it accepts all words w such that h(w) ∈ L.

Idea: On an input w, machineM ′ computes h(w) and simulatesM with input
h(w). If h(w) is accepted by M then w is accepted by M ′.

The result of h on w is stored on a buffer, or “virtual input tape”, inside
the control unit. The simulation of M reads its input from this virtual tape.
h(w) is computed from w letter-by-letter as needed: as soon as the virtual tape
becomes empty the next ”real” input letter a is scanned, and h(a) is added on
the virtual tape.

In detail: Let
B = {u | u is a suffix of some h(a)}.

Set B consists of all possible contents of the ”virtual” input tape. Set B is of
course a finite set.

Let M = (Q,∆,Γ, δ, q0, Z0, F) recognize L. For h−1(L) we construct the PDA

M ′ = (Q′,Σ,Γ, δ′, q′0, Z0, F
′),

where
Q′ = Q×B,
q′0 = [q0, ε], and
F ′ = F × {ε}.

δ′ contains two types of productions:

� For every transition of the original machine M we have the simulating tran-
sition in M ′: If

(p, γ) ∈ δ(q, a, Z)

then
([p, x], γ) ∈ δ′([q, ax], ε, Z)

for every ax ∈ B. Here a ∈ Σ ∪ {ε}. Notice that this is an ε-move: M ′

reads the input letter a from the virtual tape.

� When the virtual tape becomes empty, we have a transition for reading the
next real input letter a, and loading its homomorphic image h(a) to the
virtual tape: For all q ∈ Q, a ∈ Σ, and Z ∈ Γ we have the transition

([q, h(a)], Z) ∈ δ′([q, ε], a, Z).

Initially the virtual tape is empty, so the initial state of M ′ is

[q0, ε].

The input word is accepted if in the end the virtual input tape is empty (M has
consumed the whole input word), and the state of M is a final state. Therefore
the final states of M ′ are elements of

F × {ε}.

Example. Consider the PDA

M = ({q}, {a, b}, {A}, δ, q, A, {q})

where
δ(q, a, A) = {(q, AA)}
δ(q, b, A) = {(q, ε)}

and let h be the homomorphism h(0) = b, h(1) = aa. Let us construct a PDA
for h−1(L(M)):

Possible contents of the virtual tape are B =

so the state set of the new PDA will be Q′ =

The start state is S ′ =

and there is only one final state F ′ =

Example. Consider the PDA

M = ({q}, {a, b}, {A}, δ, q, A, {q})

where
δ(q, a, A) = {(q, AA)}
δ(q, b, A) = {(q, ε)}

and let h be the homomorphism h(0) = b, h(1) = aa. Let us construct a PDA
for h−1(L(M)):

Possible contents of the virtual tape are B = {b, ε, aa, a}

so the state set of the new PDA will be Q′ = {[q, b], [q, ε], [q, aa], [q, a]}

The start state is S ′ = [q, ε]

and there is only one final state F ′ = {[q, ε]}

Example. Consider the PDA

M = ({q}, {a, b}, {A}, δ, q, A, {q})

where
δ(q, a, A) = {(q, AA)}
δ(q, b, A) = {(q, ε)}

and let h be the homomorphism h(0) = b, h(1) = aa. Let us construct a PDA
for h−1(L(M)):

Possible contents of the virtual tape are B = {b, ε, aa, a}

so the state set of the new PDA will be Q′ = {[q, b], [q, ε], [q, aa], [q, a]}

The start state is S ′ = [q, ε]

and there is only one final state F ′ = {[q, ε]}

From the original transition (q, AA) ∈ δ(q, a, A) we get two simulating transi-
tions, and from (q, ε) ∈ δ(q, b, A) one transition:

Finally, we have transitions for loading the virtual tape:

Example. Let us show that the language

L = {anb2nc3n | n ≥ 1}

is not context-free.

6. NOT closed under Intersection. It is enough to find one counter
example.

6. NOT closed under Intersection. It is enough to find one counter
example. Let

L1 = {anbncm | n,m ≥ 1}
and

L2 = {ambncn | n,m ≥ 1}.
Both L1 and L2 are context-free: L1 is concatenation of context-free languages

{anbn | n ≥ 1} and c+,

and L2 is concatenation of

a+ and {bncn | n ≥ 1}.

(We may also directly construct grammars for both L1 and L2.)

But even though L1 and L2 are context-free, their intersection

L1 ∩ L2 =

is not. So the family of CFL is not closed under intersection.

6. NOT closed under Intersection. It is enough to find one counter
example. Let

L1 = {anbncm | n,m ≥ 1}
and

L2 = {ambncn | n,m ≥ 1}.
Both L1 and L2 are context-free: L1 is concatenation of context-free languages

{anbn | n ≥ 1} and c+,

and L2 is concatenation of

a+ and {bncn | n ≥ 1}.

(We may also directly construct grammars for both L1 and L2.)

But even though L1 and L2 are context-free, their intersection

L1 ∩ L2 = {anbncn | n ≥ 1}

is not. So the family of CFL is not closed under intersection.

7. NOT closed under complementation. If they were, then the family
of CFL would be closed under intersection as well:

L1 ∩ L2 = L1 ∪ L2,

a contradiction with 6 above.

8. NOT closed under quotients (with context-free languages).
Homework.

8. NOT closed under quotients (with context-free languages).
Homework.

An easy to prove variant: there exists a context-free language L and some
(non-context-free) language K such that L/K is not context-free. Choose

L = {anbmck#dkemfn | n,m, k ≥ 1},

K = {#dnenfn | n ≥ 1}.

Here L is context-free but

L/K =

is not context-free.

8. NOT closed under quotients (with context-free languages).
Homework.

An easy to prove variant: there exists a context-free language L and some
(non-context-free) language K such that L/K is not context-free. Choose

L = {anbmck#dkemfn | n,m, k ≥ 1},

K = {#dnenfn | n ≥ 1}.

Here L is context-free but

L/K = {anbncn | n ≥ 1}

is not context-free.

9. Intersection with regular languages. Even though the intersection
of two context-free languages may be non-context-free, the intersection of any
context-free language with a regular language is always context-free.

Proof.

9. Intersection with regular languages. Even though the intersection
of two context-free languages may be non-context-free, the intersection of any
context-free language with a regular language is always context-free.

Proof. Let L be recognized by the PDA

M = (QM ,Σ,Γ, δM , qM , Z0, FM)

by final state, and let R be recognized by the DFA

A = (QA,Σ, δA, qA, FA).

We construct a PDA M ′ that runs both M and A in parallel. The state set of
M ′ is

Q′ = QM ×QA.

The states are used to store the states of both M and A for the input that has
been read so far.

9. Intersection with regular languages. Even though the intersection
of two context-free languages may be non-context-free, the intersection of any
context-free language with a regular language is always context-free.

Proof. Let L be recognized by the PDA

M = (QM ,Σ,Γ, δM , qM , Z0, FM)

by final state, and let R be recognized by the DFA

A = (QA,Σ, δA, qA, FA).

We construct a PDA M ′ that runs both M and A in parallel. The state set of
M ′ is

Q′ = QM ×QA.

The states are used to store the states of both M and A for the input that has
been read so far.

All ϵ-transitions ofM are simulated as such, without changing theQA-component
of the state. But whenever M reads next input letter, the QA-component is
changed according to DFA A. Clearly, if in the end of the input word both QM -
and QA-components are final states, the word is accepted by both M and A.

M = (QM ,Σ,Γ, δM , qM , Z0, FM)
A = (QA,Σ, δA, qA, FA)

More precisely, we construct the PDA

M ′ = (QM ×QA,Σ,Γ, δ
′, [qM , qA], Z0, FM × FA)

where δ′ is described below:

Each transition
(q′, γ) ∈ δM(q, a, Z)

by the original PDA, and each state p ∈ QA of the DFA provide the transition

([q′, δA(p, a)], γ) ∈ δ′([q, p], a, Z)

in the new machine M ′.

(The first state component and the stack follow PDA M . The second state
component simulates DFA A: On input a state p is changed to δA(p, a). Note
that if a = ε then δA(p, a) = p.)

Example. Consider the PDA

M = ({q}, {a, b}, {A}, δ, q, A, {q})

where
δ(q, a, A) = {(q, AA)}
δ(q, b, A) = {(q, ε)}

and let R = a∗b∗. Then R is recognized by the DFA

a b

b

��
��
��
��
s ��

��
��
��
t- -

The intersection L(M) ∩R is recognized by the PDA

M ′ = (Q′, {a, b}, {A}, δ′, q0, A, F)

where
Q′ =
q0 =
F =

and δ′ contains transitions

δ′([q, s], a, A) =
δ′([q, s], b, A) =
δ′([q, t], a, A) =
δ′([q, t], b, A) =

Example. Let us prove that

L = {0n10n10n | n ≥ 1}

is not context-free.

Example. Let us prove that

L = {0n10n10n | n ≥ 1}

is not context-free.

Assume it is a CFL. Define a substitution f (0) = {a, b, c}, f (1) = {#}. Since
we assumed that L is context-free, so is

L1 = f (L) ∩ (a+#b+#c+) =

Example. Let us prove that

L = {0n10n10n | n ≥ 1}

is not context-free.

Assume it is a CFL. Define a substitution f (0) = {a, b, c}, f (1) = {#}. Since
we assumed that L is context-free, so is

L1 = f (L) ∩ (a+#b+#c+) = {an#bn#cn | n ≥ 1}

Example. Let us prove that

L = {0n10n10n | n ≥ 1}

is not context-free.

Assume it is a CFL. Define a substitution f (0) = {a, b, c}, f (1) = {#}. Since
we assumed that L is context-free, so is

L1 = f (L) ∩ (a+#b+#c+) = {an#bn#cn | n ≥ 1}

Define then a homomorphism h(a) = a, h(b) = b, h(c) = c, h(#) = ε. Then
the language

L2 = h(L1) =

is context-free.

Example. Let us prove that

L = {0n10n10n | n ≥ 1}

is not context-free.

Assume it is a CFL. Define a substitution f (0) = {a, b, c}, f (1) = {#}. Since
we assumed that L is context-free, so is

L1 = f (L) ∩ (a+#b+#c+) = {an#bn#cn | n ≥ 1}

Define then a homomorphism h(a) = a, h(b) = b, h(c) = c, h(#) = ε. Then
the language

L2 = h(L1) = {anbncn | n ≥ 1}

is context-free.

But we know that L2 is not context-free, a contradiction. Our initial assumption
that L is a CFL, must be incorrect.

Example. Let us show that the language

L = {ww | w ∈ {a, b}∗}

is not context-free.

Example. Let us show that the language

L = {ww | w ∈ {a, b}∗}

is not context-free.

If it were CFL, so would be

L1 = L ∩ (a+b+a+b+) =

Example. Let us show that the language

L = {ww | w ∈ {a, b}∗}

is not context-free.

If it were CFL, so would be

L1 = L ∩ (a+b+a+b+) = {ambkambk | m, k ≥ 1}

Example. Let us show that the language

L = {ww | w ∈ {a, b}∗}

is not context-free.

If it were CFL, so would be

L1 = L ∩ (a+b+a+b+) = {ambkambk | m, k ≥ 1}

Define then substitution f (a) = {a, c}, f (b) = {b, d}. If L1 is a CFL so would
be

L2 = f (L1) ∩ (a+b+c+d+) =

Example. Let us show that the language

L = {ww | w ∈ {a, b}∗}

is not context-free.

If it were CFL, so would be

L1 = L ∩ (a+b+a+b+) = {ambkambk | m, k ≥ 1}

Define then substitution f (a) = {a, c}, f (b) = {b, d}. If L1 is a CFL so would
be

L2 = f (L1) ∩ (a+b+c+d+) = {ambkcmdk | m, k ≥ 1}

But we have proved earlier using the pumping lemma that L2 is not context-free,
so the original language L is not context-free either.

Example. Let us show that family of context-free languages is closed under
quotient with regular languages. Let L be a context-free language, and let R
be a regular language.

Example. Let us show that family of context-free languages is closed under
quotient with regular languages. Let L be a context-free language, and let R
be a regular language.

Let Σ be the union alphabets of L and R, and let

Σ′ = {a′ | a ∈ Σ}

be a new alphabet obtained by marking symbols of Σ.

We have shown previously that the quotient L/R can be implemented as

L/R = g(s(L) ∩ Σ∗h(R))

where
• homomorphism h marks all letters of a word,
• substitution s may mark any letters of a word,
• homomorphism g erases all marked letters.

All operations here preserve context-freeness of L, so that L/R is context-free.
(Note that Σ∗h(R) is a regular language.)

Decision algorithms

Next we discuss algorithms for deciding if a given CFL is

� empty,

� finite,

� infinite.

We also have an algorithm for deciding if a given word belongs to a given CFL.

Decision algorithms

Next we discuss algorithms for deciding if a given CFL is

� empty,

� finite,

� infinite.

We also have an algorithm for deciding if a given word belongs to a given CFL.

Later on, we’ll see that there are many questions concerning CFL that are
undecidable. For example, there do not exist any algorithms for deciding
if a given CFG is ambiguous, if given two CFG’s are equivalent (=define the
same language), if a given CFG generates Σ∗, if the intersection of two CFL’s
is empty, etc.

Decision algorithms

Next we discuss algorithms for deciding if a given CFL is

� empty,

� finite,

� infinite.

We also have an algorithm for deciding if a given word belongs to a given CFL.

Later on, we’ll see that there are many questions concerning CFL that are
undecidable. For example, there do not exist any algorithms for deciding
if a given CFG is ambiguous, if given two CFG’s are equivalent (=define the
same language), if a given CFG generates Σ∗, if the intersection of two CFL’s
is empty, etc.

A CFL can be represented in different ways: as a grammar or as a pushdown
automaton that recognizes the language. It does not matter which represen-
tation we use since we have algorithms for converting a CFG into equivalent
PDA and vice versa.

Theorem. There are algorithms to determine if a given CFL is (a) empty,
(b) finite (contains finitely many words), (c) infinite (contains infinitely many
words).

Theorem. There are algorithms to determine if a given CFL is (a) empty,
(b) finite (contains finitely many words), (c) infinite (contains infinitely many
words).

Proof. (a) We know how to simplify a given grammar by removing all variables
that do not derive a terminal word. (We used this algorithm to simplify gram-
mars.) Language L(G) is empty if and only if start symbol S gets removed,
i.e., if and only if the grammar does not generate any terminal strings.

Theorem. There are algorithms to determine if a given CFL is (a) empty,
(b) finite (contains finitely many words), (c) infinite (contains infinitely many
words).

Proof. (a) We know how to simplify a given grammar by removing all variables
that do not derive a terminal word. (We used this algorithm to simplify gram-
mars.) Language L(G) is empty if and only if start symbol S gets removed,
i.e., if and only if the grammar does not generate any terminal strings.

Recall the algorithm: We mark variables to detect if S is removable.

Empty(G)

1. Initially unmark every variable A

2. Repeat

3. For every production A −→ α do

4. If every variable appearing in α is marked

5. then mark A

6. Until no new variables were marked on line 5

7. If start symbol S is marked then return FALSE

8. else return TRUE

Proof. (b) and (c). To test whether a given grammar generates finitely or
infinitely many words, we simplify the grammar, and convert it into Chomsky
normal form. After this we only have productions of types

A −→ BC,
A −→ a,

and we do not have useless symbols, i.e., symbols that do not derive terminal
words and/or are not reachable from the start symbol.

(We may loose ε in the conversion but it does not matter since L is finite if and
only if L− {ε} is finite.)

Proof. (b) and (c). To test whether a given grammar generates finitely or
infinitely many words, we simplify the grammar, and convert it into Chomsky
normal form. After this we only have productions of types

A −→ BC,
A −→ a,

and we do not have useless symbols, i.e., symbols that do not derive terminal
words and/or are not reachable from the start symbol.

(We may loose ε in the conversion but it does not matter since L is finite if and
only if L− {ε} is finite.)

So we can assume the given grammar G is in CNF, and all variables are useful.
We use the fact that grammar G generates an infinite language if and only if
some variable can derive a word containing the variable itself. Let us call a
variable A self-embedded if

A⇒+ αAβ

for some words α and β. Since the grammar is in CNF, α and β are not both
empty words.

Let us prove that L = L(G) is infinite if and only if G contains a self-embedded
variable A⇒+ αAβ:

=⇒ Assume that L is infinite. Let k be the number of variables in G and let
n = 2k. Because L is infinite, there exists a word z ∈ L such that |z| ≥ n. As
in the proof of the pumping lemma, z = uvwxy and there are derivations

S ⇒∗ uAy
A ⇒+ vAx
A ⇒∗ w

v x

w

A

u y
A

S

The subderivation A⇒+ vAx means that the variable A is self-embedded.

Let us prove that L = L(G) is infinite if and only if G contains a self-embedded
variable A⇒+ αAβ:

⇐= Assume that A ⇒+ αAβ is self-embedded. Since the grammar does not
contain useless symbols, the variable A is reachable from S: there exist γ, ν
such that S =⇒∗ γAν.

Again, since the grammar does not contain useless symbols every word of ter-
minals and variables derives some terminal word: There are terminal words
u, v, w, x, y such that

γ ⇒∗ u, α⇒∗ v, A⇒∗ w, β ⇒∗ x, ν ⇒∗ y.

Then we have derivations
S ⇒∗ uAy
A ⇒+ vAx
A ⇒∗ w

Note that vx ̸= ∅ because A ⇒+ vAx uses at least one derivation step. It
follows that L(G) is infinite because for all i

S ⇒+ uviwxiy

The algorithm: To decide if L(G) is infinite we have to find out whether
any variable is self-embedded. We can use marking procedure to determine if
variable A is self-embedded:

Self-embedded(G,A)
1. Initially unmark every variable X

2. For every production A −→ α of A do

3. mark every variable X that appears in α

4. Repeat

5. For every production X −→ α in G do

6. If X is marked then mark every variable of α

7. Until no new variables were marked on line 6

8. If A is marked then return TRUE

9. else return FALSE

Then it is a simple matter to determine if G is finite or infinite:

Infinite(G)
1. Construct CNF grammar G′ without useless variables

such that L(G′) = L(G) \ {ε}
2. For every variable A of G′ do

3. If Self-embedded(G′, A) then return TRUE

4. return FALSE

The process of determining if a grammar contains self-embedded variables can
be visualized using a directed graph indicating which variables derive each other.

We draw a directed graph whose nodes are the variables, and there is an arrow
from A to B if the grammar has production A −→ α for some α containing
variable B.

Clearly variable A is self-embedded if and only if it is on a loop in the directed
graph. Therefore: L(G) is infinite if and only if there is a loop in the directed
graph.

Example. Consider the CNF grammar G1 with productions

S −→ BC | BB | a
B −→ CC | b
C −→ a

It does not contain useless symbols. The corresponding directed graph has three
nodes, corresponding to variables S, B and C.

The graph does not contain a loop, so the language generated by G1 is finite.

Example. Consider the CNF grammar G2 with productions

S −→ BC | BB | a
B −→ CC | b
C −→ SC | a

It does not contain useless symbols. The corresponding directed graph contains
a loop so the variables on the loop are self-embedded, and L(G2) is infinite. For
example,

S ⇒4 bSa

so
S ⇒∗ biSai ⇒ biaai

for every i ≥ 1.

Theorem. There is an algorithm for determining whether a given word w is
in a given CFL L.

Proof. A simple but slow algorithm is provided by CNF grammars. We first
construct a CNF grammar G for language L. To determine if w ∈ L try all
possible derivations that use 2n − 1 derivation steps, where n is the length of
the word w. We have w ∈ L if and only if one of these derivations generate w.

Namely: as proved in the homework, in CNF grammars deriving a word of
length n takes exactly 2n− 1 steps.

Theorem. There is an algorithm for determining whether a given word w is
in a given CFL L.

Proof. A simple but slow algorithm is provided by CNF grammars. We first
construct a CNF grammar G for language L. To determine if w ∈ L try all
possible derivations that use 2n − 1 derivation steps, where n is the length of
the word w. We have w ∈ L if and only if one of these derivations generate w.

Namely: as proved in the homework, in CNF grammars deriving a word of
length n takes exactly 2n− 1 steps.

(The case w = ε has to be handled separately, since we loose ε when we convert
the grammar into CNF. To test whether ε ∈ L we can check whether the start
symbol S is nullable in the original grammar.)

The algorithm is very inefficient: it may require an amount of time which is
exponential with respect to the length of w.

In this course we are usually only interested in the existence of algorithms — not
their efficiency. However, since parsing context-free grammars is an important
problem with applications in compiler design, let us develop a faster algorithm.

CYK-algorithm for the membership problem of CFL: Again we start with
a grammar G that is in the Chomsky normal form. Let

w = x1x2x3 . . . xn

be the word for which we want to find out whether w ∈ L. Here, xi are letters.

The CYK uses dynamic programming to find for each subword of w all
variables of the grammar that derive that subword.

Example. Consider the grammar

S −→ XY
X −→ XZ | a | b
Y −→ ZY | a
Z −→ a

and the word w = babaa.

We start with shorter subwords of w and work our way up to longer subwords.

Example. Consider the grammar

S −→ XY
X −→ XZ | a | b
Y −→ ZY | a
Z −→ a

and the word w = babaa.

We start with shorter subwords of w and work our way up to longer subwords.

Initially, we determine for each subword of length 1 which variables derive it:
A variable A derives word xi if and only if A −→ xi is a production in P . In
our example we get the following lists of variables:

b : X
a : X, Y, Z

Example. Consider the grammar

S −→ XY
X −→ XZ | a | b
Y −→ ZY | a
Z −→ a

and the word w = babaa.

b : X
a : X, Y, Z

Next we move to subwords of length 2.

Example. Consider the grammar

S −→ XY
X −→ XZ | a | b
Y −→ ZY | a
Z −→ a

and the word w = babaa.

b : X
a : X, Y, Z

Next we move to subwords of length 2.

Word xixi+1 can be derived from a variable A if and only if there is a production
A −→ BC and B and C derive xi and xi+1, respectively. In our example we
have

ba : S,X
ab :
aa : S,X, Y

Remark: We do not need to find variables that derive bb since bb is not a
subword of w.

Example. Consider the grammar

S −→ XY
X −→ XZ | a | b
Y −→ ZY | a
Z −→ a

and the word w = babaa.

b : X
a : X, Y, Z
ba : S,X
ab :
aa : S,X, Y

We move up to length 3. Word xixi+1xi+2 can be derived from variable A if
and only if there are variables B and C such that A −→ BC, and either B
derives xixi+1 and C derives xi+2 OR B derives xi and C derives xi+1xi+2.

In our example: bab :
aba :
baa : S,X

We move up to longer and longer subwords. To find out which variables derive
subword

u = xixi+1 . . . xi+k

of length k + 1, we try all possible ways of dividing the subword into two non-
empty parts:

u1 = xixi+1 . . . xi+s

u2 = xi+s+1xi+s+2 . . . xi+k

We find all pairs of variables (B,C) that derive the two parts:

B −→ u1
C −→ u2

(We have found all such variables on the earlier rounds, since u1 and u2 are
shorter words.) Finally we find all variables A such that

A −→ BC

and B and C derive u1 and u2, respectively.

Example. Consider the grammar

S −→ XY
X −→ XZ | a | b
Y −→ ZY | a
Z −→ a

and the word w = babaa.

In our example, we move up to subwords of length 4. Consider first the
subword baba. It can be factored into two parts in three different ways

b aba
ba ba SS, SX,XS,XX
bab a

But SS, SX, XS or XX does not appear on the right hand side of any production,
so baba is not derived by any variable.

Example. Consider the grammar

S −→ XY
X −→ XZ | a | b
Y −→ ZY | a
Z −→ a

and the word w = babaa.

In our example, we move up to subwords of length 4. Consider first subword
baba. It can be factored into two parts in three different ways

b aba
ba ba SS, SX,XS,XX
bab a

But SS, SX, XS or XX does not appear on the right hand side of any production,
so baba is not derived by any variable.

Similarily we see that the other subword abaa of length 4 cannot be derived
from any variable:

a baa XS, Y S, ZS,XX, Y X,ZX
ab aa
aba a

and XS, YS, ZS, XX, YX or ZX is not the right hand side of any production.

Example. Consider the grammar

S −→ XY
X −→ XZ | a | b
Y −→ ZY | a
Z −→ a

and the word w = babaa.

Finally we get to subwords of length 5, i.e., the word w itself:

b abaa
ba baa SS, SX,XS,XX
bab aa
baba a

But SS, SX, XS or XX is not the right hand side of any production, so no
variables derive babaa, not even the start symbol. Therefore the grammar does
not generate the word babaa.

Below is a pseudocode for the CYK-algorithm. It uses for each variable A a
boolean array Ai,j to indicate whether variable A derives the subword

wiwi+1 . . . wi+j−1

of length j starting at the i’th letter of the input word w.

CYK(G,w)

1. Let G be in Chomsky normal form, let n = |w|
2. For every variable A and i, j ≤ n do

3. Initialize Ai,j ←− FALSE

4. For i←− 1 to n do

5. For all productions A −→ a do

6. If a = wi then Ai,1 ←− TRUE

7. For j ←− 2 to n do

8. For i←− 1 to n− j + 1 do

9. For k ←− 1 to j − 1 do

10. For all productions A −→ BC do

11. If Bi,k and Ci+k,j−k then Ai,j ←− TRUE

12. Return S1,n.

The time complexity of this algorithm for a fixed CFL L is O(n3), where n
is the length of the input word.

Example. Let the grammar G be

S −→ AB | BC
A −→ BA | a
B −→ CC | b
C −→ AB | a

and we want to find out whether word

w = baaba

is in the language L(G).

