
Decision problems: decidable and undecidable

We want to show that certain problems can not be solved by a computer. By
problems we mean decision problems, i.e., problems that have a yes/no
answer. For example, questions like

� ”Is a given regular language infinite ?”,

� ”Is a given grammar ambiguous ?”, or

� ”Does a given quadratic equation have a real number solution ?”

are decision problems.



Decision problems: decidable and undecidable

We want to show that certain problems can not be solved by a computer. By
problems we mean decision problems, i.e., problems that have a yes/no
answer. For example, questions like

� ”Is a given regular language infinite ?”,

� ”Is a given grammar ambiguous ?”, or

� ”Does a given quadratic equation have a real number solution ?”

are decision problems.

When the input in the problem is fixed, we get an instance of the problem.
For example,

a∗bb + ba,
S −→ SS | a,
x2 + 4x + 5 = 0,

are instances of the three decision problems above. For each instance we have
a correct yes/no answer. (’yes’, ’yes’, ’no’, respectively, in our examples.)

Instances with ’yes’ answer are positive instances, while ’no’ answer means
that the instance is negative.



A decision problem is decidable if there exists an algorithm that, when given
an instance as input, returns the correct yes/no answer.

The algorithm has to work for all instances correctly. The computation may
take any finite amount of time: a year, billion years, gazillion years. But for
every instance the computation halts at some time and gives the correct yes/no
answer.

A problem is called undecidable if no such algorithm exists. We’ll see that
certain important and natural decision problems are undecidable.



It does not make sense to talk about decision problems that have only one
instance: such problems are of course decidable since there is a trivial algorithm
that simply writes out ’yes’ or writes out ’no’. (We may not know which of
these two algoritms is the correct one.)

For this reason questions like “Is P = NP ?” or “Is the Riemann-hypothesis
true” are trivial to us: they don’t have different instances.



In order to use formal language theory to show decidability or undecidability of
a particular decision problem, we encode instances to that problem as words
over some alphabet.

(When typing an instance into the computer we are encoding it as a word over
the binary alphabet {0, 1}. It is up to us what encoding we use. As long as two
encodings can be effectively converted into each other, the problem cannot be
decidable in one presentation and undecidable in the other one.)



In order to use formal language theory to show decidability or undecidability of
a particular decision problem, we encode instances to that problem as words
over some alphabet.

(When typing an instance into the computer we are encoding it as a word over
the binary alphabet {0, 1}. It is up to us what encoding we use. As long as two
encodings can be effectively converted into each other, the problem cannot be
decidable in one presentation and undecidable in the other one.)

Example. we may decide to encode quadratic equations using alphabet

{x,+,−, ∗,=, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

in the natural manner. Then for example a word

x ∗ x + 10 ∗ x− 100 = 0

is a coding of an instance to our third sample decision problem.



The language LP corresponding to a particular decision problem P consists
of words representing positive instances.

Example. The language LP of our quadratic equation example contains all
words representing quadratic equations with a real solution:

x ∗ x = 0,
x ∗ x− 1 = 0,
x ∗ x− 2 ∗ x + 1 = 0,
· · ·

are all words in the language. LP is of course infinite. Is it regular ? Is it
context-free ? Hardly (use pumping lemma . . . ). We need a larger family of
languages that contains all languages LP representing decidable problems P .



In parts I and II we have investigated regular and context-free languages. They
are two very natural language classes but – as we have seen – there are many
quite simple languages outside of them, e.g. {anbncn | n ≥ 1}.

In part III we meet two new language families: recursive and recursively
enumerable languages. Using these language families we can exhibit certain
limitations on what computers can do.



There are many possible ways to define recursive and recursively enumerable
languages, just like in case of regular and context-free languages. We will for-
mally define them using accepting devices called Turing machines.



Themembership problem of a language L is the following decision problem:

Membership in L ⊆ Σ∗

Instance: Word w ∈ Σ∗

Problem: Is w ∈ L ?

Before Turing machines, here is an informal definition of recursive lan-
guages. Keeping this informal interpretation in mind will be very useful.

A language L is recursive

if and only if

The membership problem of L is decidable.



Themembership problem of a language L is the following decision problem:

Membership in L ⊆ Σ∗

Instance: Word w ∈ Σ∗

Problem: Is w ∈ L ?

Before Turing machines, here is an informal definition of recursive lan-
guages. Keeping this informal interpretation in mind will be very useful.

A language L is recursive

if and only if

The membership problem of L is decidable.

In other words, L is recursive if one can write a computer program that, when
given any word w as input, determines (after some finite amount of time)
whether w is in L or not. The program has to work correctly for all input
words. We assume that the computing resources are not a problem: We have a
big enough computer, so that we do not run out of memory.



All regular and context-free languages are recursive. (the CYK-algorithm can
be used to determine if a given w belongs to L(G).) In addition, for example
following languages are recursive:

{anbncn | n ≥ 1}
{ap | p is a prime number }
{w | w is an encoding of a quadratic equation with a real solution }



A connection between decision problems and recursive languages:

A decision problem P is decidable

if and only if

The language LP is recursive.

This is trivial: The language LP is recursive if and only if there exists an
algorithm for finding out if a given word belongs to LP . But the word w
belongs to LP if and only if the answer to the instance encoded as w is positive.



The language family of recursively enumerable languages is larger than the fam-
ily of recursive languages. It corresponds to the notion of a semi-algorithm.

The difference between a semi-algorithm and algorithm is that the semi-algorithm
does not need to stop on all inputs. A semi-algorithm does stop on instances
with ’yes’ -answer, but on instances with ’no’-answer it may enter an infinite,
non-halting computation. If the semi-algorithm gives an answer, the answer is
always correct. But on some ’no’-instances it may not give any answer at all,
but continue computing for ever.

A problem is called semi-decidable if there exists a semi-algorithm for it.



An informal definition of recursively enumerable (r.e.) languages is:

A language L is recursively enumerable

if and only if

The membership problem of L is semi-decidable.



So the relationship between semi-decidable problems and recursively enumerable
languages is

A decision problem P is semi-decidable

if and only if

The language LP is recursively enumerable.

All recursive languages are of course also r.e. (Every algorithm is also a semi-
algorithm.) But there are r.e. languages that are not recursive. In other words,
there are decision problems that are semi-decidable but not decidable.



It is not very surprising that there are languages that are not recursive or
even r.e. We can reason as follows: The number of different r.e. languages
is countably infinite. This follows from the fact that the number of different
algorithms (computer programs) is countably infinite.

But the number of different languages is uncountably infinite, i.e. there are
more languages than there are r.e. languages.

What is more surprising is that we can actually find individual languages that
correspond to very natural decision problems and are non-recursive.



Turing machines

In order to formally prove a language recursive, recursively enumerable or non-
recursive we must have a precise definition of an algorithm. We do this using
Turing machines: We say a language is r.e. iff it is accepted by a Turing
machine, and it is recursive iff it is accepted by a Turing machine that halts
on every input.

Turing machines may seem like very restricted models of computers, but they
are in fact as powerful as any other model.

Church’s thesis is the claim that Turing machines capture the full power
of any effective method of computation. One cannot of course prove that
nobody ever invents a totally different, more powerful computer architecture.
But all evidence indicates that this is not possible, as long as we require that
the computer executes mechanically a finitely describable program on discrete
steps.



A Turing machine (TM) has a finite state control similar to PDA. Instead
of input tape and stack, the machine has only one infinite tape that is both
the input tape and a ”work” tape.

The machine has a read/write head that may move left or right on the tape.
Initially, the input is written on the tape. At each time step the machine reads
the tape symbol under its read/write head, and depending on the tape symbol
and the state of the control unit, the machine may

1. Change its state,

2. Replace the symbol on the tape under the read/write head by another tape
symbol, and

3. move the R/W head left or right on the tape.



The tape is infinite to the left and to the right.

Tape

Control unit

R/W head

BB a1 a2 an B B

q

Initially the input word is written on the tape in such a way that the read-write
head scans the first letter of the input. All other tape locations contain a special
blank symbol B. The input is accepted if and only if the machine eventually
enters the final state.



Formally, a (deterministic) Turing machine is

M = (Q,Σ,Γ, δ, q0, B, f )

where

� Q is the finite state set of the control unit.

� Σ is the input alphabet.

� Γ is the tape alphabet containing all allowed symbols that may be on the
tape. Especially Σ ⊂ Γ since initially the input is written on the tape. We
assume that Q ∩ Γ = ∅ so that there is no confusion between states and
tape letters.

� δ is a transition function, described below in detail.

� q0 ∈ Q is the initial state.

� B ∈ Γ \Σ is a special blank symbol. It is not part of the input alphabet
Σ.

� f ∈ Q is the final state.



The transition function δ is a (partial) mapping from the set

(Q \ {f})× Γ

into the set
Q× Γ× {L,R}.

The mapping is partial: it may be undefined for some arguments, in which
case the machine has no possible next move, and it halts. In particular, there
is no transition from the final state f .



The transition function δ is a (partial) mapping from the set

(Q \ {f})× Γ

into the set
Q× Γ× {L,R}.

The mapping is partial: it may be undefined for some arguments, in which
case the machine has no possible next move, and it halts. In particular, there
is no transition from the final state f .

δ(q,X) = (p, Y, L)

means that in state q, scanning tape symbol X , the machine changes its state
to p, replaces X by Y on the tape, and moves the R/W head one cell to the
left on the tape.

δ(q,X) = (p, Y,R)

is defined analogously (only the R/W head moves to the right.)



Initially,

� the input word is written on the tape, with all other cells containing the
blank symbol B,

� the machine is in state q0, and

� the R/W head is positioned on the leftmost letter of the input.

If after some moves the machine enters the final state f the input word is
accepted, otherwise it is rejected.

(A word is rejected if the machine never halts, or if it halts in a non-final state
when there is no next move.)



Let us define instantaneous descriptions (IDs) of Turing machines: An ID
is a word

u q a v

where q ∈ Q is the state of the control unit, u, v ∈ Γ∗ are the content of the
tape to the left and to the right of the R/W head, respectively, until the last
non-blank symbols, and a ∈ Γ is the symbol currently scanned by the R/W
head:

q

au v B B BB B B



Let us define instantaneous descriptions (IDs) of Turing machines: An ID
is a word

u q a v

where q ∈ Q is the state of the control unit, u, v ∈ Γ∗ are the content of the
tape to the left and to the right of the R/W head, respectively, until the last
non-blank symbols, and a ∈ Γ is the symbol currently scanned by the R/W
head:

q

au v B B BB B B

So: The first (last) letter of u (or v, respectively) is not B, because the leading
and trailing B’s are trimmed away from u and v, respectively. Also that the
current state q can be uniquely identified from the word u q a v because we
required alphabets Q and Γ to be disjoint.



Example. xyxqxBByy (where q ∈ Q) represents the situation

q

x B B yy B B BxyxB B B



Example. xyxqxBByy (where q ∈ Q) represents the situation

q

x B B yy B B BxyxB B B

xyBBpB (where p ∈ Q) represents

p

B B B ByxB B B BB



Example. xyxqxBByy (where q ∈ Q) represents the situation

q

x B B yy B B BxyxB B B

xyBBpB (where p ∈ Q) represents

p

B B B ByxB B B BB

qB represents

q

B B BB B B B



Example. On the other hand, BqB and xyBqBxBB are not valid ID’s since
the surrounding B’s have not been removed.



Example. On the other hand, BqB and xyBqBxBB are not valid ID’s since
the surrounding B’s have not been removed.

Precisely: Valid ID’s are words of the set

({ε} ∪ (Γ \ {B})Γ∗) Q Γ (Γ∗(Γ \ {B}) ∪ {ε}).



Let us define moves of TM. Let the current ID be

α = u q a v.

If β is the next ID we denote α ⊢ β and say that β results from α by one move.

1. Assume first that
δ(q, a) = (p, b, L).

� If u = ε then the next ID is β = pBbv, except that possible trailing B’s are
removed from bv.

� If u = u′c for some c ∈ Γ then the next ID is β = u′pcbv, except that
possible trailing B’s are removed from bv.



Let us define moves of TM. Let the current ID be

α = u q a v.

If β is the next ID we denote α ⊢ β and say that β results from α by one move.

2. Assume then that
δ(q, a) = (p, b, R).

� If v = ε then the next ID is β = ubpB except that possible leading B’s are
removed from ub.

� If v ̸= ε then the next ID is u = ubpv, except that possible leading B’s are
removed from ub.



Let us define moves of TM. Let the current ID be

α = u q a v.

If β is the next ID we denote α ⊢ β and say that β results from α by one move.

3. If δ(q, a) is undefined then no move from α is possible, and α is a halting
ID. If q = f then α is an accepting ID.



Our TM model is deterministic, which means that for each α there is at most
one β such that α ⊢ β.



Our TM model is deterministic, which means that for each α there is at most
one β such that α ⊢ β.

As usual, we write
α ⊢∗ β

if the TM changes α into β in any number of moves (including 0 in which case
α = β).

We denote
α ⊢+ β

if the TM changes α into β using at least one move.

We denote
α ⊢i β

if the TM changes α into β in exactly i moves.



For any w ∈ Σ∗ we define the corresponding initial ID

ιw =

{
q0w, if w ̸= ε,
q0B, if w = ε.



For any w ∈ Σ∗ we define the corresponding initial ID

ιw =

{
q0w, if w ̸= ε,
q0B, if w = ε.

The language recognized (or accepted) by the TM M is

L(M) = {w | w ∈ Σ∗ and ιw ⊢∗ ufv for some u, v ∈ Γ∗ }.



Example. If δ(q, B) = (p, c, L) then

ab q Ba ⊢
aB q B ⊢
q Bb ⊢



Example. If δ(q, B) = (p, c, L) then

ab q Ba ⊢ a p bca
aB q B ⊢ a p Bc
q Bb ⊢ p Bcb



Example. If δ(q, B) = (p, c, L) then

ab q Ba ⊢ a p bca
aB q B ⊢ a p Bc
q Bb ⊢ p Bcb

If δ(q, B) = (p,B, L) then

aB q B ⊢
ab q B ⊢



Example. If δ(q, B) = (p, c, L) then

ab q Ba ⊢ a p bca
aB q B ⊢ a p Bc
q Bb ⊢ p Bcb

If δ(q, B) = (p,B, L) then

aB q B ⊢ a p B
ab q B ⊢ a p b

If δ(q, B) = (p, c, R) then

aB q B ⊢



Example. If δ(q, B) = (p, c, L) then

ab q Ba ⊢ a p bca
aB q B ⊢ a p Bc
q Bb ⊢ p Bcb

If δ(q, B) = (p,B, L) then

aB q B ⊢ a p B
ab q B ⊢ a p b

If δ(q, B) = (p, c, R) then

aB q B ⊢ aBc p B



Example. Let us design a TM M that recognizes the language

L(M) = {w | w ∈ (a + b)∗ and w is a palindrome }.

We have

M = ({q0, qF , qL, qa, q′a, qb, q′b}, {a, b}, {a, b, B}, δ, q0, B, qF ),

where δ is is defined below.



Example. Let us design a TM M that recognizes the language

L(M) = {w | w ∈ (a + b)∗ and w is a palindrome }.

We have

M = ({q0, qF , qL, qa, q′a, qb, q′b}, {a, b}, {a, b, B}, δ, q0, B, qF ),

where δ is is defined below.

The idea is that the machine reads the first input letter from the tape, remem-
bers it in the control unit (qa and qb), finds the last letter on the tape and
compares it with the first letter. If they are identical, they are erased (replaced
by B), and the process is repeated. If the whole input word gets erased (or
if there remains only one input letter if the original word has odd length) the
word was a palindrome, and the machine accepts it.



The transition function δ is defined as follows:

δ(q0, B) = (qF , B,R) Remaining input is empty

δ(q0, a) = (qa, B,R) Erase first input letter a
δ(qa, a) = (qa, a, R)
δ(qa, b) = (qa, b, R)
δ(qa, B) = (q′a, B, L) End of input found
δ(q′a, B) = (qF , B,R) Remaining input was empty
δ(q′a, a) = (qL, B, L) Erase last input letter a

δ(q0, b) = (qb, B,R) Erase first input letter b
δ(qb, a) = (qb, a, R)
δ(qb, b) = (qb, b, R)
δ(qb, B) = (q′b, B, L) End of input found
δ(q′b, B) = (qF , B,R) Remaining input was empty
δ(q′b, b) = (qL, B, L) Erase last input letter b

δ(qL, a) = (qL, a, L) move back to beginning
δ(qL, b) = (qL, b, L)
δ(qL, B) = (q0, B,R) beginning of input found



The accepting computation for the word abba:

q0 abba ⊢



The accepting computation for the word abba:

q0 abba ⊢ qa bba ⊢ b qa ba ⊢ bb qa a ⊢ bba qa B ⊢ bb q′a a ⊢ b qL b ⊢ qL bb

⊢ qL Bbb ⊢⊢ q0 bb ⊢ qb b ⊢ b qb B ⊢ q′b b ⊢ qL B ⊢ q0 B ⊢ qF B



The accepting computation for the word abba:

q0 abba ⊢ qa bba ⊢ b qa ba ⊢ bb qa a ⊢ bba qa B ⊢ bb q′a a ⊢ b qL b ⊢ qL bb

⊢ qL Bbb ⊢⊢ q0 bb ⊢ qb b ⊢ b qb B ⊢ q′b b ⊢ qL B ⊢ q0 B ⊢ qF B

The accepting computation for the word aba:

q0 aba ⊢



The accepting computation for the word abba:

q0 abba ⊢ qa bba ⊢ b qa ba ⊢ bb qa a ⊢ bba qa B ⊢ bb q′a a ⊢ b qL b ⊢ qL bb

⊢ qL Bbb ⊢⊢ q0 bb ⊢ qb b ⊢ b qb B ⊢ q′b b ⊢ qL B ⊢ q0 B ⊢ qF B

The accepting computation for the word aba:

q0 aba ⊢ qa ba ⊢ b qa a ⊢ ba qa B ⊢ b q′a a ⊢ qL b ⊢ qL Bb ⊢ q0 b ⊢ qb B

⊢ q′b B ⊢ qF B



The accepting computation for the word abba:

q0 abba ⊢ qa bba ⊢ b qa ba ⊢ bb qa a ⊢ bba qa B ⊢ bb q′a a ⊢ b qL b ⊢ qL bb

⊢ qL Bbb ⊢⊢ q0 bb ⊢ qb b ⊢ b qb B ⊢ q′b b ⊢ qL B ⊢ q0 B ⊢ qF B

The accepting computation for the word aba:

q0 aba ⊢ qa ba ⊢ b qa a ⊢ ba qa B ⊢ b q′a a ⊢ qL b ⊢ qL Bb ⊢ q0 b ⊢ qb B

⊢ q′b B ⊢ qF B

The word abb is not accepted because the computation halts in a non-accepting
ID:

q0 abb ⊢



The accepting computation for the word abba:

q0 abba ⊢ qa bba ⊢ b qa ba ⊢ bb qa a ⊢ bba qa B ⊢ bb q′a a ⊢ b qL b ⊢ qL bb

⊢ qL Bbb ⊢⊢ q0 bb ⊢ qb b ⊢ b qb B ⊢ q′b b ⊢ qL B ⊢ q0 B ⊢ qF B

The accepting computation for the word aba:

q0 aba ⊢ qa ba ⊢ b qa a ⊢ ba qa B ⊢ b q′a a ⊢ qL b ⊢ qL Bb ⊢ q0 b ⊢ qb B

⊢ q′b B ⊢ qF B

The word abb is not accepted because the computation halts in a non-accepting
ID:

q0 abb ⊢ qa bb ⊢ b qa b ⊢ bb qa B ⊢ b q′a b



A language is recursively enumerable (r.e.) if it is recognized by a Turing
machine. A language is recursive if it is recognized by a Turing machine that
halts on all inputs. Of course, every recursive language is also r.e.

This is our precise mathematical definition of recursive and r.e. languages.

(It coincides with the informal definition given before.)

Our sample TM halts on every input, so the palindrome language L is recursive.
In fact, every context-free language is recursive. (We can implement the CYK
algorithm on a Turing machine!)



There are some “programming techniques” when designing Turing machines.

1. Storing a tape symbol in the finite control. We can build a TM
whose states are pairs [q,X ] where q is an original state, andX is a tape symbol.
The first component is used as before, the second component can be used in
remembering a particular tape symbol.



There are some “programming techniques” when designing Turing machines.

1. Storing a tape symbol in the finite control. We can build a TM
whose states are pairs [q,X ] where q is an original state, andX is a tape symbol.
The first component is used as before, the second component can be used in
remembering a particular tape symbol.

We used this technique in the sample Turing machine that recognizes palin-
dromes: The first letter of the input was stored in the state (state qa or qb), and
the machine moved to the end of the input and verified that the letter there
was identical to the first letter.



Example. A TM that recognizes the language

L = ab∗ + ba∗

The machine reads the first symbol, remembers it in the finite control, and
checks that the same symbol does not appear anywhere else in the input word.

δ(q0, a) = ([q, a], a, R)
δ(q0, b) = ([q, b], b, R)
δ([q, a], b) = ([q, a], b, R)
δ([q, b], a) = ([q, b], a, R)
δ([q, a], B) = (qF , B,R)
δ([q, b], B) = (qF , B,R)

(Compare this with a finite automaton that recognizes L.)



2. Multiple tracks. Sometimes it is useful to imagine that the tape consists of
multiple “tracks”. We can store different intermediate information on different
tracks:

q

a B B Ba B B BbaBB B B

B a a aa B B BBBBB B B

a B B BB B B BaaaB B B

The tape alphabet is then

Γ1 × Γ2 × · · · × Γn

where Γi is the alphabet of symbols on the i’th track.



3. Checking off symbols. This is equivalent to having a second track where
we can place blank B or symbol

√
. The tick mark can be conveniently used

in remembering which letters of the input have been already processed. It is
useful in recognizing languages where we have to count letters, for example.



3. Checking off symbols. This is equivalent to having a second track where
we can place blank B or symbol

√
. The tick mark can be conveniently used

in remembering which letters of the input have been already processed. It is
useful in recognizing languages where we have to count letters, for example.

Example. Let
L = {ww | w ∈ (a + b)∗}.

We first use the tick mark to find the center of the input word: Mark alter-
natively the first and last unmarked letters, one-by-one. The last letter to be
marked is in the center. So we know where the second w should start.

Using the “Storage in the finite control” technique, check that the letters in the
first half and the second half are identical.



Example. A sketch of a TM with a three track tape that recognizes

L = {ap | p is a prime number }

Initially the input is written on the first track and the other two tracks contain
B’s. (This means we identify a with [a,B,B] and B with [B,B,B].)

The machine operates as follows. It starts by placing two a’s on the second
track. Then it repeats the following:

1. Copy the content of the first track to the third track.

2. Subtract the number on the second track from the third track as many times
as possible. If the third track becomes empty, halt in a non-accepting state.
(The number on the first track was divisible by the number on the second
track.)

3. Increase the number on the second track by one. If the number becomes
the same as the number on the first track halt in an accepting state. Else
go back to step 1.



4. Shifting over. This means adding an new cell at the current location of the
tape. This is done by shifting all symbols one position to the right by scanning
the tape from the current position to the right, remembering the content of the
previous cell in the finite control, and writing it to the next cell on the right.
Once the rightmost non-blank symbol is reached the machine can return to the
new vacant cell that was introduced.

(In order to recognize the rightmost non-blank symbol, it is convenient to in-
troduce an end-of-tape symbol that is written in the first cell after the last
non-blank symbol.)



5. Subroutines. We can use subroutines in TM in the same way as they are
used in normal programming languages. A subroutine uses its own set of states,
including its own “initial state” q′0 and a return state qr.

To call a subroutine, the calling TM simply changes the state to q′0, and makes
sure the read-write head is positioned on the leftmost symbol of the “input” to
the subroutine.



Constructing TM to perform specific tasks can be quite complicated. Even
to recognize some simple languages may require many states and complicated
constructions. However, TM are powerful enough to be able to simulate any
computer program.

The claim that Turing machines can compute everything that is computable
using any model of computation is known asChurch’s thesis. Since the thesis
talks about any model of computation, it can never be proved. But there is
strong evidence supporting the thesis: So far, TM have been able to simulate any
other model of computing anyone has invented (λ-calculus, Markov-algorithms,
Post systems, recursive functions etc.)



Example. Let us see how a Turing machine would simulate a conventional
computer architecture. The tape contains all data the computer has in its
memory.

The data can be organized for example in such a way that the word vi in the
memory location i of the computer is stored on the tape as

#0i ∗ vi#

The contents of the registers of the CPU are stored on their own tracks on the
tape.



To execute the next instruction, the TM finds the memory location addressed
by the Program Counter register. In order to do that it goes through all
memory locations one by one and – using the tick marks – counts if the address
i is the same as the content of the Program Counter register. When it finds the
correct memory location i, it reads the instruction vi and memorizes it in the
finite control. (The computer has only finitely many different instructions.)

To each instruction corresponds its own subroutine. To simulate the in-
struction, the TM can use the same tick marking to find any required memory
locations, and then execute the particular task. The task may be adding the
content of a memory location to some register, for example.

Adding two numbers can be easily implemented (especially if we represent all
number in the unary format so that number n is represented as the word an).

To write a word to the memory may require shifting all cells on the right hand
side of the memory location, but we know how to do that.



Modifications of Turing machines

The following modifications do not make Turing machines more powerful. The
modified TMs accept exactly the same family of r.e. languages as our basic
model.



Modifications of Turing machines

The following modifications do not make Turing machines more powerful. The
modified TMs accept exactly the same family of r.e. languages as our basic
model.

1. Multiple tapes. We can allow the TM to have more than one tape. Each
tape has its own independent R/W head. This is different from one tape TM
with multiple tracks, since the R/W heads of different tapes can now be at
different positions.
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Depending on the state of the finite control and the current tape symbols on all
tapes the machine can

� change the state,

� overwrite the currently scanned symbols on all tapes, and

� move each R/W head to left or right independently of each other.
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Formally, the transition function δ is now a (partial) function from

(Q \ {f})× Γn

to
Q× Γn × {L,R}n

where n is the number of tapes. A transition

δ(q,X1, X2, . . . , Xn) = (p, Y1, Y2, . . . , Yn, d1, d2, . . . , dn),

means that the machine, in state q, reading symbols X1, X2, . . . Xn from the
n tapes, changes its state to p, writes symbols Y1,Y2, . . . Yn on the tapes, and
moves the first, second, third, etc. R/W head to directions indicated by d1,
d2, . . . dn, respectively.
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Initially, the input is written on tape number one, and all other tapes are blank.
A word is accepted iff the machine enters a final state.



Simulating a multitape TM using a single tape.

The single tape will have two tracks for every tape of M : One track is identical
to M ’s corresponding tape; The other one contains a single # indicating the
position of the R/W head on that tape.
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To simulate one move of the multitape machine M , we scan the tape from left
to right, remembering in the finite control the tape symbols below #’s.

Once we have encountered all #’s, the machine can figure out the new state
p and the action taken on each tape. During another sweep over the tape,
the machine can execute the instruction by writing the required symbols and
moving the #’s on the tape left or right.



Example. If
δ(q,X,B,B) = (p, Y, Y,B, L, L,R)

the simulating machine will turn
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by a simulation loop that sweeps back-and-forth between the extremal #’s.



Note that simulating one step of the multitape machine requires scanning back-
and-forth over the input, so the one-tape machine will be much slower. But all
that matters is that the machines accept exactly same words.



3. Nondeterministic Turing machines. We can also introduce nondeter-
minism. Now δ is a function from

(Q \ {f})× Γ

to subsets of
Q× Γ× {L,R}.

When scanning tape symbol X in state q, the machine can execute any instruc-
tion from the set δ(q,X). If δ(q,X) is empty, the machine halts.

A word w is accepted if and only if there exists a computation that takes the
initial ID

q0 w

into a ID where the state is a final state.

(Note that there may be other computations that halt in a non-final state, or
do not halt at all, but the word is accepted as long as there exists at least one
accepting computation.)



Example. Recognizing the language

L = {ww | w ∈ (a + b)∗}

is made easier using non-determinism. We do not need to find the center point
of the input word first: we may guess where the center point is. If in the end
all letters have been erased we know that the guess was correct and the word is
in the language.



Example. It is easy to construct a non-deterministic TM that recognizes the
language

{w#u | w, u ∈ (a + b)∗ and w is a subword of u }.
The machine first makes a non-deterministic guess where w starts inside u.
Then it verifies the correctness of the guess by erasing symbols in w and u, one
by one. If the process ends successfully and the whole w gets erased, the word
is in the language!



Simulating a non-deterministic TM M by a deterministic one.

Let r be the maximum size of the sets δ(q,X) for any q and X . In other words,
there are always at most r possible choices in the nondeterministic machine.

The deterministic TM uses three tapes (which we know can be converted into
a one-tape version.)

� Tape 1 contains the input, and that tape never changes.

� On tape 2 we generate words over the alphabet

{1, 2, . . . , r}

in some predetermined order.

(For example, start with the shortest words, and move up to longer and
longer words. Words of equal length are generated in the lexicographical
order. In other words, count integers 1,2,3,. . . in base r.)

We use the word generated on the second tape to make a selection among
non-deterministic choices for each move.

� For each word generated on tape 2 we simulate M on tape 3 using the
content on tape 2 to select among possible non-deterministic choices.



More precisely: Let x be the word generated on tape 2. We copy the input
from tape 1 to tape 3, and simulate the nondeterministic TM on tape 3.

At the i’th simulation step we use the i’th letter of x to choose which non-
deterministic alternative to use.

In any of the following cases we give up, generate the next word on the second
tape, and repeat the process:

� If the next r-ary digit on the second tape is greater than the number of
choices in the current ID of the machine we are simulating, or

� If we consumed all letters from the second tape.

If on the other hand the machine halts in a final state, the simulating machine
accepts the word.



The machine we constructed is deterministic. It is also equivalent to the original
nondeterministic machine M :

=⇒ If the input w is accepted by M , there exists a sequence of choices that
leads to an accepting calculation. Sooner or later that sequence of choices gets
generated on tape 2. Once that happens, we get an accepting computation on
tape 3, and the word w is accepted.

⇐= If w ̸∈ L(M), there does not exist a sequence of choices that leads to a
final state. Therefore, our deterministic machine never halts: it keeps generating
longer and longer words on tape 2 never halting.

The deterministic TM in effect tries all possible non-deterministic choices one
after the other until (if ever) it finds an accepting computation.



Note that the simulating deterministic machine M ′ is much slower than the
original non-deterministic machineM . IfM accepts word w in n moves, it may
take over rn moves by M ′ to accept the same word.

It is a celebrated open problem whether the deterministic machine needs to be
so much slower.



Note that the simulating deterministic machine M ′ is much slower than the
original non-deterministic machineM . IfM accepts word w in n moves, it may
take over rn moves by M ′ to accept the same word.

It is a celebrated open problem whether the deterministic machine needs to be
so much slower.

Denote by P the family of languages that are recognized by some deterministic
TM in polynomial time. In other words, L is in P if there exists a Turing
machine M and a polynomial p such that M recognizes L, and for every w ∈ L
the accepting computation of w by M uses at most p(|w|) moves.

Analogously, let us denote by NP the family of languages that are recognized
by some non-deterministic TM in polynomial time. (That means, for every
w ∈ L there exists an accepting computation for w that uses at most p(|w|)
moves.)



It is a famous open problem whether

P
?
= NP

i.e., whether there are languages that are recognized non-deterministically in
polynomial time, but recognizing them deterministically requires super-polynomial
time.

It is generally assumed that
P ̸= NP

but no proof is known.

This problem has enormous practical importance because there are many im-
portant computational problems that are known to be in NP, but nobody has
been able to find an efficient deterministic algorithm for them.



Closure properties

Theorem.

(1) The family of recursive languages is effectively closed under complementa-
tion. (If L is recursive, so is its complement Σ∗ \ L.)

(2) The families of recursive and recursively enumerable languages are effectively
closed under union and intersection. (If L1 and L2 are recursive or r.e., so
are L1 ∪ L2 and L1 ∩ L2.)

(3) A language L ⊆ Σ∗ is recursive if and only if both L and its complement
Σ∗ \ L are recursively enumerable.

We’ll have negative results later (after we learn how to prove that a language
is not recursive or r.e.) In particular: the family of r.e. language is not closed
under complementation.

Proof.



(1) Recursive languages are closed under complementation.

Let L be a recursive language. This means it is recognized by some Turing
machine

M = (Q,Σ,Γ, δ, q0, B, f )

that halts on every input.



(1) Recursive languages are closed under complementation.

Let L be a recursive language. This means it is recognized by some Turing
machine

M = (Q,Σ,Γ, δ, q0, B, f )

that halts on every input.

Let us build a Turing machine

M ′ = (Q ∪ {f ′},Σ,Γ, δ′, q0, B, f ′)

that recognizes the complement of L:

M ′ is identical to M except that M ′ has a new final state f ′, and whenever
δ(q,X) is not defined for q ̸= f we add the transition δ′(q,X) = (f ′, X,R).

� If w ∈ L(M) then both M and M ′ halt in state f . That state is not the
final state of M ′, so M ′ does not accept w, and w ̸∈ L(M ′).

� If w ̸∈ L(M) then M halts in a non-final state q. Therefore M ′ continues
one more move and enters its final state f ′. So w ∈ L(M ′).

Clearly M ′ halts on every input.



(2) Recursive and r.e. families are closed under union and inter-
section.

Let L1 and L2 be recognized by TMs M1 and M2, respectively. In the recursive
cases we also assume the corresponding TM halts on all inputs.



(2) Recursive and r.e. families are closed under union and inter-
section.

Let L1 and L2 be recognized by TMs M1 and M2, respectively. In the recursive
cases we also assume the corresponding TM halts on all inputs.

Idea 1. We can construct a TM M that executes M1 and M1 sequentially
on the same input w.
• Intersection: M accepts iff both M1 and M2 accept.
• Union: M accepts iff M1 or M2 accepts.

This works well for the intersections, and for the union of recursive languages.

However, this sequential approach does not work for the union of r.e. languages:
It could be thatM1 does not halt with the input w whileM2 accepts w. Machine
M should accept w, but the execution of M1 never halts so M never gets into
executing M2.



(2) Recursive and r.e. families are closed under union and inter-
section.

Let L1 and L2 be recognized by TMs M1 and M2, respectively. In the recursive
cases we also assume the corresponding TM halts on all inputs.

Idea 2. Execute M1 and M2 in parallel on the same input w. We can easily
do this using two tapes: execute M1 on tape 1 and M2 on tape 2.



More precisely, M

� Copies the input w from tape 1 to tape 2,

� Using states in Q1 × Q2 simulates simultaneously step-by-step TM M1 on
tape 1 and M2 on tape 2.



More precisely, M

� Copies the input w from tape 1 to tape 2,

� Using states in Q1 × Q2 simulates simultaneously step-by-step TM M1 on
tape 1 and M2 on tape 2.

In the case of the union operation:

� As soon as either simulation enters its final state, M enters its final state
and the input is accepted.

� If one of the simulations halts in a non-final state, that simulation enters
and maintains a “wait” state while the other simulation continues.

� Once both simulations reach “wait” state then M halts in a non-final state.

Now it is clear that M accepts w iff M1 or M2 accepts w. Moreover, if M1 and
M2 halt on all inputs then M has this same property.

We know how to convert the two-tape TM into a single tape TM. (And this
conversion preserves the property of halting on all inputs.)



In the case of the intersection operation:

� If one of the simulations enter its final state than that simulation maintains
that state while the other simulation continues.

� If one of the simulations halts in a non-final state, that simulation enters
and maintains a “wait” state while the other simulation continues.

� Once both simulations halt: if both reached the final state then M enters
its final state and the input is accepted. Otherwise, M halts in a non-final
state.

Now it is clear that M accepts w iff M1 and M2 accept w. Moreover, if M1 and
M2 halt on all inputs then M has this same property.



(3) A language L ⊆ Σ∗ is recursive if and only if both L and its
complement Σ∗ \ L are recursively enumerable.



(3) A language L ⊆ Σ∗ is recursive if and only if both L and its
complement Σ∗ \ L are recursively enumerable.

=⇒ If L is recursive then by (1) its complement Σ∗ \L is also recursive. Every
recursive language is also recursively enumerable.



(3) A language L ⊆ Σ∗ is recursive if and only if both L and its
complement Σ∗ \ L are recursively enumerable.

⇐= Assume that L is recognized by TM M1, and that its complement Σ∗ \ L
is recognized by TM M2. We may assume that the machines do not halt unless
they reach their final state. (Introduce a new infinite loop state for the cases
when the machines halt in non-final states.)

As in (2) above, we construct a TM M that executes M1 and M2 in parallel on
the same input w using two tapes. Note that precisely one of the two simulations
will halt. If M1 halts then M enters the final state, if M2 halts then M halts
in a non-final state.

Clearly M halts on every input, and it accepts w if and only if M1 accepts w.



A little summary:

L is recursively enumerable (r.e.)

⇐⇒ L = L(M) for a deterministic TM M

⇐⇒ L = L(M) for a non-deterministic TM M

⇐⇒ ∃ a deterministic semi-algorithm for the decision problem
“Is a given word w in L ?”

⇐⇒ ∃ a non-deterministic semi-algorithm for the decision problem
“Is a given word w in L ?”

A non-deterministic semi-algorithm for a decision problem guesses a certifi-
cate x for the positivity of the given instance w, and verifies that x indeed
proves that w is positive. (If w is positive then such a certificate x must exist;
if w is negative then such a certificate x may not exist.)



L is recursive (Rec)

⇐⇒ L = L(M) for a deterministic TM M that halts with every input

⇐⇒ ∃ a deterministic algorithm for the decision problem
“Is a given word w in L ?”

⇐⇒ L = L(M1) and Σ∗ \ L = L(M2) for non-deterministic TMs M1 and M2

⇐⇒ ∃ non-deterministic semi-algorithms for the decision problems
“Is a given word w in L ?” and “Is a given word w in Σ∗ \ L ?”

When a decision problem P is semi-decidable we say that the positive in-
stances of P are semi-decidable. When the complement of a decision prob-
lem P is semi-decidable we say that the negative instances of P are semi-
decidable.

So a decision problem is decidable iff its positive instances are semi-decidable
and its negative instances are semi-decidable.



L is recursive (Rec)

⇐⇒ L = L(M) for a deterministic TM M that halts with every input

⇐⇒ ∃ a deterministic algorithm for the decision problem
“Is a given word w in L ?”

⇐⇒ L = L(M1) and Σ∗ \ L = L(M2) for non-deterministic TMs M1 and M2

⇐⇒ ∃ non-deterministic semi-algorithms for the decision problems
“Is a given word w in L ?” and “Is a given word w in Σ∗ \ L ?”

Thus we sometimes prove the decidability of P by proving that

� there exist certificates for the positivity of positive instances, and

� there exist certificates for the negativity of negative instances.

The validity of certificates must be effectively checkable.



Example. The decision problem: ”Does a given directed graph contain a
cycle?” is decidable.

Positive instances: A certificate is a sequence v1, v2, . . . , vk of vertices that
forms a cycle. (To verify the certificate check that for every i there is an edge
vi −→ vi+1, and that there also is the edge vk −→ v1.)

Negative instances: A certificate is a permutation v1, v2, . . . , vn of all ver-
tices that is a topological sort. (To verify the certificate check that it is a
permutation and that for all i < j there is no edge vj −→ vi.)



Example. The decision problem: ”Does a given directed graph contain a
cycle?” is decidable.

Positive instances: A certificate is a sequence v1, v2, . . . , vk of vertices that
forms a cycle. (To verify the certificate check that for every i there is an edge
vi −→ vi+1, and that there also is the edge vk −→ v1.)

Negative instances: A certificate is a permutation v1, v2, . . . , vn of all ver-
tices that is a topological sort. (To verify the certificate check that it is a
permutation and that for all i < j there is no edge vj −→ vi.)

(In practice one would rather use depth-first-search to check for the presence
of cycles in a given directed graph. This algorithm is very fast: linear time in
the size of the graph.)



Decision problems concerning Turing machines

In the following we consider decision problems whose instances involve Turing
machines. We prove that many such problems are undecidable (even non-semi-
decidable).

So there does not exist a Turing machine that recognizes the (encodings of)
positive instances of these problems.

We start by fixing our encoding scheme, i.e., the way we represent Turing
machines as words.



Let us consider now only Turing machines with the input alphabet {a, b}.

By renaming the states and tape letters we may assume that the state set is

Q = {q1, q2, . . . , qn}

and that the tape alphabet is

Γ = {X1, X2, . . . , Xm}

The input alphabet {a, b} and the blank symbol B must be part of the tape
alphabet, so we assume that m ≥ 3 and

X1 = a,X2 = b,X3 = B

We may also assume that q1 is the initial state and qn is the final state of the
machine, and that n ≥ 2.



So we restrict our instances to Turing machines M = (Q,Σ,Γ, δ, q1, B, qn)
where

Q = {q1, q2, . . . , qn},
Σ = {a, b},
Γ = {X1, X2, . . . , Xm} with

X1 = a,
X2 = b,
X3 = B,

and n ≥ 2 and m ≥ 3.

It is clear that such Turing machines recognize all recursively enumerable lan-
guages over the alphabet {a, b}, and that halting machines of this kind recognize
all recursive languages over {a, b}.



Encoding of M as a word ⟨M⟩ ∈ {a, b}∗

Let us number L and R as directions 1 and 2:

D1 = L,
D2 = R.

An arbitrary transition

δ(qi, Xj) = (qk, Xl, Ds)

by the machine M is encoded as the word

ai b aj b ak b al b as

Then we encode the machine M as the word

⟨M⟩ = bbb an bb am bb code1 bb code2 bb . . . bb coder bbb

where code1, code2, . . . ,coder are encodings of all the defined transitions δ(qi, Xj),
listed in the lexicographic order of i, j.



Example. Let

M = ({q1, q2, q3}, {a, b}, {a, b, B,X4}, δ, q1, B, q3)

with the transitions
δ(q1, a) = (q1, b, R),
δ(q1, B) = (q2, B, L),
δ(q2, b) = (q1, X4, R),
δ(q2, B) = (q3, a, R),
δ(q2, X4) = (q1, B, L).

Then

⟨M⟩ =



Example. Let

M = ({q1, q2, q3}, {a, b}, {a, b, B,X4}, δ, q1, B, q3)

with the transitions
δ(q1, a) = (q1, b, R),
δ(q1, B) = (q2, B, L),
δ(q2, b) = (q1, X4, R),
δ(q2, B) = (q3, a, R),
δ(q2, X4) = (q1, B, L).

Then

⟨M⟩ = bbbaaabbaaaabb abababaabaa bb abaaabaabaaaba bb aabaababaaaabaa
bb aabaaabaaababaa bb aabaaaababaaaba bbb



The set of valid encodings of Turing machines is recursive: there exists an
algorithm that checks whether a given word w is an encoding of some Turing
machine.

Lemma. The language

Lenc = { w ∈ {a, b}∗ | w = ⟨M⟩ for some Turing machine M }

is recursive.

Proof.



Proof that Lenc is recursive:

There is a TM that verifies the following facts about the given input word w:

� Word w has the correct form

bbb an bb am bb code1 bb code2 bb . . . bb coder bbb

for some n ≥ 2 andm ≥ 3, where each codet is a word from a+ba+ba+ba+ba+.

(Such words form even a regular language.)



Proof that Lenc is recursive:

There is a TM that verifies the following facts about the given input word w:

� Word w has the correct form

bbb an bb am bb code1 bb code2 bb . . . bb coder bbb

for some n ≥ 2 andm ≥ 3, where each codet is a word from a+ba+ba+ba+ba+.

(Such words form even a regular language.)

� Each codet = ai b aj b ak b al b as satisfies the conditions

1 ≤ i ≤ n− 1,
1 ≤ k ≤ n,
1 ≤ j, l ≤ m,
1 ≤ s ≤ 2.

Then each codet is a valid encoding of some transition δ(qi, Xj) = (qk, Xl, Ds).



Proof that Lenc is recursive:

There is a TM that verifies the following facts about the given input word w:

� Word w has the correct form

bbb an bb am bb code1 bb code2 bb . . . bb coder bbb

for some n ≥ 2 andm ≥ 3, where each codet is a word from a+ba+ba+ba+ba+.

(Such words form even a regular language.)

� Each codet = ai b aj b ak b al b as satisfies the conditions

1 ≤ i ≤ n− 1,
1 ≤ k ≤ n,
1 ≤ j, l ≤ m,
1 ≤ s ≤ 2.

Then each codet is a valid encoding of some transition δ(qi, Xj) = (qk, Xl, Ds).

� For all consecutive

codet = ai b aj b ak b al b as and codet+1 = ai
′
b aj

′
b ak

′
b al

′
b as

′

we have either i < i′, or both i = i′ and j < j′. This guarantees the
proper lexicographic ordering of the transitions. This also guarantees that
the machine is deterministic.



Proof that Lenc is recursive:

There is a TM that verifies the following facts about the given input word w:

� Word w has the correct form

bbb an bb am bb code1 bb code2 bb . . . bb coder bbb

for some n ≥ 2 andm ≥ 3, where each codet is a word from a+ba+ba+ba+ba+.

(Such words form even a regular language.)

� Each codet = ai b aj b ak b al b as satisfies the conditions

1 ≤ i ≤ n− 1,
1 ≤ k ≤ n,
1 ≤ j, l ≤ m,
1 ≤ s ≤ 2.

Then each codet is a valid encoding of some transition δ(qi, Xj) = (qk, Xl, Ds).

� For all consecutive

codet = ai b aj b ak b al b as and codet+1 = ai
′
b aj

′
b ak

′
b al

′
b as

′

we have either i < i′, or both i = i′ and j < j′. This guarantees the
proper lexicographic ordering of the transitions. This also guarantees that
the machine is deterministic.

Input word w represents a Turing machine iff all three conditions are satisfied.



We define next the complemented diagonal language

Ld = {⟨M⟩ | M does not accept the word ⟨M⟩ }.

(Encodings of those Turing machines that do not accept their own encoding.)

The language Ld is a well defined language over the alphabet {a, b}. It is our
first example of a language that is not recursively enumerable.



Theorem (Alan Turing 1936). The complemented diagonal language

Ld = {⟨M⟩ | M does not accept the word ⟨M⟩ }

is not recursively enumerable.

Proof.



Theorem (Alan Turing 1936). The complemented diagonal language

Ld = {⟨M⟩ | M does not accept the word ⟨M⟩ }

is not recursively enumerable.

Proof. An indirect proof: Suppose that, contrary to the claim, Ld is recognized
by some Turing machine Md.

Does Md accept the input ⟨Md⟩ ?



Theorem (Alan Turing 1936). The complemented diagonal language

Ld = {⟨M⟩ | M does not accept the word ⟨M⟩ }

is not recursively enumerable.

Proof. An indirect proof: Suppose that, contrary to the claim, Ld is recognized
by some Turing machine Md.

Does Md accept the input ⟨Md⟩ ?

� If Md does not accept ⟨Md⟩ then, by the definition of the language Ld,
the word ⟨Md⟩ is in Ld. But Md recognizes Ld, so Md accepts ⟨Md⟩, a
contradiction.
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is not in Ld. But Md recognizes Ld, so Md does not accept ⟨Md⟩, a contra-
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Theorem (Alan Turing 1936). The complemented diagonal language

Ld = {⟨M⟩ | M does not accept the word ⟨M⟩ }

is not recursively enumerable.

Proof. An indirect proof: Suppose that, contrary to the claim, Ld is recognized
by some Turing machine Md.

Does Md accept the input ⟨Md⟩ ?

� If Md does not accept ⟨Md⟩ then, by the definition of the language Ld,
the word ⟨Md⟩ is in Ld. But Md recognizes Ld, so Md accepts ⟨Md⟩, a
contradiction.

� If Md accepts ⟨Md⟩ then, by the definition of the language Ld, word ⟨Md⟩
is not in Ld. But Md recognizes Ld, so Md does not accept ⟨Md⟩, a contra-
diction.

In both cases we reach a contradiction. Therefore Md cannot exist.



The proof is, in fact, the powerful diagonal (or self-reference) argument used
in many contexts in mathematics:

� G. Cantor (1891): the set of reals is not countable,

� K. Gödel (1931): first incompleteness theorem,

� Epimenides the Cretan: ”all Cretans are liars”

� . . .



The diagonal aspect of Turing’s proof can be visualized as follows: Consider
an arbitrary enumeration M1,M2, . . . of Turing machines with input alphabet
{a, b}, and an an infinite 0/1-matrix whose rows are indexed by Turing machines
Mi and whose columns are indexed by their encodings ⟨Mi⟩.

The entry (Mi, ⟨Mj⟩) of the table is 1 iff Mi accepts word ⟨Mj⟩, so that the
row indexed by Mi is the characteristic sequence identifying which words
⟨Mj⟩ are accepted by Mi:

+ ,M1

M1

M2

M3

M4

+ ,M2 + ,M3 + ,M4 + ,M j

Mi
1, if M  accepts + ,Mji

0, if M  does not accept + ,Mji



Consider the sequence of bits along the diagonal (Mi, ⟨Mi⟩), and complement
this sequence by swapping each bit.
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M2 M3 M4 M j
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0

0

0

1

+�� , +�� , +�� , +�� , +�� ,



Consider the sequence of bits along the diagonal (Mi, ⟨Mi⟩), and complement
this sequence by swapping each bit.

M1

M
1

M
2

M
3

M
4

M2 M3 M4 M j

Mi

0

0

0

1

+�� , +�� , +�� , +�� , +�� ,

0

1

1

1

The complemented diagonal cannot be identical to any row of the table. So
a language whose characteristic sequence is the complemented diagonal is not
recognized by any Turing machine.

Our Ld is this complemented diagonal language.



So the following decision problem is not semi-decidable (and hence undecidable):

“Given a TM M , is it true that ⟨M⟩ ̸∈ L(M) ?”

This decision problem is rather artificial, but it serves as a seed from which we
can conclude many other – more natural – problems to be undecidable. The
method we use to obtain undecidability results is reduction.



As a first example of reductions, let us show that there is no algorithm to
determine if a given Turing machine accepts a given input word:

Corollary. The language

Lu = { ⟨M⟩#w | M accepts the input word w }

is not recursive. More specifically, its complement is not recursively enumerable.

Proof.



As a first example of reductions, let us show that there is no algorithm to
determine if a given Turing machine accepts a given input word:

Corollary. The language

Lu = { ⟨M⟩#w | M accepts the input word w }
is not recursive. More specifically, its complement is not recursively enumerable.

Proof. Suppose the contrary: There is a Turing machine Mū that recognizes
the complement of Lu.

Then the following TM Md recognizes Ld, contradicting Turing’s theorem.

Machine Md works as follows: On input w it

1. Checks whether w is a valid encoding of some Turing machine. This can be
done effectively, as the language Lenc of valid encodings is recursive.

If w is not a valid encoding, machine Md halts in a non-final state.

2. If w = ⟨M⟩ is a valid encoding then Md writes w#w = ⟨M⟩#⟨M⟩ on the
tape and starts Mū on this input. The final state is entered if and only if
Mū accepts this word.

Such a Turing machine Md exists if Mū exists. (It uses Mū as a subroutine.)
Clearly Md recognizes Ld. This is not possible so Mū cannot exist.



The reduction described a TM Md that recognizes a known non-r.e. language
Ld, using as a subroutine a hypothetical TMMū that recognizes the complement
of Lu.

(I did not provide a detailed transition function of Md, but a precise enough
construction of it so that it is clear that it exists if Mū exists.)



In the reduction I described a TMMd that recognizes a known non-r.e. language
Ld, using as a subroutine a hypothetical TMMū that recognizes the complement
of Lu.

(I did not provide a detailed transition function of Md, but a precise enough
construction of it so that it is clear that it exists if Mū exists.)

Here’s a “high level” explanation of the reduction:

Suppose there is a semi-algorithm to test whether a given Turing machine does
not accept a given word. This semi-algorithm then recognizes 0’s in the infinite
table discussed above. But it then also identifies entries 1 on the inverted
diagonal, contradicting Turing’s theorem.



Another (more complicated) example of a reduction.

Corollary. The language

Lhalt = { ⟨M⟩ | M halts when started on the blank tape }

is not recursive.

Proof.



Another (more complicated) example of a reduction.

Corollary. The language

Lhalt = { ⟨M⟩ | M halts when started on the blank tape }

is not recursive.

Proof. Let us do the reduction at the level of an informal algorithm, rather
than explicitly constructing a Turing machine.

Suppose, on the contrary to the claim, that there exists an algorithm Ahalt to
determine if a given Turing machine halts when started on the blank tape.

Then the following algorithm Aū determines whether a given Turing machine
M accepts a given word w, contradicting the previous corollary that states
that such an algorithm does not exist. The algorithm Aū uses the hypothetical
algorithm Ahalt as a subroutine.



On input M and w the algorithm Aū does the following.

1. It builds a new Turing machine M ′ that works as follows:

� First M ′ writes w on its tape. (This may be done using |w| states.)
� Then M ′ moves back to the first letter of w and enters the initial state
of M .

� From there on, transitions of machine M are used.

� For each halting but non-final state of M the machine M ′ goes into a
new looping state that makes the machine move to the right indefinitely
without ever halting.

Clearly, this M ′ halts on the blank initial tape if and only if M
accepts the input w.



On input M and w the algorithm Aū does the following.

1. It builds a new Turing machine M ′ that works as follows:

� First M ′ writes w on its tape. (This may be done using |w| states.)
� Then M ′ moves back to the first letter of w and enters the initial state
of M .

� From there on, transitions of machine M are used.

� For each halting but non-final state of M the machine M ′ goes into a
new looping state that makes the machine move to the right indefinitely
without ever halting.

Clearly, this M ′ halts on the blank initial tape if and only if M
accepts the input w.

2. Algorithm Aū does not executeM
′. Instead, it just gives M ′ as an input

to the hypothetical algorithm Ahalt, and returns “yes” if Ahalt returns
“yes”, and returns “no” if Ahalt returns “no”.



On input M and w the algorithm Aū does the following.

1. It builds a new Turing machine M ′ that works as follows:

� First M ′ writes w on its tape. (This may be done using |w| states.)
� Then M ′ moves back to the first letter of w and enters the initial state
of M .

� From there on, transitions of machine M are used.

� For each halting but non-final state of M the machine M ′ goes into a
new looping state that makes the machine move to the right indefinitely
without ever halting.

Clearly, this M ′ halts on the blank initial tape if and only if M
accepts the input w.

2. Algorithm Aū does not executeM
′. Instead, it just gives M ′ as an input

to the hypothetical algorithm Ahalt, and returns “yes” if Ahalt returns
“yes”, and returns “no” if Ahalt returns “no”.

Algorithm Aū works correctly: it returns “yes” on input M and w if and
only if M accepts w. But such algorithm cannot exist by the previous corollary.
Hence, the algorithm Ahalt cannot exist either.



A more careful analysis of the reduction above one concludes that the com-
plement of Lhalt is not recursively enumerable, i.e., non-halting is not semi-
decidable.



A more careful analysis of the reduction above one concludes that the com-
plement of Lhalt is not recursively enumerable, i.e., non-halting is not semi-
decidable.

We can also see this as follows. The language Lhalt is recursively enumerable.
(One can effectively simulate the given Turing machine on a blank tape until –
if ever – it halts. The semi-algorithm answers “yes” if the simulation halts.)

Now, because Lhalt is recursively enumerable but not recursive, its complement
cannot be recursively enumerable.



Turing reductions

The reduction method is used as follows: To prove that a decision
problem P is undecidable we assume that there would exist an algorithm A
that solves P . Then we describe an algorithm A′ that solves some known
undecidable problem P ′, using A as a subroutine. Since such algorithm A′

cannot exist we conclude that algorithm A cannot exist either.

(Notice that such undecidability proof involves designing an algorithm! – but
the algorithm is for a known undecidable problem P ′ and it uses a hypothetical
subroutine A that solves P .)



Turing reductions

The reduction method is used as follows: To prove that a decision
problem P is undecidable we assume that there would exist an algorithm A
that solves P . Then we describe an algorithm A′ that solves some known
undecidable problem P ′, using A as a subroutine. Since such algorithm A′

cannot exist we conclude that algorithm A cannot exist either.

(Notice that such undecidability proof involves designing an algorithm! – but
the algorithm is for a known undecidable problem P ′ and it uses a hypothetical
subroutine A that solves P .)

A reduction to show that problem P is not semi-decidable works
analogously: Assume that a semi-algorithm for P exists. Build a semi-
algorithm A′ (using A as a subroutine) for a problem P ′ that is known to be
non-semi-decidable. As such A′ cannot exist, semi-algorithm A cannot exist
either.



Turing reductions

The reduction method is used as follows: To prove that a decision
problem P is undecidable we assume that there would exist an algorithm A
that solves P . Then we describe an algorithm A′ that solves some known
undecidable problem P ′, using A as a subroutine. Since such algorithm A′

cannot exist we conclude that algorithm A cannot exist either.

(Notice that such undecidability proof involves designing an algorithm! – but
the algorithm is for a known undecidable problem P ′ and it uses a hypothetical
subroutine A that solves P .)

A reduction to show that problem P is not semi-decidable works
analogously: Assume that a semi-algorithm for P exists. Build a semi-
algorithm A′ (using A as a subroutine) for a problem P ′ that is known to be
non-semi-decidable. As such A′ cannot exist, semi-algorithm A cannot exist
either.

Such reductions are called Turing reductions. (Later we’ll see some other,
weaker types of reductions.)



Example. Yet another example of a reduction: Let us show that emptyness
of a given r.e. language is undecidable. (=there is no algorithm to determine if
a given TM accepts any words.)



Example. Yet another example of a reduction: Let us show that emptyness
of a given r.e. language is undecidable. (=there is no algorithm to determine if
a given TM accepts any words.)

Suppose the contrary: algorithm A determines if a given Turing machine
accepts some word. Then we have the following algorithm A′ to determine if a
given Turing machine M accepts a given word w:

1. First A′ builds a new Turing machine M ′ that erases its input, writes w on
the tape, moves to the first letter of w and enters the initial state of M .
From there on, the transitions of M are used. Such machine M ′ can be
effectively constructed for any given M and w.

2. Next A′ gives the machineM ′ it constructed as an input to the hypothetical
algorithm A, and returns the answer that A provides.



Example. Yet another example of a reduction: Let us show that emptyness
of a given r.e. language is undecidable. (=there is no algorithm to determine if
a given TM accepts any words.)

Suppose the contrary: algorithm A determines if a given Turing machine
accepts some word. Then we have the following algorithm A′ to determine if a
given Turing machine M accepts a given word w:

1. First A′ builds a new Turing machine M ′ that erases its input, writes w on
the tape, moves to the first letter of w and enters the initial state of M .
From there on, the transitions of M are used. Such machine M ′ can be
effectively constructed for any given M and w.

2. Next A′ gives the machineM ′ it constructed as an input to the hypothetical
algorithm A, and returns the answer that A provides.

Note that

� if M accepts w then M ′ accepts all words,

� if M does not accept w then M ′ does not accept any word.

So A returns “yes” on input M ′ if and only if M accepts w.



Example. Yet another example of a reduction: Let us show that emptyness
of a given r.e. language is undecidable. (=there is no algorithm to determine if
a given TM accepts any words.)

Suppose the contrary: algorithm A determines if a given Turing machine
accepts some word. Then we have the following algorithm A′ to determine if a
given Turing machine M accepts a given word w:

1. First A′ builds a new Turing machine M ′ that erases its input, writes w on
the tape, moves to the first letter of w and enters the initial state of M .
From there on, the transitions of M are used. Such machine M ′ can be
effectively constructed for any given M and w.

2. Next A′ gives the machineM ′ it constructed as an input to the hypothetical
algorithm A, and returns the answer that A provides.

Note that

� if M accepts w then M ′ accepts all words,

� if M does not accept w then M ′ does not accept any word.

So A returns “yes” on input M ′ if and only if M accepts w.

Algorithm A′ described above cannot exist (solves a known undecidable prob-
lem) so the hypothetical algorithm A does not exist.



A universal Turing machine

Recall
Lu = { ⟨M⟩#w | M accepts the input word w }

We saw that Lu is not recursive.

However, Lu is recursively enumerable. (Informally: the semi-algorithm first
checks that the given input is of the correct form ⟨M⟩#w. It then simulates
the Turing machine M on the input w until – if ever – M halts. If M halts in
the final state then semi-algorithm answers “yes”.)



A universal Turing machine

Recall
Lu = { ⟨M⟩#w | M accepts the input word w }

We saw that Lu is not recursive.

However, Lu is recursively enumerable. (Informally: the semi-algorithm first
checks that the given input is of the correct form ⟨M⟩#w. It then simulates
the Turing machine M on the input w until – if ever – M halts. If M halts in
the final state then semi-algorithm answers “yes”.)

Recursively enumerable languages are recognized by Turing machines, so there
exists a Turing machine Mu that recognizes Lu. Such a machine Mu is called
a universal Turing machine. It can simulate any given Turing machine
M on any given input w, when given the description (=encoding ⟨M⟩) of the
machine to be simulated.

So Mu is a programmable computer: rather than building a new TM
for each new language, one can use the same TM Mu and only change the
“program” ⟨M⟩ that describes which Turing machine should be simulated.



We can also make the following observations:

Corollary. There are recursively enumerable languages that are not recursive.

Proof. For example Lu is such a language, as is also Lhalt and the complement
of Ld.



We can also make the following observations:

Corollary. There are recursively enumerable languages that are not recursive.

Proof. For example Lu is such a language, as is also Lhalt and the complement
of Ld.

Corollary. The family of recursively enumerable languages is not closed under
complementation.

Proof. Any language L that is recursively enumerable but not not recursive
confirms this.

(If L and the complement of L would be recursively enumerable then L would
be recursive.)



A summary of the characters of the play so far:

� ⟨M⟩ denotes the encoding (as a word over the alphabet {a, b}) of a Turing
machine M having the input alphabet {a, b}.

� Lenc = {⟨M⟩ | M is a Turing machine } is the language containing all valid
encodings of such Turing machines. It is recursive.

� Ld = {⟨M⟩ | ⟨M⟩ ̸∈ L(M)} is the complemented diagonal language that
contains encodings ⟨M⟩ of Turing machinesM that do not accept their own
encodings ⟨M⟩. It is not recursively enumerable.

� Lhalt = {⟨M⟩ | Turing machine M halts on the blank initial tape }. It is
r.e. but not recursive.

� Lu = {⟨M⟩#w | w ∈ L(M)} is the language containing encodings of Tur-
ing machines and inputs that they accept. It is also r.e. but not recursive.

� Mu is a universal Turing machine that recognizes the language Lu, i.e.,
L(Mu) = Lu.



Rice’s theorem

We have seen many undecidable questions that concern Turing machines. Some
questions are clearly decidable (e.g., “Does a given Turing machine have 5
states ?”).

Rice’s theorem states that any non-trivial question that only concerns the
language that a TM recognizes, rather than the machine itself, is undecidable.



Rice’s theorem

We have seen many undecidable questions that concern Turing machines. Some
questions are clearly decidable (e.g., “Does a given Turing machine have 5
states ?”).

Rice’s theorem states that any non-trivial question that only concerns the
language that a TM recognizes, rather than the machine itself, is undecidable.

More precisely: Let P be any family of languages. We call P a non-trivial
property of Turing machines if there exist Turing machines M1 and M2 such
that L(M1) ∈ P and L(M2) ̸∈ P .

Theorem. Let P be a non-trivial property of Turing machines. There is no
algorithm to determine if a given Turing machine M has L(M) ∈ P .

Proof. On the blackboard.



Example. Rice’s theorem shows, for example, that the following questions are
undecidable:

� “Does a given TM accept all input words ?”

� “Is L(M) regular for a given TM M ?”

� “Does a given Turing machine accept all palindromes ?”

� . . .



Example. Rice’s theorem shows, for example, that the following questions are
undecidable:

� “Does a given TM accept all input words ?”

� “Is L(M) regular for a given TM M ?”

� “Does a given Turing machine accept all palindromes ?”

� . . .

Remark. A careful analysis of the proof of Rice’s theorem shows that, for
a non-trivial property P such that ∅ ∈ P , it is non-semi-decidable for a given
Turing machine M whether L(M) ∈ P .



Other undecidable problems: rewrite systems

A semi-Thue system T = (Σ, R) consists of

� an alphabet Σ, and

� a finite set R of rewrite rules

u −→ v

where u, v ∈ Σ∗.



Other undecidable problems: rewrite systems

A semi-Thue system T = (Σ, R) consists of

� an alphabet Σ, and

� a finite set R of rewrite rules

u −→ v

where u, v ∈ Σ∗.

A rewrite rule u −→ v allows derivation steps

x u y ⇒ x v y

for all x, y ∈ Σ∗.

In other words, a derivation step consists of replacing subword u by v.

Notations x⇒∗ y and x⇒+ y and x⇒i y have the usual interpretation.



Example. Let T = ({a, b}, R) where R contains three rewrite rules

bb −→ b,
aba −→ bab,
a −→ aa.

Then ababa⇒∗ bab because

ababa⇒ babba⇒ baba⇒ bbab⇒ bab

(Underlining indicates the subword being rewritten.)



The word problem of semi-Thue systems asks for a given semi-Thue system
T = (∆, R) and given words x, y ∈ Σ∗ whether x⇒∗ y in T .



The word problem of semi-Thue systems asks for a given semi-Thue system
T = (∆, R) and given words x, y ∈ Σ∗ whether x⇒∗ y in T .

Example. Is there a derivation aba ⇒∗ babab in the system T = ({a, b}, R)
with the rewrite rules

bb −→ b,
aba −→ bab,
a −→ aa.

aba⇒



The word problem of semi-Thue systems asks for a given semi-Thue system
T = (∆, R) and given words x, y ∈ Σ∗ whether x⇒∗ y in T .

Example. Is there a derivation aba ⇒∗ babab in the system T = ({a, b}, R)
with the rewrite rules

bb −→ b,
aba −→ bab,
a −→ aa.

aba⇒ aaba⇒ abab⇒ abaab⇒ babab

Yes.
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Example. Is there a derivation aba ⇒∗ babab in the system T = ({a, b}, R)
with the rewrite rules

bb −→ b,
aba −→ bab,
a −→ aa.

aba⇒ aaba⇒ abab⇒ abaab⇒ babab

Yes.

What about a derivation babab⇒∗ aba in the opposite direction ?



The word problem of semi-Thue systems asks for a given semi-Thue system
T = (∆, R) and given words x, y ∈ Σ∗ whether x⇒∗ y in T .

Example. Is there a derivation aba ⇒∗ babab in the system T = ({a, b}, R)
with the rewrite rules

bb −→ b,
aba −→ bab,
a −→ aa.

aba⇒ aaba⇒ abab⇒ abaab⇒ babab

Yes.

What about a derivation babab⇒∗ aba in the opposite direction ?

No. If a word begins with the letter b then all derived words also begin with
the letter b.



In general, it is difficult to solve the word problem. The problem is undecidable.



In general, it is difficult to solve the word problem. The problem is undecidable.

But we prove more. The individual word problem associated to a fixed
semi-Thue system T and a fixed target word y asks:

“Does a given word x derive y in T ?”

The difference to the word problem is that T and x are not part of the input,
but are rather fixed. Different choices of T and y induce different decision
problems. For some T and y the problem is decidable, but we prove in the
following the for a suitable choice of T and y the problem is undecidable:

Theorem. There exists a semi-Thue system T and a fixed word y such that the
individual word problem “Does a given word x derive y in T ?” is undecidable.

(Note that it immediately follows that the word problem is undecidable as well.)



To prove undecidability we construct for any given Turing machine M a semi-
Thue system TM that simulates the Turing machine.

This is not difficult since the operations of a Turing machine are essentially
rewrite instructions on its instantaneous descriptions. All rewriting is done
locally and can hence be expressed as rewrite rules.



To prove undecidability we construct for any given Turing machine M a semi-
Thue system TM that simulates the Turing machine.

This is not difficult since the operations of a Turing machine are essentially
rewrite instructions on its instantaneous descriptions. All rewriting is done
locally and can hence be expressed as rewrite rules.

The only complication is caused by the left and right ends of the ID where
the tape may need to be extended of shrank by adding or removing blank tape
symbols.

Note that a rewrite rule cannot recognize the end of a word so no specific rules
can be defined for the left and right end. For this reason we add to the ends of
the ID new symbols [ and ]. A Turing machine ID α will then be represented
as the word [α].

The system TM is build in such a way that, for any IDs α and β of M ,

α ⊢ β in M ⇐⇒ [α]⇒ [β] in TM



In detail: LetM = (Q,Σ,Γ, δ, q0, B, f ) be a Turing machine whereQ∩Γ = ∅.
The corresponding semi-Thue system is TM = (∆, R) where

∆ = Q ∪ Γ ∪ {[, ]},

and R contains the productions described next.



(Left moves)

1. Every transition δ(q, a) = (p, b, L) where b ̸= B admits in M the moves

. . . xqa . . . ⊢ . . . pxb . . . for all x ∈ Γ
qa . . . ⊢ pBb . . .

(where “. . . ” indicates any content that does not change.)



(Left moves)

1. Every transition δ(q, a) = (p, b, L) where b ̸= B admits in M the moves

. . . xqa . . . ⊢ . . . pxb . . . for all x ∈ Γ
qa . . . ⊢ pBb . . .

(where “. . . ” indicates any content that does not change.)

Thus we add in R the productions

xqa −→ pxb for all x ∈ Γ
[qa −→ [pBb



(Left moves)

2. Every transition δ(q, a) = (p, b, L) where b = B admits in M the moves

. . . xqay . . . ⊢ . . . pxby . . . for all x, y ∈ Γ
. . . xqa ⊢ . . . px for all x ∈ Γ
qay . . . ⊢ pBby . . . for all y ∈ Γ

qa ⊢ pB



(Left moves)

2. Every transition δ(q, a) = (p, b, L) where b = B admits in M the moves

. . . xqay . . . ⊢ . . . pxby . . . for all x, y ∈ Γ
. . . xqa ⊢ . . . px for all x ∈ Γ
qay . . . ⊢ pBby . . . for all y ∈ Γ

qa ⊢ pB

Thus we add in R the productions

xqay −→ pxby for all x, y ∈ Γ
xqa] −→ px] for all x ∈ Γ
[qay −→ [pBby for all y ∈ Γ
[qa] −→ [pB]



(Right moves)

3. Every transition δ(q, a) = (p, b, R) where b ̸= B admits in M the moves

. . . qay . . . ⊢ . . . bpy . . . for all y ∈ Γ
. . . qa ⊢ . . . bpB



(Right moves)

3. Every transition δ(q, a) = (p, b, R) where b ̸= B admits in M the moves

. . . qay . . . ⊢ . . . bpy . . . for all y ∈ Γ
. . . qa ⊢ . . . bpB

Thus we add in R the productions

qay −→ bpy for all y ∈ Γ
qa] −→ bpB]



(Right moves)

4. Every transition δ(q, a) = (p, b, R) where b = B admits in M the moves

. . . xqay . . . ⊢ . . . xbpy . . . for all x, y ∈ Γ
. . . xqa ⊢ . . . xbpB for all x ∈ Γ
qay . . . ⊢ py . . . for all y ∈ Γ

qa ⊢ pB



(Right moves)

4. Every transition δ(q, a) = (p, b, R) where b = B admits in M the moves

. . . xqay . . . ⊢ . . . xbpy . . . for all x, y ∈ Γ
. . . xqa ⊢ . . . xbpB for all x ∈ Γ
qay . . . ⊢ py . . . for all y ∈ Γ

qa ⊢ pB

Thus we add in R the productions

xqay −→ xbpy for all x, y ∈ Γ
xqa] −→ xbpB] for all x ∈ Γ
[qay −→ [py for all y ∈ Γ
[qa] −→ [pB]



Example. Suppose M has states q and p and transitions

δ(q, a) = (q, B,R),
δ(q, B) = (p, a, R),
δ(p,B) = (q, B, L).

A computation

qaaa ⊢ qaa ⊢ qa ⊢ qB ⊢ apB ⊢ qa

has the corresponding derivation

[qaaa]⇒ [qaa]⇒ [qa]⇒ [qB]⇒ [apB]⇒ [qa]

that uses (in this order) the following rewrite rules:

[qaa −→ [qa
[qaa −→ [qa
[qa] −→ [qB]
qB] −→ apB]

apB] −→ qa]



The rewrite rules simulate the TM moves in all possible situations (also regard-
ing the ends of the ID), so it is clear that

α ⊢ β in M =⇒ [α]⇒ [β] in TM



The rewrite rules simulate the TM moves in all possible situations (also regard-
ing the ends of the ID), so it is clear that

α ⊢ β in M =⇒ [α]⇒ [β] in TM

Conversely, if α = . . . qa . . . is an ID of M then a rewrite rule of TM can be
applied on [α] if and only if δ(q, a) is defined, and in this case the derivation
step is unique. (The left-hand-side of every rewrite rule has a unique occurrence
of a subword belonging to QΓ. The symbols surrounding this qa and the value
of δ(q, a) uniquely identify the applicable rewrite rule.) Thus

[α]⇒ w in TM =⇒ w = [β] and α ⊢ β in M



The rewrite rules simulate the TM moves in all possible situations (also regard-
ing the ends of the ID), so it is clear that

α ⊢ β in M =⇒ [α]⇒ [β] in TM

Conversely, if α = . . . qa . . . is an ID of M then a rewrite rule of TM can be
applied on [α] if and only if δ(q, a) is defined, and in this case the derivation
step is unique. (The left-hand-side of every rewrite rule has a unique occurrence
of a subword belonging to QΓ. The symbols surrounding this qa and the value
of δ(q, a) uniquely identify the applicable rewrite rule.) Thus

[α]⇒ w in TM =⇒ w = [β] and α ⊢ β in M

In summary we have:

Lemma. Let α be an ID of the Turing machine M and let TM be the corre-
sponding semi-Thue system. Then, for w ∈ ∆∗,

[α]⇒ w if and only if w = [β] and α ⊢ β.



Let ιw be the initial ID of M for the input w. A simple induction shows that a
derivation

[ιw]⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn

exists in TM if and only if

w1 = [α1], w2 = [α2], . . . , wn = [αn]

for IDs α1, α2, . . . , αn such that

ιw ⊢ α1 ⊢ α2 ⊢ · · · ⊢ αn



Let ιw be the initial ID of M for the input w. A simple induction shows that a
derivation

[ιw]⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn

exists in TM if and only if

w1 = [α1], w2 = [α2], . . . , wn = [αn]

for IDs α1, α2, . . . , αn such that

ιw ⊢ α1 ⊢ α2 ⊢ · · · ⊢ αn

We want to reduce the problem of whether M accepts a given input w to the
problem of whether x ⇒∗ y in TM . Thus we set x = [ιw] and y = [α] for an
accepting ID α. A problem remains that we do not know what the accepting
ID α is.

Fortunately we may assume that the TM always erases its tape content before
entering the final state f , so that the only accepting ID is fB:

Lemma. For every Turing machine M there exists a Turing machine M ′

such that L(M ′) = L(M) and every accepting computation in M ′ ends in the
instantaneous description fB.

Proof.



Now we can prove the main result:

Theorem. There exists a semi-Thue system T and a fixed word y such that the
individual word problem “Does a given word x derive y in T ?” is undecidable.

Proof.
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Proof. Let M be a Turing machine such that L(M) is not recursive. (For
example, L(M) = Lu.) By the previous lemma we may assume that every
accepting computation by M ends in fB.
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Now we can prove the main result:

Theorem. There exists a semi-Thue system T and a fixed word y such that the
individual word problem “Does a given word x derive y in T ?” is undecidable.

Proof. Let M be a Turing machine such that L(M) is not recursive. (For
example, L(M) = Lu.) By the previous lemma we may assume that every
accepting computation by M ends in fB.

Let T = TM be the semi-Thue system for this TM M , and let y = [fB].

Assume, to the contrary of the claim, that there exists an algorithm A to
determine if a given word x derives [fB] in TM .

Then we have an algorithm to decide if a given word w is in L(M): Call A with
input x = [ιw] and return the answer that A gives.

This algorithm works: w ∈ L(M) ⇐⇒ ιw ⊢∗ fB ⇐⇒ [ιw]⇒∗ [fB]

But this algorithm cannot exist because L(M) is not recursive, so algorithm A
does not exist either.



Remark 1. By adding the production [fB] −→ ε, we can choose y = ε in
the theorem. We obtain a semi-Thue system in which it is undecidable whether
a given word derives the empty word.



Remark 1. By adding the production [fB] −→ ε, we can choose y = ε in
the theorem. We obtain a semi-Thue system in which it is undecidable whether
a given word derives the empty word.

Remark 2. It is known that there exists a semi-Thue system (∆, R) with
|∆| = 2 and |R| = 3 whose individual word problem is undecidable. The
decidability status for semi-Thue systems with two productions is not known.



A Thue system T = (∆, R) is a special kind of semi-Thue system where
u −→ v is a production if and only if v −→ u is a production. In other words,
all rewrite-rules may be applied in both directions.

We write the productions of a Thue system as u←→ v and we denote one step
derivations using⇔ instead of⇒. Clearly⇔∗ is an equivalence relation on ∆∗.
In fact, it is a congruence of the monoid ∆∗:

Lemma. Let T = (∆, R) be a Thue system. Then ⇔∗ is an equivalence
relation, and {

u1 ⇔∗ v1
u2 ⇔∗ v2

imply that u1u2 ⇔∗ v1v2.

Proof.



Algebraically: The Thue system T is a finite presentation of the quotient
monoid ∆∗/⇔∗ whose elements are the equivalence classes.

The word problem of T is then the question of whether two given words represent
the same element in the quotient monoid.



Theorem. There exists a Thue system T and a fixed word y such that the
individual word problem “Does a given word x derive y in T ?” is undecidable.

Proof.
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Proof. We use the following two properties of the semi-Thue system TM that
we constructed based on a Turing machine M :

(i) The rewriting is deterministic: If w ∈ ∆∗ contains a single occurrence of a
letter from Q then there is at most one z ∈ ∆∗ such that w ⇒ z.

(ii) In each production u −→ v both u and v contain a single occurrence of a
letter from Q.



Theorem. There exists a Thue system T and a fixed word y such that the
individual word problem “Does a given word x derive y in T ?” is undecidable.

Proof. We use the following two properties of the semi-Thue system TM that
we constructed based on a Turing machine M :

(i) The rewriting is deterministic: If w ∈ ∆∗ contains a single occurrence of a
letter from Q then there is at most one z ∈ ∆∗ such that w ⇒ z.

(ii) In each production u −→ v both u and v contain a single occurrence of a
letter from Q.

We now interpret TM as a Thue system: each production may be applied in
either direction. Denote

u⇒ v for derivation steps in the semi-Thue system TM ,
u⇐ v if v ⇒ u, (i.e., for applications of reverse productions),
u⇔ v if u⇒ v or u⇐ v, (i.e., for derivation steps in the Thue system).



As in the proof for semi-Thue systems: Let M be a Turing machine such that
L(M) is not recursive, and assume w.l.o.g. that every accepting computation
by M ends in fB.

Let us prove that in TM , for every input word w ∈ Σ∗,

[ιw]⇒∗ [fB] if and only if [ιw]⇔∗ [fB]



As in the proof for semi-Thue systems: Let M be a Turing machine such that
L(M) is not recursive, and assume w.l.o.g. that every accepting computation
by M ends in fB.

Let us prove that in TM , for every input word w ∈ Σ∗,

[ιw]⇒∗ [fB] if and only if [ιw]⇔∗ [fB]

This is then sufficient to prove undecidability: Choose y = [fB], and assume
that there is an algorithm A to dcide if a given word x derives [fB] in the Thue
system TM .

The following algorithm determines if a given word w is in L(M): Call A with
input x = [ιw] and return the answer that A gives.

This algorithm works:

w ∈ L(M) ⇐⇒ ιw ⊢∗ fB ⇐⇒ [ιw]⇒∗ [fB] ⇐⇒ [ιw]⇔∗ [fB]

But this algorithm cannot exist because L(M) is not recursive, so algorithm A
does not exist either.



[ιw]⇒∗ [fB] if and only if [ιw]⇔∗ [fB]
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Direction =⇒ is trivial, so let us prove ⇐=. Let w be such that [ιw]⇔∗ [fB].
Consider a shortest derivation

[ιw] = w0 ⇔ w1 ⇔ w2 ⇔ · · · ⇔ wn = [fB]
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Consider a shortest derivation

[ιw] = w0 ⇔ w1 ⇔ w2 ⇔ · · · ⇔ wn = [fB]

It is enough to show that all derivation steps are in the forward direction ⇒.
Suppose the contrary: some derivation steps are in the reverse direction⇐. Let
i be the largest index such that wi−1 ⇐ wi. Because no forward production
can be applied on [fB], we have that i < n. Thus

wi−1 ⇐ wi ⇒ wi+1
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Consider a shortest derivation

[ιw] = w0 ⇔ w1 ⇔ w2 ⇔ · · · ⇔ wn = [fB]

It is enough to show that all derivation steps are in the forward direction ⇒.
Suppose the contrary: some derivation steps are in the reverse direction⇐. Let
i be the largest index such that wi−1 ⇐ wi. Because no forward production
can be applied on [fB], we have that i < n. Thus
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By the property “(ii) In each production u −→ v both u and v contain a single
occurrence of a letter from Q” we have that wi contains exactly one occurrence
of a state letter.



[ιw]⇒∗ [fB] if and only if [ιw]⇔∗ [fB]

Direction =⇒ is trivial, so let us prove ⇐=. Let w be such that [ιw]⇔∗ [fB].
Consider a shortest derivation

[ιw] = w0 ⇔ w1 ⇔ w2 ⇔ · · · ⇔ wn = [fB]

It is enough to show that all derivation steps are in the forward direction ⇒.
Suppose the contrary: some derivation steps are in the reverse direction⇐. Let
i be the largest index such that wi−1 ⇐ wi. Because no forward production
can be applied on [fB], we have that i < n. Thus

wi−1 ⇐ wi ⇒ wi+1

By the property “(ii) In each production u −→ v both u and v contain a single
occurrence of a letter from Q” we have that wi contains exactly one occurrence
of a state letter.

Now the property “(i) The rewriting is deterministic: If w ∈ ∆∗ contains a
single occurrence of a letter from Q then there is at most one z ∈ ∆∗ such that
w ⇒ z.” implies that wi−1 = wi+1.

But this means that the derivation can be shortened by removing the unneces-
sary wi and wi+1 from the derivation, a contradiction.



Remark 1. The theorem means that the word problem is undecidable in some
finitely presented monoids. The result can be strengthened further: It is
known that the word problem is undecidable even in some finitely presented
groups. On the other hand, the word problem is decidable among finitely
presented abelian (i.e., commutative) monoids and groups.
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finitely presented monoids. The result can be strengthened further: It is
known that the word problem is undecidable even in some finitely presented
groups. On the other hand, the word problem is decidable among finitely
presented abelian (i.e., commutative) monoids and groups.

Remark 2. By adding [fB]←→ ε to the production set, we can choose u = ε
in the theorem. In this case, it is undecidable if a given word represents the
identity element of the monoid. (A small proof is needed to show that shortest
derivations [ιw]⇔∗ [fB] do not use the new production [fB]←→ ε.)



Remark 1. The theorem means that the word problem is undecidable in some
finitely presented monoids. The result can be strengthened further: It is
known that the word problem is undecidable even in some finitely presented
groups. On the other hand, the word problem is decidable among finitely
presented abelian (i.e., commutative) monoids and groups.

Remark 2. By adding [fB]←→ ε to the production set, we can choose u = ε
in the theorem. In this case, it is undecidable if a given word represents the
identity element of the monoid. (A small proof is needed to show that shortest
derivations [ιw]⇔∗ [fB] do not use the new production [fB]←→ ε.)

Remark 3. There exists a Thue system (∆, R) with |∆| = 2 and |R| = 3
whose word problem is undecidable.



A type-0 grammar (or simply a grammar) is a 4-tuple G = (V, T, P, S)
where

� V and T are disjoint finite alphabets of variables and terminals,

� S ∈ V is the start symbol, and

� P is a finite set of productions u −→ v where u and v are words over
V ∪ T and u contains at least one variable.

The pair (V ∪ T, P ) acts as a semi-Thue system: we denote w ⇒ w′ if w′ is
obtained from w by replacing a subword u by v, for some u −→ v ∈ P .

If w ∈ T ∗ is terminal then no derivation is possible from w. The language

L(G) = {w ∈ T ∗ | S ⇒∗ w}

generated by G consists of all the terminal words that can be derived from
the start symbol S.



Example. The grammar G = ({S,X, Y, Z}, {a, b, c}, P, S) with productions

S −→ aXbc | ε
X −→ ε | aY b
Y b −→ bY
Y c −→ Zcc
bZ −→ Zb
aZ −→ aX

generates the language

L(G) = {anbncn | n ≥ 0}.



Type-0 grammars generate precisely the family of recursively enumerable lan-
guages:

Theorem. Turing machines and type-0 grammars are effectively equivalent.

Proof.



Type-0 grammars generate precisely the family of recursively enumerable lan-
guages:

Theorem. Turing machines and type-0 grammars are effectively equivalent.

Proof. For the direction

Grammar −→ Turing machine

we rely on the fact that any semi-algorithm can be implemented on a Turing
machine.

Let G be a type-0 grammar. The following (non-deterministic) semi-algorithm
determines for a given word w whether w ∈ L(G): Guess a derivation

S ⇒ α1 ⇒ α2 ⇒ · · · ⇒ αn

and verify that the derivation is indeed a valid derivation and that αn = w.

Because membership in L(G) is semi-decidable, the language L(G) is recursively
enumerable. Thus there exists a Turing machine M such that L(M) = L(G).
This M can also be effectively constructed.



Grammar −→ Turing machine

Alternatively, a concrete non-deterministic TM M to recognize L(G) could
repeatedly

� scan the content of the tape from left-to-right,

� guess during the scan a position and a production u −→ v to use,

� check that v appears on the tape at the guessed position,

� replace v by u (this may require shifting the suffix if |v| ≠ |u|),
� check if the tape content is S, in which case accept (go to the final state)

Note that M is searching for a backward derivation from the input word w to
the start symbol S.



Then the converse direction:

Turing machine −→ Grammar

Remark: Turing machines are accepting devices, grammars are generative.
To convert a Turing machine into an equivalent grammar we therefore need to
“reverse” the computation so that we start generating from the accepting ID
backwards in time, until an initial ID is reached.



Turing machine −→ Grammar

Let M = (Q,Σ,Γ, δ, q0, B, f ) be a given Turing machine. We may assume that
every accepting computation ends in fB. Let us construct a type-0 grammar
G = (V,Σ, P, S) such that L(G) = L(M).



Turing machine −→ Grammar

Let M = (Q,Σ,Γ, δ, q0, B, f ) be a given Turing machine. We may assume that
every accepting computation ends in fB. Let us construct a type-0 grammar
G = (V,Σ, P, S) such that L(G) = L(M).

Let TM = (∆, P ) be the semi-Thue system associated to machine M . Let

PR = {v −→ u | u −→ v ∈ P}

be the set of reverse productions. Then we know that with productions PR

[fB]⇒∗ [ιw] if and only if w ∈ L(M).

We also need productions that admit initializing and finalizing derivations

S ⇒∗ [fB] and [ιw]⇒∗ w.



So in the grammarG we have all the productions of PR. To initialize derivations
we add a new start symbol S and the production

S −→ [fB]

And to finalize (derive from [ιw] the word w) we add the following productions:

[q0 −→ #
#a −→ a# for all a ∈ Σ
#] −→ ε

[q0B] −→ ε

where # is a new variable.



So in the grammarG we have all the productions of PR. To initialize derivations
we add a new start symbol S and the production

S −→ [fB]

And to finalize (derive from [ιw] the word w) we add the following productions:

[q0 −→ #
#a −→ a# for all a ∈ Σ
#] −→ ε

[q0B] −→ ε

where # is a new variable.

The finalization works: The last production directly maps [ιε] ⇒ ε. And for
any non-empty w = a1 . . . an we have the derivation

[ιw] = [q0a1 . . . an]⇒ #a1 . . . an]⇒∗ a1 . . . an#]⇒ a1 . . . an = w



So in the grammarG we have all the productions of PR. To initialize derivations
we add a new start symbol S and the production

S −→ [fB]

And to finalize (derive from [ιw] the word w) we add the following productions:

[q0 −→ #
#a −→ a# for all a ∈ Σ
#] −→ ε

[q0B] −→ ε

where # is a new variable.

The finalization works: The last production directly maps [ιε] ⇒ ε. And for
any non-empty w = a1 . . . an we have the derivation

[ιw] = [q0a1 . . . an]⇒ #a1 . . . an]⇒∗ a1 . . . an#]⇒ a1 . . . an = w

The symbols of our grammar are thus the elements of

Q ∪ Γ ∪ {[, ],#, S}
Out of these, the symbols in Σ ⊆ Γ are terminals, all others are variables. Note
that every production contains variables on the left-hand-side, as required.



The grammar G we constructed satisfies L(M) = L(G):

“⊆” If w ∈ L(M) then [fB]⇒∗ [ιw] using PR. Hence, G admits the derivation

S ⇒ [fB]⇒∗ [ιw]⇒∗ w

and so w ∈ L(G).
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All derivations begin S ⇒ [fB]. With the productions PR one can then only
reach words [zqy] where q ∈ Q. In order to derive a word without a state
symbol, a production [q0B] −→ ε or [q0 −→ # needs to be used.
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PR. Then ε ∈ L(M), and the derived word w = ε.



The grammar G we constructed satisfies L(M) = L(G):

“⊇” Let w ∈ L(G), and consider its derivation S ⇒∗ w.

All derivations begin S ⇒ [fB]. With the productions PR one can then only
reach words [zqy] where q ∈ Q. In order to derive a word without a state
symbol, a production [q0B] −→ ε or [q0 −→ # needs to be used.

� One can use [q0B] −→ ε only if [q0B] = [ιε] was reached from [fB] using
PR. Then ε ∈ L(M), and the derived word w = ε.

� One can use [q0 −→ # only if [q0y] = [ιy] was derived using PR, for some
y. The terminal derivation must continue as

[q0y]⇒ #y]⇒∗ y#]⇒ y

so that the derived word w = y. As [ιw] was derived from [fB] using PR,
we have w ∈ L(M).



The grammar G we constructed satisfies L(M) = L(G):

“⊇” Let w ∈ L(G), and consider its derivation S ⇒∗ w.

All derivations begin S ⇒ [fB]. With the productions PR one can then only
reach words [zqy] where q ∈ Q. In order to derive a word without a state
symbol, a production [q0B] −→ ε or [q0 −→ # needs to be used.

� One can use [q0B] −→ ε only if [q0B] = [ιε] was reached from [fB] using
PR. Then ε ∈ L(M), and the derived word w = ε.

� One can use [q0 −→ # only if [q0y] = [ιy] was derived using PR, for some
y. The terminal derivation must continue as

[q0y]⇒ #y]⇒∗ y#]⇒ y

so that the derived word w = y. As [ιw] was derived from [fB] using PR,
we have w ∈ L(M).

In all cases w ∈ L(M). In fact, we saw that all terminal derivations have the
structure

S ⇒ [fB]⇒∗ [ιw]⇒∗ w.



Post correspondence problem (PCP)

An instance to PCP consists of two lists of words over some alphabet Σ:

L1 : w1, w2, . . . wk

L2 : x1, x2, . . . xk

Both lists contain equally many words.

A solution to the instance is any non-empty string i1i2 . . . im of indices from
{1, 2, . . . , k} such that

wi1wi2 . . . wim = xi1xi2 . . . xim

In other words, we concatenate corresponding words wi and xi to form two
words. We have a solution if the concatenated wi’s form the same word as the
corresponding concatenated xi’s.

The PCP asks whether a given instance has a solution or not. It turns out that
PCP is undecidable.



Example 1. Consider the following two lists:

L1 : aa, bb, abb
L2 : aab, ba, b



Example 1. Consider the following two lists:

L1 : aa, bb, abb
L2 : aab, ba, b

This instance has solution 1213 because

w1w2w1w3 = aa bb aa abb
x1x2x1x3 = aab ba aab b

are identical.
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Index word: 1

(First index cannot be 2 as it would fail in the first letter.)
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Index word: 122

(Third index cannot be 1 as it would fail in the 7’th letter.)



Example 2. Consider the PCP instance

L1 : aab, a
L2 : aa, baa

Lets try to find a solution:

aabaa
aabaabaa

Index word: 122 ?

(Both 1 and 2 fail as the fourth index.)

This PCP instance does not have a solution.
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Example 3. The PCP instance

L1 = a, ba
L2 = ab, ab

Lets try to find a solution:

ababa
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Index word: 122



Example 3. The PCP instance

L1 = a, ba
L2 = ab, ab

Lets try to find a solution:

abababa
abababab

Index word: 1222 . . .

The first list can never catch-up the missing b, so a solution does not exist.
(Note: we are asking for finite solutions!)



PCP can be expressed in terms of homomorphisms: The problem asks for
two given homomorphisms

h1, h2 : ∆
∗ −→ Σ∗

whether there exists a non-empty word u such that h1(u) = h2(u).

The connection to the list formulation

L1 : w1, w2, . . . wk

L2 : x1, x2, . . . xk

is as follows:
∆ = {1, 2, . . . , k}
h1(i) = wi for all i ∈ ∆
h2(i) = xi for all i ∈ ∆

For any index sequence u ∈ ∆+ then h1(u) and h2(u) are the concatenated
words of wi and xi as given by the index sequence u.



Example. Recall our first example

L1 : aa, bb, abb
L2 : aab, ba, b

that has the solution 1213.

As a pair of homomorphisms: h1, h2 : {1, 2, 3}∗ −→ {a, b}∗ where

h1 :
1 7→ aa
2 7→ bb
3 7→ abb

h2 :
1 7→ aab
2 7→ ba
3 7→ b

The solution 1213 means that h1(1213) = h2(1213).



Example. Our second example

L1 : aab, a
L2 : aa, baa

in terms of homomorphisms: h1, h2 : {1, 2}∗ −→ {a, b}∗ where

h1 :
1 7→ aab
2 7→ a

h2 :
1 7→ aa
2 7→ baa

The instance has no solution, meaning that h1(w) ̸= h2(w) for all w ̸= ε.



Theorem. The Post correspondence problem is undecidable.

Proof. Reduction from the word problem of semi-Thue systems.



Theorem. The Post correspondence problem is undecidable.

Proof. Reduction from the word problem of semi-Thue systems.

It is enough to show how to effectively construct, for a given semi-Thue system
T = (Σ, R) and source and target words x and y, an equivalent PCP instance
L1, L2. The instance is equivalent in the sense that it has a solution if and only
if x⇒∗ y in T .
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T = (Σ, R) and source and target words x and y, an equivalent PCP instance
L1, L2. The instance is equivalent in the sense that it has a solution if and only
if x⇒∗ y in T .

Moreover, we may assume w.l.o.g. that x, y ̸= ε, and also that u, v ̸= ε in each
rewrite rule u −→ v of R.
(We can make this assumption since the system TM and the source [ιw] and
the target [fB] in our proof of undecidability of the word problem have this
property. So the word problem is undecidable in such restricted cases.)



Theorem. The Post correspondence problem is undecidable.

Proof. Reduction from the word problem of semi-Thue systems.

It is enough to show how to effectively construct, for a given semi-Thue system
T = (Σ, R) and source and target words x and y, an equivalent PCP instance
L1, L2. The instance is equivalent in the sense that it has a solution if and only
if x⇒∗ y in T .

Moreover, we may assume w.l.o.g. that x, y ̸= ε, and also that u, v ̸= ε in each
rewrite rule u −→ v of R.
(We can make this assumption since the system TM and the source [ιw] and
the target [fB] in our proof of undecidability of the word problem have this
property. So the word problem is undecidable in such restricted cases.)

Let Σ′ = {a′ | a ∈ Σ} be a marked, disjoint copy Σ. As usual, denote for every
u ∈ Σ∗ by u′ the word obtained by marking each letter of u.

Let # be a new marker symbol. The alphabet of the PCP instance is

Σ ∪ Σ′ ∪ {#}



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R

Lets try to find a solution:

#x #
# y#

The only pair in which one of the words is the prefix of the other one is (#x,#).
Therefore a solution must start with this pair.

Similarly, the only pair in which one word is the suffix of the other one is (#, y#)
so any solution must end in this pair.



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R

Lets try to find a solution:

#x x′1
#x

The second word has to catch-up x. The only pairs that can match letters of x
are (a′, a) for a ∈ Σ and (v′, u) for u −→ v ∈ R. Matching x with such pairs
creates a new marked word x′1 after x in the first word.

Note that x1 can be obtained from x in the semi-Thue system in some number
of derivation steps:

x⇒∗ x1



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R

Lets try to find a solution:

#x x′1 x1
#x x′1

Next the second list has to catch-up the primed word x′1. The only pairs that
contain primed letters in the second components are (a, a′) for a ∈ Σ. Such
pairs create a new unprimed copy of x1 in the first word.



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R

Lets try to find a solution:

#x x′1 x1 x
′
2

#x x′1 x1

Now the process is repeated on x1 instead of x. We create a new word x2 and

x⇒∗ x1 ⇒∗ x2



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R

Lets try to find a solution:

#x x′1 x1 x
′
2 x2

#x x′1 x1 x
′
2

Now the process is repeated on x1 instead of x. We create a new word x2 and

x⇒∗ x1 ⇒∗ x2



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R

Lets try to find a solution:

#x x′1 x1 x
′
2 x2 x

′
3 x3 . . . x

′
n xn

#x x′1 x1 x
′
2 x2 x

′
3 x3 . . . x

′
n

Continuing likewise, we are forced to create matching words

x⇒∗ x1 ⇒∗ x2 ⇒∗ x3 ⇒∗ · · · ⇒∗ xn



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R

Lets try to find a solution:

#x x′1 x1 x
′
2 x2 x

′
3 x3 . . . x

′
n xn

#x x′1 x1 x
′
2 x2 x

′
3 x3 . . . x

′
n

Continuing likewise, we are forced to create matching words

x⇒∗ x1 ⇒∗ x2 ⇒∗ x3 ⇒∗ · · · ⇒∗ xn
The second list can catch-up the first list only if for some n we have xn = y.
Then the pair (#, y#) can be used to close the words.



The following corresponding pairs of words are placed into lists L1 and L2:

L1 L2

#x #
# y#
a a′ for every a ∈ Σ
a′ a for every a ∈ Σ
v′ u for every u −→ v ∈ R

Lets try to find a solution:

#x x′1 x1 x
′
2 x2 x

′
3 x3 . . . x

′
n xn#

#x x′1 x1 x
′
2 x2 x

′
3 x3 . . . x

′
n y #

Continuing likewise, we are forced to create matching words

x⇒∗ x1 ⇒∗ x2 ⇒∗ x3 ⇒∗ · · · ⇒∗ xn
The second list can catch-up the first list only if for some n we have xn = y.
Then the pair (#, y#) can be used to close the words.

Conclusion: the PCP instance has a solution if and only if x ⇒∗ y in the
semi-Thue system T .



Example. Consider our earlier rewrite rules

bb −→ b,
aba −→ bab,
a −→ aa.

and words x = ababa and y = bab.
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L2 : # bab# a′ b′ a b bb aba a

The word problem has a solution, so the PCP has one too.



Example. Consider our earlier rewrite rules

bb −→ b,
aba −→ bab,
a −→ aa.

and words x = ababa and y = bab.

The corresponding PCP instance contains 9 pairs:

L1 : #ababa # a b a′ b′ b′ b′a′b′ a′a′

L2 : # bab# a′ b′ a b bb aba a

The word problem has a solution, so the PCP has one too.

#ababa b′a′b′ b′ a′ b a b b a b′ a′ b′ a′ b a b a b′ b′a′b′ b b a b b′ a′ b′ b a b #
# aba b a b′ a′ b′ b′ a′ b a bb a b′ a′ b′ a′ b aba b′ b′ a′ b′ bb a b b′ a′ b′ bab#



Remark 1. The PCP is undecidable even if the words wi and xi are over the
binary alphabet {a, b}. This is because any alphabet Σ can be encoded in
the binary alphabet using an injective homomorphism h : Σ∗ −→ {a, b}∗. (For
example, we can use distinct binary words of length ⌈log2 |Σ|⌉ to encode the
letters of Σ.) Because of the injectivity of h, the instance h1, h2 : ∆

∗ −→ Σ∗ is
equivalent to the binary instance h ◦ h1, h ◦ h2 : ∆

∗ −→ {a, b}∗.



Remark 1. The PCP is undecidable even if the words wi and xi are over the
binary alphabet {a, b}. This is because any alphabet Σ can be encoded in
the binary alphabet using an injective homomorphism h : Σ∗ −→ {a, b}∗. (For
example, we can use distinct binary words of length ⌈log2 |Σ|⌉ to encode the
letters of Σ.) Because of the injectivity of h, the instance h1, h2 : ∆

∗ −→ Σ∗ is
equivalent to the binary instance h ◦ h1, h ◦ h2 : ∆

∗ −→ {a, b}∗.

Remark 2. Our construction converts a semi-Thue system (Σ, R) into a PCP
instance containing 2|Σ| + |R| + 2 pairs of words. Over the binary alphabet
|Σ| = 2 this means |R| + 6 pairs. There is a smarter reduction that provides
only |R| + 4 pairs of words.

Since there is a semi-Thue system with |R| = 3 rules whose individual word
problem is undecidable, we obtain that PCP is undecidable among lists with 7
pairs of words. With a different approach this number can be reduced to 5.

On the other hand, PCP is known to be decidable among instances with 2 pairs
of words. It is presently not known whether PCP is decidable or undecidable
for 3 or 4 pairs of words.



Undecidable problems about context-free grammars

PCP can be further reduced to questions concerning context-free grammars and
languages. Let

w1, w2, . . . , wk

be a list of k words over an alphabet Σ. Assume that

{1, 2, . . . k,#, $} ∩ Σ = ∅.

We associate to such a list the language

L(w1, . . . , wk) = { i1i2 . . . in#wR
in
wR

in−1 . . . w
R
i1
$ | n ≥ 1}

over the alphabet ∆ = Σ ∪ {1, 2, . . . , k} ∪ {#, $}.
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Using the homomorphism notation with h : {1, 2, . . . , k} −→ Σ∗ that maps
h(i) = wi for all i ∈ {1, 2, . . . , k}, the language L(w1, . . . , wk) consists of all
words u # h(u)R $ for all non-empty u ∈ {1, 2, . . . k}+.



Undecidable problems about context-free grammars

PCP can be further reduced to questions concerning context-free grammars and
languages. Let

w1, w2, . . . , wk

be a list of k words over an alphabet Σ. Assume that

{1, 2, . . . k,#, $} ∩ Σ = ∅.

We associate to such a list the language

L(w1, . . . , wk) = { i1i2 . . . in#wR
in
wR

in−1 . . . w
R
i1
$ | n ≥ 1}

over the alphabet ∆ = Σ ∪ {1, 2, . . . , k} ∪ {#, $}.

Using the homomorphism notation with h : {1, 2, . . . , k} −→ Σ∗ that maps
h(i) = wi for all i ∈ {1, 2, . . . , k}, the language L(w1, . . . , wk) consists of all
words u # h(u)R $ for all non-empty u ∈ {1, 2, . . . k}+.

Remark. The markers # and $ have no role in our first applications. We
could just as well use a simpler language that contains the words u h(u)R for
all non-empty index words u. The markers become relevant later.



L(w1, . . . , wk) = { i1i2 . . . in#wR
in
wR

in−1 . . . w
R
i1
$ | n ≥ 1}

The language L(w1, . . . , wk) is context-free: it is generated by the context-free
grammar G = ({S,A},∆, P, S) with the productions

S −→ A$

to create the end marker $,

A −→ 1AwR
1 | 2AwR

2 | . . . | kAwR
k

to create matching index/word pairs, and

A −→ 1#wR
1 | 2#wR

2 | . . . | k#wR
k

to terminate (and to guarantee that at least one index/word pair is used).

Remark. The grammar is actually linear and unambiguous.



Example. The language L(ab, b, baa) corresponding to the word list ab, a, baa
is generated by the productions

S −→ A$
A −→ 1Aba | 2Ab | | 3Aaab
A −→ 1#ba | 2#b | | 3#aab

For example, the word 123#aabbba$ is generated (uniquely) as follows:
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Example. The language L(ab, b, baa) corresponding to the word list ab, a, baa
is generated by the productions

S −→ A$
A −→ 1Aba | 2Ab | | 3Aaab
A −→ 1#ba | 2#b | | 3#aab

For example, the word 123#aabbba$ is generated (uniquely) as follows:

S ⇒ A$⇒ 1Aba$⇒ 12Abba$⇒ 123#aabbba$

Remark. In L(w1, . . . , wk) we have the words before and after the center
marker # in reverse orders only because this admits context-free generation of
the language. If the word after the marker is not reversed there would not exist
a context-free grammar that generates the language.



Theorem. It is undecidable for given context-free languages L1 and L2

whether L1 ∩ L2 = ∅.

Proof.
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Proof. We reduce the Post correspondence problem. Let

L1 : w1, w2, . . . wk

L2 : x1, x2, . . . xk

be a given instance to PCP. We effectively construct the context-free languages

L1 = L(w1, . . . wk)
L2 = L(x1, . . . xk)

corresponding to the two lists.
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Indeed, a word
i1i2 . . . in#wR$

is in both L(w1, . . . wk) and L(x1, . . . xk) if and only if n ≥ 1 and

wi1wi2 . . . win = w = xi1xi2 . . . xin.



Theorem. It is undecidable for given context-free languages L1 and L2

whether L1 ∩ L2 = ∅.

Proof. We reduce the Post correspondence problem. Let

L1 : w1, w2, . . . wk

L2 : x1, x2, . . . xk

be a given instance to PCP. We effectively construct the context-free languages

L1 = L(w1, . . . wk)
L2 = L(x1, . . . xk)

corresponding to the two lists.

Crucially,

L1 ∩ L2 ̸= ∅ if and only if the PCP instance has a solution

Indeed, a word
i1i2 . . . in#wR$

is in both L(w1, . . . wk) and L(x1, . . . xk) if and only if n ≥ 1 and

wi1wi2 . . . win = w = xi1xi2 . . . xin.

So an algorithm A that decides whether L1 ∩ L2 = ∅ can be used to solve the
PCP, a contradiction.



Remark. Because the grammars for the languagesL(w1, . . . , wn) andL(x1, . . . , xn)
are linear and unambiguous, the decision problem is undecidable even when
restricted to such instances. So the following problem is undecidable:

Is L(G1)∩L(G2) = ∅ for given linear, unambiguous context-free grammars G1

and G2 ?



Remark. Because the grammars for the languagesL(w1, . . . , wn) andL(x1, . . . , xn)
are linear and unambiguous, the decision problem is undecidable even when
restricted to such instances. So the following problem is undecidable:

Is L(G1)∩L(G2) = ∅ for given linear, unambiguous context-free grammars G1

and G2 ?

This remark immediately gives us the following theorem.

Theorem. It is undecidable whether a given linear context-free grammar G is
unambiguous.
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Theorem. It is undecidable whether a given linear context-free grammar G is
unambiguous.

Proof. We reduce the undecidable problem “Is L(G1) ∩ L(G2) = ∅ for given
linear, unambiguous context-free grammars G1 and G2 ?”

Let G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2) be two given linear, unam-
biguous grammars. Rename the variables so that V1 and V2 are disjoint and do
not contain variable S. Construct a new linear grammar

G = (V1 ∪ V2 ∪ {S}, T1 ∪ T2, P, S)

where P contains all productions from P1 and P2, and the additional initializa-
tion productions

S −→ S1 | S2.

(Recall, this is our construction for the union of two context-free languages.)



Theorem. It is undecidable whether a given linear context-free grammar G is
unambiguous.

Proof. We reduce the undecidable problem “Is L(G1) ∩ L(G2) = ∅ for given
linear, unambiguous context-free grammars G1 and G2 ?”

Let G1 = (V1, T1, P1, S1) and G2 = (V2, T2, P2, S2) be two given linear, unam-
biguous grammars. Rename the variables so that V1 and V2 are disjoint and do
not contain variable S. Construct a new linear grammar

G = (V1 ∪ V2 ∪ {S}, T1 ∪ T2, P, S)

where P contains all productions from P1 and P2, and the additional initializa-
tion productions

S −→ S1 | S2.

(Recall, this is our construction for the union of two context-free languages.)

L(G1) ∩ L(G2) = ∅ if and only if G is unambiguous

� Every u ∈ L(G1) ∩ L(G2) has two leftmost derivations in G that start
S ⇒ S1 and S ⇒ S2 and continue with derivations according to G1 and G2.

� Conversely, if L(G1) ∩ L(G2) = ∅ then every generated word has only one
leftmost derivation because G1 and G2 are unambiguous.)



Our next undecidability result states that there is no algorithm to determine if
a given context-free grammar generates all words over its terminal alphabet Σ:

Given a context-free grammar G, is L(G) = Σ∗

In this proof we take advantage of the markers # and $ in the language

L(w1, . . . , wk) = { i1i2 . . . in#wR
in
wR

in−1 . . . w
R
i1
$ | n ≥ 1}.

With the help of the markers we can namely prove that the complement of
L(w1, . . . , wk) is also (effectively) context-free.



Lemma. The language L(w1, . . . , wk) is (effectively) recognized by a deter-
ministic PDA without ε-transitions, using the final state acceptance mode. The
PDA never empties its stack.

Proof.



Lemma. The language L(w1, . . . , wk) is (effectively) recognized by a deter-
ministic PDA without ε-transitions, using the final state acceptance mode. The
PDA never empties its stack.

Proof. We construct such a PDA

A = (Q,∆,Γ, δ, q0, Z0, {qF})

where Q = {q0, q1, q2, qF} and Γ = Σ ∪ {Z0}. The transitions are

δ(q0, i, Z0) = {(q1, wR
i Z0)} for all i ∈ {1, 2, . . . , k}

δ(q1, i, Z) = {(q1, wR
i Z)} for all Z ∈ Γ and i ∈ {1, 2, . . . , k}

δ(q1,#, Z) = {(q2, Z)} for all Z ∈ Γ
δ(q2, a, a) = {(q2, ε)} for all a ∈ Σ
δ(q2, $, Z0) = {(qF , Z0)}

Idea: A reads in state q1 indices i ∈ {1, 2, . . . , k} and pushes, for each index i,
the corresponding word wR

i into the stack. Once the marker # is encountered
the machine changes into state q2 and starts matching input letters with the
symbols in the stack. The word is accepted if and only if the stack contains Z0

when the last input letter is $ is being read.
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Corollary. The complement of the language L(w1, . . . , wk) is (effectively)
context-free.
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Proof. Let A = (Q,∆,Γ, δ, q0, Z0, {qF}) be the PDA constructed in the pre-
vious proof. Let us add to A a new state f and non-ε-transitions

δ(q, a, Z) = (f, Z)

whenever δ(q, a, Z) is undefined in A. (Here a ̸= ε is a letter.)
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whenever δ(q, a, Z) is undefined in A. (Here a ̸= ε is a letter.)

� The new PDA is still deterministic without ε-transitions,

� the transition function is now complete, and

� the stack becomes never empty because Z0 is never removed from the stack.

These properties imply that the PDA does not halt until the entire input word
has been read. For every input word w there corresponds a unique state q
and stack content α such that

(q0, w, Z0) ⊢∗ (q, ε, α)



Lemma. The language L(w1, . . . , wk) is (effectively) recognized by a deterministic PDA

without ε-transitions, using the final state acceptance mode. The PDA never empties its stack.

Corollary. The complement of the language L(w1, . . . , wk) is (effectively)
context-free.

Proof. Let A = (Q,∆,Γ, δ, q0, Z0, {qF}) be the PDA constructed in the pre-
vious proof. Let us add to A a new state f and non-ε-transitions

δ(q, a, Z) = (f, Z)

whenever δ(q, a, Z) is undefined in A. (Here a ̸= ε is a letter.)

� The new PDA is still deterministic without ε-transitions,

� the transition function is now complete, and

� the stack becomes never empty because Z0 is never removed from the stack.

These properties imply that the PDA does not halt until the entire input word
has been read. For every input word w there corresponds a unique state q
and stack content α such that

(q0, w, Z0) ⊢∗ (q, ε, α)

If we swap the final and the non-final states so that the new final
states are all states except qF then the new PDA recognizes the complement of
L(w1, . . . , wk).



Remark. In fact, the family of deterministic context-free languages is closed
under complementation.

However, possible ε-transitions in a deterministic PDA cause technical difficul-
ties in the proof. (After reading the input the PDA can still continue to other
states using ε-transitions. Thus the final state reached at the end is not unique.)

In our case, the complementation is easy because the PDA has no ε-transitions:
the PDA reaches a unique state at the end, so it is enough to swap the accepting
and non-accepting states.



Theorem. It is undecidable if L = Σ∗ for a given context-free language
L ⊆ Σ∗.

Proof.



Theorem. It is undecidable if L = Σ∗ for a given context-free language
L ⊆ Σ∗.

Proof. We reduce the Post correspondence problem. For any given instance

L1 : w1, w2, . . . wk

L2 : x1, x2, . . . xk

of PCP we effectively construct the complements L1 and L2 of L(w1, . . . , wk)
and L(x1, . . . , xk), respectively.

Then

L1 ∪ L2 = Σ∗ ⇐⇒ L(w1, . . . , wk) ∩ L(x1, . . . , xk) = ∅

⇐⇒ the PCP instance L1, L2 does not have a solution

We can effectively construct the union L1 ∪ L2, so the result follows from the
undecidability of PCP.



Corollary. Let L1 and L2 be given context-free languages and let R be a given
regular language. The following questions are undecidable:

(a) Is L1 = L2 ?

(b) Is L2 ⊆ L1 ?

(c) Is L1 = R ?

(c) Is R ⊆ L1 ?

The question whether L1 ⊆ R is, however, decidable.

Proof.



Mortality of matrix products

Let {M1,M2, . . . ,Mk} be a finite set of n × n matrices with integer entries.
We say that the matrix set is mortal if some product of the matrices from the
set is the zero matrix.



Example. Consider

M1 =

(
0 −1
1 0

)
M2 =

(
0 0
0 1

)
.



Example. Consider

M1 =

(
0 −1
1 0

)
M2 =

(
0 0
0 1

)
.

The productM2M1M2 is the zero matrix so the matrix set {M1,M2} is mortal.



Example. Consider the following two 2× 2 matrices:

M1 =

(
0 −1
1 0

)
M2 =

(
2 0
0 1

)



Example. Consider the following two 2× 2 matrices:

M1 =

(
0 −1
1 0

)
M2 =

(
2 0
0 1

)
Matrix set {M1,M2} is not mortal: Because det(M1) and det(M2) are non-zero,
the determinant of every product is non-zero.



The matrix mortality problem asks whether a given finite set of n ×
n integer matrices is mortal. In the following we show that this problem is
undecidable, even among 3× 3 integer matrices.



Let us associate to each word w = a1a2 . . . am over the alphabet {1, 2, 3} the
integer

σ(w) = am + 4am−1 + · · · + 4m−1a1

So σ(w) = the number that w represents in base four.

The function σ : {1, 2, 3}∗ −→ N is injective (because digit 0 is not used).

For any words u and v we have

σ(uv) = σ(v) + 4|v|σ(u).



Let us associate to each word w = a1a2 . . . am over the alphabet {1, 2, 3} the
integer

σ(w) = am + 4am−1 + · · · + 4m−1a1

So σ(w) = the number that w represents in base four.

The function σ : {1, 2, 3}∗ −→ N is injective (because digit 0 is not used).

For any words u and v we have

σ(uv) = σ(v) + 4|v|σ(u).

Associate to each word w the 2× 2 integer matrix

Mw =

(
4|w| 0

σ(w) 1

)
If u and v are any two words then

MuMv =

(
4|u| 0

σ(u) 1

)(
4|v| 0

σ(v) 1

)
=

(
4|uv| 0

σ(uv) 1

)
= Muv

so that the mapping w 7→Mw is a monoid morphism from words to the multi-
plicative monoid of 2×2 matrices. The morphism is injective becausew 7→ σ(w)
is injective.



By “fusing” together the matrices Mu and Mv of two words u and v we obtain
a single 3× 3 integer matrix

Mu,v =

 4|u| 0 0
0 4|v| 0

σ(u) σ(v) 1

 .

corresponding to the pair u, v. It has a similar morphism property:

Lemma. For all u, v, x, y ∈ {1, 2, 3}∗ holds that Mu,vMx,y = Mux,vy.

Proof. A direct calculation (on the blackboard).



We add in the mix the following special 3× 3 matrix

A =

 1 0 1
−1 0 −1
0 0 0

 .

Lemma. The matrix A has following properties:

� A2 = A (so A is idempotent).

� More generally,
AMu,vA = (4|u| + σ(u)− σ(v))A

for all words u, v. (The first bullet point is the special case with u = v = ε.)

� AMu,vA = 0 if and only if v = 1u.

Proof. A direct calculation (on the blackboard).



Theorem. It is undecidable whether a given finite set of 3×3 integer matrices
is mortal.

Proof.



Theorem. It is undecidable whether a given finite set of 3×3 integer matrices
is mortal.

Proof. Reduction from the PCP over the two letter alphabet ∆ = {2, 3}.

Recall the properties

� Mu,vMx,y = Mux,vy

� A2 = A

� AMu,vA = 0 if and only if v = 1u



Theorem. It is undecidable whether a given finite set of 3×3 integer matrices
is mortal.

Proof. Reduction from the PCP over the two letter alphabet ∆ = {2, 3}.

Recall the properties

� Mu,vMx,y = Mux,vy

� A2 = A

� AMu,vA = 0 if and only if v = 1u

For a given PCP instance

L1 : w1, w2, . . . wk

L2 : x1, x2, . . . xk

over ∆ = {2, 3} we construct a set of 2k + 1 integer matrices of size 3× 3:

A and Mi = Mwi,xi and M ′
i = Mwi,1xi for i ∈ {1, . . . , k}



Theorem. It is undecidable whether a given finite set of 3×3 integer matrices
is mortal.

Proof. Reduction from the PCP over the two letter alphabet ∆ = {2, 3}.

Recall the properties

� Mu,vMx,y = Mux,vy

� A2 = A

� AMu,vA = 0 if and only if v = 1u

For a given PCP instance

L1 : w1, w2, . . . wk

L2 : x1, x2, . . . xk

over ∆ = {2, 3} we construct a set of 2k + 1 integer matrices of size 3× 3:

A and Mi = Mwi,xi and M ′
i = Mwi,1xi for i ∈ {1, . . . , k}

It is enough to show (on the blackboard) that

the matrix set is mortal ⇐⇒ the PCP instance has a solution



Remark. The proof converts a PCP instance of size k into a set of 2k + 1
matrices. Since the PCP is undecidable among k = 5 pairs of words, we see
that the mortality problem is undecidable among sets of 11 integer matrices of
size 3× 3.

A more careful analysis of the proof yields the undecidability of the mortality
problem for sets of k + 1 = 6 matrices of size 3× 3.



Remark. The proof converts a PCP instance of size k into a set of 2k + 1
matrices. Since the PCP is undecidable among k = 5 pairs of words, we see
that the mortality problem is undecidable among sets of 11 integer matrices of
size 3× 3.

A more careful analysis of the proof yields the undecidability of the mortality
problem for sets of k + 1 = 6 matrices of size 3× 3.

To see this: The PCP instance with k pairs of words has a solution iff for
some i the following set of k + 1 integer matrices of size 3× 3 is mortal:

{AM ′
i ,M1,M2, . . . ,Mk}

Indeed:

� if this set is mortal then the set constructed in the proof is also mortal and
so the PCP instance has a solution.

� Conversely, if the PCP instance has a solution i1 . . . im then

AM ′
i1
Mi2 . . .MimAM

′
i1
= 0 ·M ′

i1
= 0



Remark. The proof converts a PCP instance of size k into a set of 2k + 1
matrices. Since the PCP is undecidable among k = 5 pairs of words, we see
that the mortality problem is undecidable among sets of 11 integer matrices of
size 3× 3.

A more careful analysis of the proof yields the undecidability of the mortality
problem for sets of k + 1 = 6 matrices of size 3× 3.

To see this: The PCP instance with k pairs of words has a solution iff for
some i the following set of k + 1 integer matrices of size 3× 3 is mortal:

{AM ′
i ,M1,M2, . . . ,Mk}

Indeed:

� if this set is mortal then the set constructed in the proof is also mortal and
so the PCP instance has a solution.

� Conversely, if the PCP instance has a solution i1 . . . im then

AM ′
i1
Mi2 . . .MimAM

′
i1
= 0 ·M ′

i1
= 0

An algorithm to solve the PCP instance thus constructs these sets for all i ∈
{1, . . . , k} and asks a hypothetical algorithm for mortality whether any of these
sets is mortal.



Remark. Mortality is undecidable among sets of two 15×15 matrices, among
sets of three 9× 9 matrices and among four 5× 5 matrices.

It is not known whether the mortality problem is decidable among sets of 2× 2
matrices. For a set of two 2× 2 matrices the problem is decidable.



Decidability of a related Skolem-Pisot problem is open:

Given a single n × n integer matrix M , does there exists k ≥ 1 such that the
element in the upper right corner of Mk is zero ?

This is known to be decidable for matrices of size n ≤ 5, but the decidability
status is not known for larger values of n.



Tiling problems

Wang tiles are unit square tiles with colored edges. Each tile can be repre-
sented as a 4-tuple (N,E, S,W ) where N,E, S and W are the colors of the
north, east, south and west sides of the square.

A Wang tile set is a finite set of Wang tiles.

A B C D



Tiling problems

Wang tiles are unit square tiles with colored edges. Each tile can be repre-
sented as a 4-tuple (N,E, S,W ) where N,E, S and W are the colors of the
north, east, south and west sides of the square.

A Wang tile set is a finite set of Wang tiles.

A B C D

A tiling by a Wang tile set T is an assignment t : Z2 −→ T of copies of the
tiles in T on the plane in such a way that the adjacent edges of neighboring
tiles have the same color.

Note that the tiles may not be rotated.



Example. With

A B C D

we can tile a 5× 5 square. . .

A

B

C

D

C

A

C

B

D

C

B

D

A

C

C

B

D

C

A

C

B

A

C

D

C

. . . and since the colors on the borders match this square can be repeated to
form a valid periodic tiling of the whole plane.





The tiling problem (also known as the domino problem) asks whether a
given finite set of tiles admits at least one valid tiling. This question turns out
to be undecidable.



The tiling problem (also known as the domino problem) asks whether a
given finite set of tiles admits at least one valid tiling. This question turns out
to be undecidable.

Here we, however, only prove the undecidability of the following variant, called
the tiling problem with a seed tile:

Given a finite set T of Wang tiles and a seed tile s ∈ T , does there exist a valid
tiling of the plane that contains at least one copy of the seed s ?



To prove undecidability we associate to any given Turing machine M a set
TM of Wang tiles such that valid tilings “draw” computations according to M .
Horizontal rows represent consecutive ID’s, time increasing upwards.

Colors will be represented as labeled arrows. The matching rule is that each
arrow head must meet an arrow tail with the same label in the neighboring tile.

xx

(Such presentation can easily be converted into colors by identifying each arrow
direction/label -pair by a unique color.)



To prove undecidability we associate to any given Turing machine M a set
TM of Wang tiles such that valid tilings “draw” computations according to M .
Horizontal rows represent consecutive ID’s, time increasing upwards.

Colors will be represented as labeled arrows. The matching rule is that each
arrow head must meet an arrow tail with the same label in the neighboring tile.

xx

(Such presentation can easily be converted into colors by identifying each arrow
direction/label -pair by a unique color.)

The labels are

� tape symbols (representing a tape cell containing that symbol), or

� state/tape symbol pairs (representing a tape cell containing the control unit
at the given state).

b b 0 q,1 0 1 b b



Let M = (Q,Γ,Σ, δ, s, b, f ). In TM we have the following tiles:

(i) three starting tiles to represent the blank tape

s,bb b



Let M = (Q,Γ,Σ, δ, s, b, f ). In TM we have the following tiles:

(ii) for every tape letter x ∈ Γ an alphabet tile

x

x



Let M = (Q,Γ,Σ, δ, s, b, f ). In TM we have the following tiles:

(iii) for every state q ∈ Q \ {f} and and tape symbol x ∈ Γ such that δ(q, x)
is defined one action tile

y

q,x

y

r

q,x

ror

where

� the left tile is used if δ(q, x) = (r, y, L), and

� the right tile iff δ(q, x) = (r, y, R).



Let M = (Q,Γ,Σ, δ, s, b, f ). In TM we have the following tiles:

(iv) for every non-final state q ∈ Q \ {f} and tape symbol x ∈ Γ the two
merging tiles

q

x

q,x q,x

q

x



Let M = (Q,Γ,Σ, δ, s, b, f ). In TM we have the following tiles:

(v) the blank tile



Theorem. The tiling problem with a seed tile is undecidable.

Proof.



Theorem. The tiling problem with a seed tile is undecidable.

Proof. We reduce the undecidable problem of deciding if a given TM halts
from the blank initial tape. For any givenM = (Q,Γ,Σ, δ, s, b, f ) we effectively
construct the tile set TM and choose the initialization tile

s,b

as the seed tile.

It is now enough to prove that

TM admits a tiling containing the seed ⇐⇒ M does not halt from the blank tape



M = (Q,Γ,Σ, δ, s, b, f )

s,bb b

∀x ∈ Γ:

x

x

For all q, x, if δ(q, x) is defined:

y

q,x

y

r

q,x

ror

∀x ∈ Γ,∀q ∈ Q \ {f}: q

x

q,x q,x

q

x



Remark. Proving the undecidability without the seed tile constraint is signif-
icantly harder. It requires an aperiodic Wang tile set: A tile set that admits
a tiling but does not admit any periodic tiling.

� Admitting a periodic tiling is semi-decidable: Guess positive integers n and
m and a tiling of an n×m rectangle such that opposite sides of the rectangle
contain identical sequences of colors.

� Not admitting a tiling is semi-decidable: Guess number n and verify that
the tiles cannot tile the n×n square without a tiling error. (A compactness
argument shows that a tile set that tiles all arbitrarily large squares also
admits a tiling of the infinite plane.)

So if there did not exist any aperiodic tile set then both negative and positive
instances of the tiling problem would be semi-decidable =⇒ decidability



Undecidability and incompleteness in arithmetics

Next we prove that it is undecidable whether a given first-order sentence con-
cerning natural numbers is true.

Let us briefly recall what first-order sentences are in this setting (no formal
definition is given since we all are familiar with the concepts).



Undecidability and incompleteness in arithmetics

Next we prove that it is undecidable whether a given first-order sentence con-
cerning natural numbers is true.

Let us briefly recall what first-order sentences are in this setting (no formal
definition is given since we all are familiar with the concepts).

The symbols we use in the sentences are

� constants 0, 1, 2, . . .

� variables that get values in the domain N = {0, 1, 2, . . . },
� functions + (addition) and · (multiplication), both binary and in the infix
notation,

� predicates <, ≤, >, ≥, =, ̸=, all binary and in the infix notation, all with
the usual meaning,

� connectives ∧ (and), ∨ (or), ¬ (not), ⇒ (implication), ⇔ (equivalence),

� quantifiers ∀x (for all x ∈ N) and ∃x (for some x ∈ N).

Also parentheses are used to indicate order of constructions.



A term is build from constant and variables using functions + and · any number
of times. A term itself is a function that obtains a value in N when its variables
are assigned values in N.

When evaluating a term we use the usual precedence of multiplication before
addition. Also the multiplication sign does not need to be written explicitly.

Example. The term
2x + 11

has one variable x. It obtains the value 15 when x is given the value 2. The
term

(x + y)(x + 2) + y

has two variables x, y. When given values x = 2 and y = 3 the term gets the
value 23.



An atomic formula is a predicate applied to two terms. It obtains a truth
value when the variables are assigned values in N.

Example. The atomic formula

(x + y)(x + 2) + y ≥ 2x + 11

is true when x = 2 and y = 3, but it is false when x = 2 and y = 1.



A formula is build from atomic formulas using any number of connectives and
quantifiers. Occurrences of variables that are not quantified are free. Quantified
occurrences are bound. A formula obtains a truth value when the variables
with free occurrences are assigned values in N.

We employ the following commonly used precedence rules for the connectives:
the evaluation is done in the order

1. ¬ 2. ∧ and ∨ 3. ∀ and ∃ 4. ⇒ and ⇔.

A formula without any free variables is a sentence. A sentence has a well
defined truth value (independent of any variable assignments).



Example. The formula

(z > 1) ∧ ∀x∀y ((x > 1 ∧ y > 1)⇒ xy ̸= z)

has one free variable z. The formula is true when z = 3 but false when z = 4.
In fact, the formula is true if and only if z is a prime number.



Example. The formula

(z > 1) ∧ ∀x∀y ((x > 1 ∧ y > 1)⇒ xy ̸= z)

has one free variable z. The formula is true when z = 3 but false when z = 4.
In fact, the formula is true if and only if z is a prime number.

Adding the ∀m∃z (z > m) ∧ . . . fragment in front of the formula above we
obtain the formula

∀m∃z ((z > m) ∧ ∀x∀y ((x > 1 ∧ y > 1)⇒ xy ̸= z))

This formula has no free variables so it is a sentence. The sentence is true: it
states the fact that there are arbitrarily large prime numbers, i.e., infinitely
many primes.



As a shorthand notation we may introduce names to formulas, together with a
parameter list of free variables.

Example. Let us name the formula of primality of z as Prime(z):

Prime(z) := (z > 1) ∧ ∀x∀y ((x > 1 ∧ y > 1)⇒ xy ̸= z)

Then Prime(2z+1) denotes the formula obtained by replacing each free occur-
rence of z by 2z + 1. So Prime(2z + 1) is true iff 2z + 1 is a prime number.

Now the formula

∀m ∃z ((z > m) ∧ Prime(z) ∧ Prime(z + 2))

is a sentence stating the famous twin prime conjecture. It has a well defined
truth value true or false, but it is not known which one.



Remark. Our sentences are in the first-order logic, meaning that quantifica-
tions are over variables that represent individual numbers. In the second-order
logic variables would be allowed to represent predicates (in particular, sets of
numbers).



Hilbert’s dream: It would great if there were an algorithm that would de-
termine for any given first-order sentence whether the sentence is true or false.

Unfortunately the problem is undecidable:

Theorem. It is undecidable whether a given first-order sentence over N is
true.

Proof.



Hilbert’s dream: It would great if there were an algorithm that would de-
termine for any given first-order sentence whether the sentence is true or false.

Unfortunately the problem is undecidable:

Theorem. It is undecidable whether a given first-order sentence over N is
true.

Proof. We reduce the Post correspondence problem: Given any PCP instance

L1 : w1, w2, . . . wk

L2 : x1, x2, . . . xk

over the binary alphabet Σ = {2, 3}, we effectively construct a first-order sen-
tence that is true if and only if the PCP instance has a solution.

We use the same notations and ideas as in the matrix mortality section. In
particular, recall that σ(w) is the number that w ∈ Σ∗ represents in base 4.



Let us denote, for all i = 1, . . . , k,

Ai = σ(wi)
Bi = 4|wi|

Ci = σ(xi)
Di = 4|xi|

These are natural number constants that can be effectively computed from the
given PCP instance. Notice that these are elements in the 3× 3 matrices

Mi = Mwi,xi =

 Bi 0 0
0 Di 0
Ai Ci 1


that we constructed for the matrix mortality problem.



Let i1i1 . . . im be a sequence of indices, ij ∈ {1, 2, . . . , k}. For every j =
0, 1, . . . ,m we define the natural numbers

aj = σ(wi1 . . . wij)

bj = 4
|wi1

...wij
|

cj = σ(xi1 . . . xij)

dj = 4
|xi1...xij |

In the matrix notation these are elements of the product matrices

Mi1Mi1 . . .Mij =

 bj 0 0
0 dj 0
aj cj 1

 .



Because  bj 0 0
0 dj 0
aj cj 1

 =

 bj−1 0 0
0 dj−1 0

aj−1 cj−1 1

 Bij 0 0
0 Dij 0
Aij Cij 1



=

 Bijbj−1 0 0
0 Dijdj−1 0

Bijaj−1 + Aij Dijcj−1 + Cij 1


the numbers aj, bj, cj, dj are determined by the equations

a0 = c0 = 0 and b0 = d0 = 1, (Start)

∀j = 1, . . .m (Follow)
aj = Bijaj−1 + Aij,
bj = Bijbj−1,
cj = Dijcj−1 + Cij,
dj = Dijdj−1.

Because σ is injective, the sequence i1i2 . . . im is a solution to the PCP if and
only if

am = cm (End)



a0 = c0 = 0 and b0 = d0 = 1, (Start)

∀j = 1, . . .m (Follow)
aj = Bijaj−1 + Aij,
bj = Bijbj−1,
cj = Dijcj−1 + Cij,
dj = Dijdj−1.

am = cm (End)

We see that the PCP instance has a solution if and only if numbers aj, bj, cj and
dj satisfying the conditions (First), (Follow) and (End) exist for some choice of
m ≥ 1 and i1i2 . . . im.



Writing this as a single sentence: the PCP instance has a solution if and only
if the “sentence”

∃m (m ≥ 1) ∧ ∃a0, . . . ,∃am∃b0, . . . ,∃bm∃c0, . . . ,∃cm∃d0, . . . ,∃dm
Start(a0, b0, c0, d0)∧
∀j [(j < m)⇒ Follow(aj, bj, cj, dj, aj+1, bj+1, cj+1, dj+1)]∧

End(am, bm, cm, dm)

is true, where we use the shorthand notations

� Start(a,b,c,d) for (a = 0) ∧ (b = 1) ∧ (c = 0) ∧ (d = 1)

� Follow(a,b,c,d,a′,b′,c′,d′) for

[(a′ = B1a + A1) ∧ (b′ = B1b) ∧ (c′ = D1c + C1) ∧ (d′ = D1d)] ∨
[(a′ = B2a + A2) ∧ (b′ = B2b) ∧ (c′ = D2c + C2) ∧ (d′ = D2d)] ∨

. . .
[(a′ = Bka + Ak) ∧ (b′ = Bkb) ∧ (c′ = Dkc + Ck) ∧ (d′ = Dkd)]

� End(a,b,c,d) for a = c



Writing this as a single sentence: the PCP instance has a solution if and only
if the “sentence”

∃m (m ≥ 1) ∧ ∃a0, . . . ,∃am∃b0, . . . ,∃bm∃c0, . . . ,∃cm∃d0, . . . ,∃dm
Start(a0, b0, c0, d0)∧
∀j [(j < m)⇒ Follow(aj, bj, cj, dj, aj+1, bj+1, cj+1, dj+1)]∧

End(am, bm, cm, dm)

is true, where we use the shorthand notations

� Start(a,b,c,d) for (a = 0) ∧ (b = 1) ∧ (c = 0) ∧ (d = 1)

� Follow(a,b,c,d,a′,b′,c′,d′) for

[(a′ = B1a + A1) ∧ (b′ = B1b) ∧ (c′ = D1c + C1) ∧ (d′ = D1d)] ∨
[(a′ = B2a + A2) ∧ (b′ = B2b) ∧ (c′ = D2c + C2) ∧ (d′ = D2d)] ∨

. . .
[(a′ = Bka + Ak) ∧ (b′ = Bkb) ∧ (c′ = Dkc + Ck) ∧ (d′ = Dkd)]

� End(a,b,c,d) for a = c

Problem: this is not a correctly formed first-order formula because the number
of quantified variables ai, bi, ci and di is not constant but depends on the value
of variable m (representing the length of the PCP solution).



Solution: an arbitrary finite sequence n0, n1, . . . , nm of natural numbers can
be encoded as a single number.

Actually, we get a simpler formula if we encode each finite sequence as a pair
of two numbers. The encoding is given by the Gödel’s β-function: For any
a, b, i ∈ N we define

β(a, b, i) = a mod [1 + (i + 1)b]

where x mod y denotes the smallest natural number that is congruent to x
modulo y.

Interpretation: The value β(a, b, i) is the i’th element of the sequence en-
coded by a and b.

The β-function is implemented by a simple first-order formula: n = β(a, b, i) if
and only if

Beta(a, b, i, n) := (n < 1 + (i + 1)b) ∧ [∃x a = n + x(1 + (i + 1)b)]

is true.



β(a, b, i) = a mod [1 + (i + 1)b]

The β-function can reproduce sequences of numbers from fixed a and b by
varying i. Any desired sequence can be obtained:

Lemma. Let m ≥ 1, and let n0, n1, . . . nm be arbitrary natural numbers.
Then there exist a, b ∈ N such that ni = β(a, b, i) for all i = 0, 1, . . . ,m.

Proof of the lemma.



β(a, b, i) = a mod [1 + (i + 1)b]

The β-function can reproduce sequences of numbers from fixed a and b by
varying i. Any desired sequence can be obtained:

Lemma. Let m ≥ 1, and let n0, n1, . . . nm be arbitrary natural numbers.
Then there exist a, b ∈ N such that ni = β(a, b, i) for all i = 0, 1, . . . ,m.

Proof of the lemma.

1) Let us choose
b = m! ·max{n0, n1, . . . , nm}.

Then the numbers 1 + (i + 1)b with 0 ≤ i ≤ m are pairwise co-prime: Let
p be a prime number that divides both 1 + (i + 1)b and 1 + (j + 1)b where
0 ≤ i < j ≤ m. Then p also divides the difference

(1 + (j + 1)b)− (1 + (i + 1)b) = (j − i)b.

Because j − i divides b we see that p necessarily divides b. As p also divides
1 + (i + 1)b, we have that p divides 1, a contradiction.



β(a, b, i) = a mod [1 + (i + 1)b]

The β-function can reproduce sequences of numbers from fixed a and b by
varying i. Any desired sequence can be obtained:

Lemma. Let m ≥ 1, and let n0, n1, . . . nm be arbitrary natural numbers.
Then there exist a, b ∈ N such that ni = β(a, b, i) for all i = 0, 1, . . . ,m.

Proof of the lemma.

2) So we have a number b = m! · max{n0, n1, . . . , nm} such that 1 + (i + 1)b
with 0 ≤ i ≤ m are pairwise co-prime.

The Chinese remainder theorem provides a natural number a such that

a ≡ ni (mod 1 + (i + 1)b)

for all 0 ≤ i ≤ m. This is our choice of a. Because

ni ≤ b < 1 + (i + 1)b,

we have that ni = β(a, b, i).



∃m (m ≥ 1) ∧ ∃α1, α2, β1, β2, γ1, γ2, δ1, δ2

Beta(α1, α2, 0, 0) ∧ Beta(β1, β2, 0, 1) ∧ Beta(γ1, γ2, 0, 0) ∧ Beta(δ1, δ2, 0, 1)∧

∀j [(j < m)⇒ ∃a, b, c, d, a′, b′, c′, d′ Follow(a, b, c, d, a′, b′, c′, d′)∧
Beta(α1, α2, j, a) ∧ Beta(α1, α2, j + 1, a′)∧
Beta(β1, β2, j, b) ∧ Beta(β1, β2, j + 1, b′)∧
Beta(γ1, γ2, j, c) ∧ Beta(γ1, γ2, j + 1, c′)∧
Beta(δ1, δ2, j, d) ∧ Beta(δ1, δ2, j + 1, d′)]∧

∃r Beta(α1, α2,m, r) ∧ Beta(γ1, γ2,m, r)

The sentence above is true if and only if the PCP instance has a solution.



∃m (m ≥ 1) ∧ ∃α1, α2, β1, β2, γ1, γ2, δ1, δ2

Beta(α1, α2, 0, 0) ∧ Beta(β1, β2, 0, 1) ∧ Beta(γ1, γ2, 0, 0) ∧ Beta(δ1, δ2, 0, 1)∧

∀j [(j < m)⇒ ∃a, b, c, d, a′, b′, c′, d′ Follow(a, b, c, d, a′, b′, c′, d′)∧
Beta(α1, α2, j, a) ∧ Beta(α1, α2, j + 1, a′)∧
Beta(β1, β2, j, b) ∧ Beta(β1, β2, j + 1, b′)∧
Beta(γ1, γ2, j, c) ∧ Beta(γ1, γ2, j + 1, c′)∧
Beta(δ1, δ2, j, d) ∧ Beta(δ1, δ2, j + 1, d′)]∧

∃r Beta(α1, α2,m, r) ∧ Beta(γ1, γ2,m, r)

The sentence uses the shorthand notations Follow and Beta defined before:

� Follow(a,b,c,d,a′,b′,c′,d′) stands for

[(a′ = B1a + A1) ∧ (b′ = B1b) ∧ (c′ = D1c + C1) ∧ (d′ = D1d)] ∨
[(a′ = B2a + A2) ∧ (b′ = B2b) ∧ (c′ = D2c + C2) ∧ (d′ = D2d)] ∨

. . .
[(a′ = Bka + Ak) ∧ (b′ = Bkb) ∧ (c′ = Dkc + Ck) ∧ (d′ = Dkd)]

� Beta(a, b, i, n) stands for

(n < 1 + (i + 1)b) ∧ [∃x a = n + x(1 + (i + 1)b)]



∃m (m ≥ 1) ∧ ∃α1, α2, β1, β2, γ1, γ2, δ1, δ2

Beta(α1, α2, 0, 0) ∧ Beta(β1, β2, 0, 1) ∧ Beta(γ1, γ2, 0, 0) ∧ Beta(δ1, δ2, 0, 1)∧

∀j [(j < m)⇒ ∃a, b, c, d, a′, b′, c′, d′ Follow(a, b, c, d, a′, b′, c′, d′)∧
Beta(α1, α2, j, a) ∧ Beta(α1, α2, j + 1, a′)∧
Beta(β1, β2, j, b) ∧ Beta(β1, β2, j + 1, b′)∧
Beta(γ1, γ2, j, c) ∧ Beta(γ1, γ2, j + 1, c′)∧
Beta(δ1, δ2, j, d) ∧ Beta(δ1, δ2, j + 1, d′)]∧

∃r Beta(α1, α2,m, r) ∧ Beta(γ1, γ2,m, r)

Numbers α1 and α2 provide the sequence a0, a1, . . . , am.

Numbers β1 and β2 provide the sequence b0, b1, . . . , bm.

Numbers γ1 and γ2 provide the sequence c0, c1, . . . , cm.

Numbers δ1 and δ2 provide the sequence d0, d1, . . . , dm.



∃m (m ≥ 1) ∧ ∃α1, α2, β1, β2, γ1, γ2, δ1, δ2

Beta(α1, α2, 0, 0) ∧ Beta(β1, β2, 0, 1) ∧ Beta(γ1, γ2, 0, 0) ∧ Beta(δ1, δ2, 0, 1)∧

∀j [(j < m)⇒ ∃a, b, c, d, a′, b′, c′, d′ Follow(a, b, c, d, a′, b′, c′, d′)∧
Beta(α1, α2, j, a) ∧ Beta(α1, α2, j + 1, a′)∧
Beta(β1, β2, j, b) ∧ Beta(β1, β2, j + 1, b′)∧
Beta(γ1, γ2, j, c) ∧ Beta(γ1, γ2, j + 1, c′)∧
Beta(δ1, δ2, j, d) ∧ Beta(δ1, δ2, j + 1, d′)]∧

∃r Beta(α1, α2,m, r) ∧ Beta(γ1, γ2,m, r)

On the first line, the sentence chooses and commits to

� m ≥ 1 (=the length of the PCP solution), and to

� the sequences a0, . . . , am and b0, . . . , bm and c0, . . . , cm and d0, . . . , dm, by
choosing the corresponding numbers αi and βi and γi and δi.



∃m (m ≥ 1) ∧ ∃α1, α2, β1, β2, γ1, γ2, δ1, δ2

Beta(α1, α2, 0, 0) ∧ Beta(β1, β2, 0, 1) ∧ Beta(γ1, γ2, 0, 0) ∧ Beta(δ1, δ2, 0, 1)∧

∀j [(j < m)⇒ ∃a, b, c, d, a′, b′, c′, d′ Follow(a, b, c, d, a′, b′, c′, d′)∧
Beta(α1, α2, j, a) ∧ Beta(α1, α2, j + 1, a′)∧
Beta(β1, β2, j, b) ∧ Beta(β1, β2, j + 1, b′)∧
Beta(γ1, γ2, j, c) ∧ Beta(γ1, γ2, j + 1, c′)∧
Beta(δ1, δ2, j, d) ∧ Beta(δ1, δ2, j + 1, d′)]∧

∃r Beta(α1, α2,m, r) ∧ Beta(γ1, γ2,m, r)

On the second line we check that a0 = 0 and b0 = 1 and c0 = 0 and d0 = 1.

This is the start condition (=the empty prefix of the index word.)



∃m (m ≥ 1) ∧ ∃α1, α2, β1, β2, γ1, γ2, δ1, δ2

Beta(α1, α2, 0, 0) ∧ Beta(β1, β2, 0, 1) ∧ Beta(γ1, γ2, 0, 0) ∧ Beta(δ1, δ2, 0, 1)∧

∀j [(j < m)⇒ ∃a, b, c, d, a′, b′, c′, d′ Follow(a, b, c, d, a′, b′, c′, d′)∧
Beta(α1, α2, j, a) ∧ Beta(α1, α2, j + 1, a′)∧
Beta(β1, β2, j, b) ∧ Beta(β1, β2, j + 1, b′)∧
Beta(γ1, γ2, j, c) ∧ Beta(γ1, γ2, j + 1, c′)∧
Beta(δ1, δ2, j, d) ∧ Beta(δ1, δ2, j + 1, d′)]∧

∃r Beta(α1, α2,m, r) ∧ Beta(γ1, γ2,m, r)

Next we check that for j = 0, 1, . . . ,m− 1 the condition

Follow(aj, bj, cj, dj, aj+1, bj+1, cj+1, dj+1)

holds. This condition means that the (j + 1)’st numbers in the sequences are
correctly calculated from the j’th numbers, corresponding to some next index
choice in the PCP solution sequence.



∃m (m ≥ 1) ∧ ∃α1, α2, β1, β2, γ1, γ2, δ1, δ2

Beta(α1, α2, 0, 0) ∧ Beta(β1, β2, 0, 1) ∧ Beta(γ1, γ2, 0, 0) ∧ Beta(δ1, δ2, 0, 1)∧

∀j [(j < m)⇒ ∃a, b, c, d, a′, b′, c′, d′ Follow(a, b, c, d, a′, b′, c′, d′)∧
Beta(α1, α2, j, a) ∧ Beta(α1, α2, j + 1, a′)∧
Beta(β1, β2, j, b) ∧ Beta(β1, β2, j + 1, b′)∧
Beta(γ1, γ2, j, c) ∧ Beta(γ1, γ2, j + 1, c′)∧
Beta(δ1, δ2, j, d) ∧ Beta(δ1, δ2, j + 1, d′)]∧

∃r Beta(α1, α2,m, r) ∧ Beta(γ1, γ2,m, r)

Finally, we check that am = cm. This is the condition to verify that the index
sequence we used is indeed a solution to the PCP instance.



∃m (m ≥ 1) ∧ ∃α1, α2, β1, β2, γ1, γ2, δ1, δ2

Beta(α1, α2, 0, 0) ∧ Beta(β1, β2, 0, 1) ∧ Beta(γ1, γ2, 0, 0) ∧ Beta(δ1, δ2, 0, 1)∧

∀j [(j < m)⇒ ∃a, b, c, d, a′, b′, c′, d′ Follow(a, b, c, d, a′, b′, c′, d′)∧
Beta(α1, α2, j, a) ∧ Beta(α1, α2, j + 1, a′)∧
Beta(β1, β2, j, b) ∧ Beta(β1, β2, j + 1, b′)∧
Beta(γ1, γ2, j, c) ∧ Beta(γ1, γ2, j + 1, c′)∧
Beta(δ1, δ2, j, d) ∧ Beta(δ1, δ2, j + 1, d′)]∧

∃r Beta(α1, α2,m, r) ∧ Beta(γ1, γ2,m, r)

Conclusion: The sentence is true if and only if the PCP instance has a
solution.

It follows that there does not exist an algorithm that can determine if a given
sentence is true. Indeed, using such an algorithm we could decide whether any
given PCP instance has a solution.



As an immediate corollary we see that the same problem is not even semi-
decidable:

Corollary There is no semi-algorithm to determine if a given first-order arith-
metic sentence is true.

Proof.



As an immediate corollary we see that the same problem is not even semi-
decidable:

Corollary There is no semi-algorithm to determine if a given first-order arith-
metic sentence is true.

Proof.

For any sentence φ either φ is true or ¬φ is true. If there is a semi-algorithm
to detect true sentences then we can execute this semi-algorithm on inputs φ
and ¬φ in parallel until we receive an answer. This provides an algorithm to
determine whether φ is true, contradicting the theorem we just proved.



Remark: Consider any sound axiomatization of true first order sentences on
natural numbers. This means a finite collection of (true) axioms and effective
inference rules that can be used to deduce new true sentences from other
known true sentences. Let us call a sentence provable in this axiomatization if
it can be deduced from the axioms. Every provable sentence is true (soundness).

The set of provable sentences is semi-decidable: a semi-algorithm to check
the provability of a given sentence φ guesses and verifies a deduction of φ from
the axioms.

Because the set of true sentences is not semi-decidable we see that the sets
of provable and true sentences cannot be the same set. There exists a true
sentence that is not provable in the axiomatization. The axiomatization is not
complete.



Remark: Consider any sound axiomatization of true first order sentences on
natural numbers. This means a finite collection of (true) axioms and effective
inference rules that can be used to deduce new true sentences from other
known true sentences. Let us call a sentence provable in this axiomatization if
it can be deduced from the axioms. Every provable sentence is true (soundness).

The set of provable sentences is semi-decidable: a semi-algorithm to check
the provability of a given sentence φ guesses and verifies a deduction of φ from
the axioms.

Because the set of true sentences is not semi-decidable we see that the sets
of provable and true sentences cannot be the same set. There exists a true
sentence that is not provable in the axiomatization. The axiomatization is not
complete.

This is Gödel’s first incompleteness theorem.



The previous remark can be generalized to any effective axiomatization. (For
example, the set of axioms does no need to be finite – it is ok to have a recursively
enumerable set of axioms.) In the full generality, an effective axiomatiza-
tion is a semi-algorithm to recognize some subset of true sentences.

Because the set of true sentences is not semi-decidable, no effective axiomatiza-
tion can capture all true sentences.



The previous remark can be generalized to any effective axiomatization. (For
example, the set of axioms does no need to be finite – it is ok to have a recursively
enumerable set of axioms.) In the full generality, an effective axiomatiza-
tion is a semi-algorithm to recognize some subset of true sentences.

Because the set of true sentences is not semi-decidable, no effective axiomatiza-
tion can capture all true sentences.

There exist some true sentences that we can never know for sure
to be true!

(This gets a bit philosophical, but I claim here that the set of sentences that we
can know to be true for sure must be a semi-decidable set: we must be able to
provide a convincing and mechanically step-by-step verifiable argument for the
fact that the sentence is true.)



A similar argument can be made for any non-semi-decidable problem:
they must have positive instances that we cannot prove to be positive instance.

So there exists

� a Turing machine that does not halt from the blank tape but we’ll never
know this non-haltingness for sure,

� a context-free grammar that is unambiguous but we’ll never know its un-
ambiguity for sure,

� a PCP instance without a solution but we can never be sure that it does not
have a solution,

� a Wang tile set that tiles the plane but we never know for sure it tiles the
plane.

� . . .



Remark: An important subfamily of first-order arithmetic formulas are dio-
phantine equations. These are polynomial equations with integer coeffi-
cients, and one is interested in finding integer solutions.

For example,
x3 + y3 = z3

is a diophantine equation with three variables. It has solutions in N (for example
x = y = z = 0) so the first-order sentence

∃x ∃y ∃z x3 + y3 = z3

is true.

On the other hand, the sentence

∃x x2 + 1 = 0

is clearly false in N.



In year 1900, D. Hilbert proposed a list of 23 open mathematical problems,
that greatly influenced the mathematical research in the 20’th century. The
10’th problem in the list asked to “device a process” (=algorithm, in modern
terms) to determine if a given diophantine equation has an integer solution.

(The problem is algorithmically equivalent if natural number solutions are re-
quired rather than integer solutions.)



In year 1900, D. Hilbert proposed a list of 23 open mathematical problems,
that greatly influenced the mathematical research in the 20’th century. The
10’th problem in the list asked to “device a process” (=algorithm, in modern
terms) to determine if a given diophantine equation has an integer solution.

(The problem is algorithmically equivalent if natural number solutions are re-
quired rather than integer solutions.)

In 1970, the problem was proved undecidable by Y. Matiyasevich. This
means that there is no algorithm to determine if a given first-order sentence

∃x∃y . . . P (x, y, . . . ) = Q(x, y, . . . )

over N is true. Here P and Q are given polynomials with natural number
coefficients (i.e., P and Q are terms formed using +, ·, variables and constants.)

This result is much stronger than the undecidability result we have proved here,
because the types of considered sentences are of very restricted form.



In year 1900, D. Hilbert proposed a list of 23 open mathematical problems,
that greatly influenced the mathematical research in the 20’th century. The
10’th problem in the list asked to “device a process” (=algorithm, in modern
terms) to determine if a given diophantine equation has an integer solution.

(The problem is algorithmically equivalent if natural number solutions are re-
quired rather than integer solutions.)

In 1970, the problem was proved undecidable by Y. Matiyasevich. This
means that there is no algorithm to determine if a given first-order sentence

∃x∃y . . . P (x, y, . . . ) = Q(x, y, . . . )

over N is true. Here P and Q are given polynomials with natural number
coefficients (i.e., P and Q are terms formed using +, ·, variables and constants.)

This result is much stronger than the undecidability result we have proved here,
because the types of considered sentences are of very restricted form.

Clearly having solutions is semi-decidable, so not having them is not semi-
decidable. As discussed above, there hence exists an equation that does not
have a solution in N but it is unprovable that it does not have a solution.



Computable functions and reducibility

Informally, we say that a (total) function

f : Σ∗ −→ ∆∗

is total computable (or total recursive) if there is an algorithm that
produces from any input w ∈ Σ∗ the output f (w) ∈ ∆∗.



Computable functions and reducibility

Informally, we say that a (total) function

f : Σ∗ −→ ∆∗

is total computable (or total recursive) if there is an algorithm that
produces from any input w ∈ Σ∗ the output f (w) ∈ ∆∗.

A partial function f : Σ∗ −→ ∆∗ is partial computable (or partial recur-
sive) if there is a semi-algorithm-like process that produces from input w ∈ Σ∗

the output f (w) ∈ ∆∗ if f (w) is defined, and returns no answer if f (w) is not
defined.

(We define these concepts later more rigorously using Turing machines.)



Typically algorithms are applied on objects that are not words. But the objects
can be encoded as words. Let us denote by ⟨x⟩ the encoding of an object x.
So ⟨x⟩ is a word over some alphabet Σ.

If X is the set of object we are encoding, it is reasonable to require that

� the encoding function is one-to-one onX so that different objects x1 ̸= x2
have different encodings ⟨x1⟩ ≠ ⟨x2⟩, and

� the set {⟨x⟩ | x ∈ X} of valid encodings is a recursive language. So
there is an algorithm to check if a given word is a valid encoding.



Typically algorithms are applied on objects that are not words. But the objects
can be encoded as words. Let us denote by ⟨x⟩ the encoding of an object x.
So ⟨x⟩ is a word over some alphabet Σ.

If X is the set of object we are encoding, it is reasonable to require that

� the encoding function is one-to-one onX so that different objects x1 ̸= x2
have different encodings ⟨x1⟩ ≠ ⟨x2⟩, and

� the set {⟨x⟩ | x ∈ X} of valid encodings is a recursive language. So
there is an algorithm to check if a given word is a valid encoding.

In algorithms that deal with objects in X one is not usually concerned about
the encoding function ⟨·⟩, but one expects some “reasonable” encoding. (Un-
reasonable encoding could, for example, include in the encoding an extra bit
that gives the answer to the decision problem we are interested to solve!)

All reasonable encodings can be effectively converted into each other, and then
the choice of the encoding is rather arbitrary from the computability point
of view. The fact that encodings ⟨·⟩1 and ⟨·⟩2 on the set X can be effectively
converted into each other means that there are total computable word functions
f and g that map

f : ⟨x⟩1 7→ ⟨x⟩2
g : ⟨x⟩2 7→ ⟨x⟩1

for all x ∈ X .



We now say that a function f : D −→ R between sets D and R of objects is
total computable (with respect to some encoding schemes forD andR) if the
corresponding word function between encodings of objects is total computable.
More precisely, the function that maps

⟨d⟩ 7→ ⟨f (d)⟩

for all d ∈ D should be total computable.



We now say that a function f : D −→ R between sets D and R of objects is
total computable (with respect to some encoding schemes forD andR) if the
corresponding word function between encodings of objects is total computable.
More precisely, the function that maps

⟨d⟩ 7→ ⟨f (d)⟩

for all d ∈ D should be total computable.

Similarly, we say that a partial function f : D −→ R is partial computable
if there is a partial computable word function that

� maps ⟨d⟩ 7→ ⟨f (d)⟩ for all d ∈ D such that f (d) is defined,

� is undefined on ⟨d⟩ for all d ∈ D such that f (d) is undefined.



Example. For D = R = N we may choose to use the unary encoding

⟨n⟩ = an

in the single letter alphabet {a}.

With this encoding, a function f : N −→ N is total computable iff the function

an 7→ af(n)

is a total computable word function a∗ −→ a∗.



Example. For D = R = N we may choose to use the unary encoding

⟨n⟩ = an

in the single letter alphabet {a}.

With this encoding, a function f : N −→ N is total computable iff the function

an 7→ af(n)

is a total computable word function a∗ −→ a∗.

If we decided to use instead the usual binary encoding bin(n) of numbers in the
binary alphabet {0, 1} then exactly the same functions f : N −→ N would be
computable because there are total computable conversions

bin(n)←→ an

between the unary and binary encodings.



Example. The Busy beaver function

BB : N −→ N

we have seen in the home exercises is not total computable (using any reasonable
encoding of numbers).

In fact, for any total computable function f : N −→ N there exists n ∈ N such
that BB(n) > f (n).



Let us now define formally the concepts of total and partial computable (word)
functions.

Let M = (Q,Σ ∪ ∆,Γ, δ, q0, B, qF ) be a Turing machine, with the final state
qF . We define the halting ID ζw corresponding to word w ∈ ∆∗ analogously to
the initial ID ιw:

ζw =

{
qFw, if w ̸= ε,
qFB, if w = ε.

The partial function fM : Σ∗ −→ ∆∗ computed by M is

fM(w) =

{
u, if ιw ⊢∗ ζu and u ∈ ∆∗ ,
undefined, otherwise.

In other words, we require the Turing machine to halt in the state qF , reading
the first letter of the output word fM(w). In all other cases (if M does not halt
or halts in a different ID) the value fM(w) is undefined.

A function f is a partial computable function if there exists a Turing
machine M such that f = fM . If, moreover, f is defined for all w ∈ Σ∗ then f
is a total computable function.



Normally we use informal descriptions of computable functions, but let us do
one example in detail using a Turing machine.

Example. Let us prove that the function f : N× N −→ N that maps

(n,m) 7→ n +m

is total computable when we use the encodings ⟨n,m⟩ = an#am and ⟨k⟩ = ak

for all n,m, k ∈ N.



Normally we use informal descriptions of computable functions, but let us do
one example in detail using a Turing machine.

Example. Let us prove that the function f : N× N −→ N that maps

(n,m) 7→ n +m

is total computable when we use the encodings ⟨n,m⟩ = an#am and ⟨k⟩ = ak

for all n,m, k ∈ N.

It is enough to construct a Turing machine that maps

an#am 7→ an+m for all n,m ≥ 0
w 7→ ε for all w ̸∈ a∗#a∗



an#am 7→ an+m for all n,m ≥ 0
w 7→ ε for all w ̸∈ a∗#a∗

A possible TM is described by the diagram

a/a (R)

#/# (R)

a/a (R)

B/B (L) a/B (L)

a/a (L)

#/# (R)

B/B (L)

#/B (L)
#/a (L)

a/a (L)

B/B (R)
B/B (R)

a/a (R)
#/# (R)

a/B (L)
#/B (L)

B/B (L)

whose vertices are the states, and for each transition δ(q, a) = (p, b,D) there
is an edge in the diagram from vertex q into vertex p labeled by a/b (D). The
initial state q0 is indicated by a single incoming arrow and the final state qF is
the one with a double circle.



an#am 7→ an+m for all n,m ≥ 0
w 7→ ε for all w ̸∈ a∗#a∗

A possible TM is described by the diagram

a/a (R)

#/# (R)

a/a (R)

B/B (L) a/B (L)

a/a (L)

#/# (R)

B/B (L)

#/B (L)
#/a (L)

a/a (L)

B/B (R)
B/B (R)

a/a (R)
#/# (R)

a/B (L)
#/B (L)

B/B (L)

The machine first scans the input from left-to-right to check that the input
belongs to a∗#a∗. (If not, the machine erases the input and halts.) It then
returns to the beginning, replacing the symbol # by the last a of the input.



an#am 7→ an+m for all n,m ≥ 0
w 7→ ε for all w ̸∈ a∗#a∗

We can simplify the construction by ignoring what happens on words that are
no valid encodings.

Since the set of valid encodings of D = N × N is a recursive language a∗#a∗,
it is actually enough to build a Turing machine M that correctly operates on
words that belong to a∗#a∗. It is irrelevant what happens on inputs that are
not valid encodings.

We can namely the build a TM that first check whether the input w is a valid
encoding. If it is not, one returns an arbitrary output (say ε). If w a valid
encoding, one starts M on w.



Remark. A language L ⊆ Σ∗ is recursive if and only if its characteristic
function χL : Σ∗ −→ {0, 1}∗ defined by

χL(w) =

{
1, if w ∈ L,
0, if w ̸∈ L

is total computable.

Analogously, a language L ⊆ Σ∗ is recursively enumerable iff the partial function
χ′L : Σ∗ −→ {0, 1}∗ defined by

χ′L(w) =

{
1, if w ∈ L,
undefined, if w ̸∈ L

is partial computable.



Turing machines are great, but rather cumbersome to construct (to say the
least).

As any informally described algorithm can be implemented as a Turing machine,
in the following we describe total and partial computable functions as informal
algorithms.

Example. Some time ago we saw an effective construction that builds for
any given TM M and input word w a new TM M ′ with the property that
L(M ′) = {a, b}∗ if w ∈ L(M), and L(M ′) = ∅ if w ̸∈ L(M).

This means that there is a corresponding total computable word function that
maps

⟨M⟩#w 7→ ⟨M ′⟩

We did not explicitly construct a Turing machine that computes this word
function, but we know that it exists.



Let L ⊆ Σ∗ and K ⊆ ∆∗ be two languages. A total computable function

f : Σ∗ −→ ∆∗

is a many-one reduction of L to K if for all w ∈ Σ∗

w ∈ L ⇐⇒ f (w) ∈ K.

If a reduction exists from L to K, we denote L ≤m K and say that L is
many-one reducible (or mapping reducible) to K.

L
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f
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Theorem. Let L ⊆ Σ∗ and K ⊆ ∆∗ be languages such that L ≤m K. Then
also Σ∗ \ L ≤m ∆∗ \K. Moreover,

� if K is recursive then L is recursive,

� if K is recursively enumerable then L is recursively enumerable,

� if ∆∗ \K is recursively enumerable then Σ∗ \ L is recursively enumerable.

Proof.



More informally, we say that a decision problem A is many-one reducible to a
decision problem B if there is an effective conversion that takes instances of A
into equivalent instances of B. (Equivalent=both positive or both negative)

We then denote A ≤m B.

It follows that if A is known to be undecidable (or non-semi-decidable) then B
is undecidable (or non-semi-decidable) as well.

Our undecidability proofs have been (mostly) of this type.



More informally, we say that a decision problem A is many-one reducible to a
decision problem B if there is an effective conversion that takes instances of A
into equivalent instances of B. (Equivalent=both positive or both negative)

We then denote A ≤m B.

It follows that if A is known to be undecidable (or non-semi-decidable) then B
is undecidable (or non-semi-decidable) as well.

Our undecidability proofs have been (mostly) of this type.

Example. There is a many-one reduction from Lu = {⟨M⟩#w | w ∈ L(M)}
to K = {⟨M⟩ | L(M) ̸= ∅}. Because the complement of Lu is not r.e., we
concluded that the complement of K is not r.e. either.



Transitivity of ≤m is obvious:

Lemma. If L1 ≤m L2 and L2 ≤m L3 then L1 ≤m L3.

Proof. Let f1 be a many-one reduction of L1 to L2. Let f2 be a many-one
reduction of L2 to L3. Then the composition w 7→ f2(f1(w)) is a reduction of
L1 to L3.



An r.e language K is r.e.-complete if for every r.e. language L we have
L ≤m K. In other words, K is an r.e. language such that all r.e. languages
can be many-one reduced to K.

A decision problem is r.e.-complete if the language of (encodings of) its positive
instances is r.e.-complete.

Theorem. The language Lu = {⟨M⟩#w | w ∈ L(M)} is r.e.-complete.

Proof.



Once a language L is known to be r.e.-complete, many-one reductions can be
used to find other r.e.-complete languages:

Theorem. Let L be an r.e.-complete language. If K is an r.e. language such
that L ≤m K then also K is r.e.-complete

Proof.



Once a language L is known to be r.e.-complete, many-one reductions can be
used to find other r.e.-complete languages:

Theorem. Let L be an r.e.-complete language. If K is an r.e. language such
that L ≤m K then also K is r.e.-complete

Proof. Let M be an arbitrary r.e. language. Then M ≤m L, and so by
transitivity of ≤m we have M ≤m K.



This means that all semi-decidable decision problems that we proved undecid-
able using a many-one reduction from Lu are r.e.-complete. So, for example, all
the following decision problems are r.e-complete:

� “Does a given TM halt when started on the blank initial tape ?”

� “Does a given PCP instance have a solution ?”

� “Is L1 ∩ L2 ̸= ∅ for given CFLs L1 and L2 ?”

� “Is a given CFG G ambiguous ?”

� “Is L ̸= Σ∗ for a given CFL L ?”

� “Does a given Wang tile set not admit a valid tiling that contains a given
seed tile ?”



If (not necessarily r.e.) language K has the property that L ≤m K for all r.e.
languages L then we say that K is r.e.-hard.

Hence

L is r.e.-complete ⇐⇒ L is r.e.-hard and L is r.e.



If (not necessarily r.e.) language K has the property that L ≤m K for all r.e.
languages L then we say that K is r.e.-hard.

Hence

L is r.e.-complete ⇐⇒ L is r.e.-hard and L is r.e.

Clearly a language is r.e.-hard if some r.e.-complete language K can be many-
one reduced into it. Analogous terminology is used on decision problems.

� The proof of the Rice’s theorem shows that all non-trivial questions (or their
complements) about r.e. languages are r.e.-hard.

� We have also shown the r.e.-hardness of determining whether a given first-
order sentence over N is true.



Remark. Many-one reducibility is only one type of reducibility that can be
used to show that a language is not r.e.

A language L is said to be Turing reducible to a language K if there is
an algorithm for the membership problem of L that may use as a subroutine
a hypothetical algorithm (=oracle) that solves the membership problem of K.
The oracle may be invoked several times and the input to the oracle may depend
on the answers the oracle has provided on previous queries. We denote this

L ≤T K



Remark. Many-one reducibility is only one type of reducibility that can be
used to show that a language is not r.e.

A language L is said to be Turing reducible to a language K if there is
an algorithm for the membership problem of L that may use as a subroutine
a hypothetical algorithm (=oracle) that solves the membership problem of K.
The oracle may be invoked several times and the input to the oracle may depend
on the answers the oracle has provided on previous queries. We denote this

L ≤T K

Many-one reductions are special types of Turing reductions where the oracle is
invoked only once, and this happens at the end of the algorithm and the answer
from the oracle is directly relayed as the final answer of the algorithm.

Still, if L ≤T K and K is known to be recursive (or r.e) then L has to be
recursive (or r.e., respectively) as well. So the more powerful Turing reductions
can also be used to prove undecidability results.



Remark. The name many-one reduction comes from the fact that the
reduction f : Σ∗ −→ ∆∗ is not required to be injective.

L

S*

K

D*

f

f

A weaker type of reductions called one-one reduction requires f to be in-
jective.



Tag systems

An example of an alternative computation model to Turing machines.

A tag system is a triple T = (Σ, k, g) where

� Σ is a finite alphabet,

� k ≥ 1 is the deletion number and

� g : Σ −→ Σ∗ is a function assigning a word to each letter in Σ.

A tag-system with deletion number k is called a k-tag system.



Tag systems

An example of an alternative computation model to Turing machines.

A tag system is a triple T = (Σ, k, g) where

� Σ is a finite alphabet,

� k ≥ 1 is the deletion number and

� g : Σ −→ Σ∗ is a function assigning a word to each letter in Σ.

A tag-system with deletion number k is called a k-tag system.

A k-tag system is a deterministic rewrite system. Any word u ∈ Σ∗

whose length is at least k gets rewritten as follows: Write u = avw where
a ∈ Σ and |av| = k. Then

u⇒ wg(a)

(In other words, the first k letters of u are erased and the word g(a) is appended
to the end where a is the first letter of u.)

The rewriting terminates if a word is reached whose length is less than k.



Example. The 3-tag system ({0, 1}, 3, g) where g(0) = 00 and g(1) = 1101
was studied (and found intractable) by E.Post. For example, starting from the
word 10010 we obtain the computation

1 0 0 1 0
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was studied (and found intractable) by E.Post. For example, starting from the
word 10010 we obtain the computation

1 0 0 1 0
1 0 1 1 0 1

1 0 1 1 1 0 1
1 1 0 1 1 1 0 1



Example. The 3-tag system ({0, 1}, 3, g) where g(0) = 00 and g(1) = 1101
was studied (and found intractable) by E.Post. For example, starting from the
word 10010 we obtain the computation

1 0 0 1 0
1 0 1 1 0 1

1 0 1 1 1 0 1
1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0 1



Example. The 3-tag system ({0, 1}, 3, g) where g(0) = 00 and g(1) = 1101
was studied (and found intractable) by E.Post. For example, starting from the
word 10010 we obtain the computation

1 0 0 1 0
1 0 1 1 0 1

1 0 1 1 1 0 1
1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0 1
0 1 1 1 0 1 1 1 0 1



Example. The 3-tag system ({0, 1}, 3, g) where g(0) = 00 and g(1) = 1101
was studied (and found intractable) by E.Post. For example, starting from the
word 10010 we obtain the computation

1 0 0 1 0
1 0 1 1 0 1

1 0 1 1 1 0 1
1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0 1
0 1 1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 0 0



10010⇒
101101⇒

1011101⇒
11011101⇒

111011101⇒
0111011101⇒

101110100⇒
1101001101⇒

10011011101⇒
110111011101⇒

1110111011101⇒
01110111011101⇒

1011101110100⇒
11011101001101⇒

111010011011101⇒
0100110111011101⇒

011011101110100⇒
01110111010000⇒

1011101000000⇒
11010000001101⇒

100000011011101⇒
0000110111011101⇒

011011101110100

The computation enters a loop, and thus never halts.



10010⇒
101101⇒

1011101⇒
11011101⇒

111011101⇒
0111011101⇒

101110100⇒
1101001101⇒

10011011101⇒
110111011101⇒

1110111011101⇒
01110111011101⇒

1011101110100⇒
11011101001101⇒

111010011011101⇒
0100110111011101⇒

011011101110100⇒
01110111010000⇒

1011101000000⇒
11010000001101⇒

100000011011101⇒
0000110111011101⇒

011011101110100

The computation enters a loop, and thus never halts.

On the other hand, from the initial word 100100100000 one reaches in 419 steps
the halting word 00.



Example. Consider the 2-tag system T = ({a, b, c}, 2, g) with g that maps

a 7→ bc
b 7→ a
c 7→ aaa

If we represent a number n as the word an then the system simulates the famous
Collatz-function

f (n) =

{
n/2, if n is even,
3n + 1, if n is odd.

It is indeed easy to verify that

an ⇒n an/2 if n > 1 is even
an ⇒n+1 a(3n+1)/2 if n > 1 is odd

Hence the word an eventually halts if and only if iterating f from n eventually
leads to number 1.



Let T be a tag-system. The language L(T ) defined by T is the set of words
that eventually halt (i.e., evolve into a word of length less than k). Clearly
L(T ) is recursively enumerable. But it can be non-recursive:

Theorem. There exists a 2-tag system T such that the language L(T ) is
r.e.-complete.

Proof. Skipped



Remark. Another natural decision problem associated to a tag-system is the
word problem, asking whether a given word x derives another given word y.
As the halting problem, also the word problem is semi-decidable.

Moreover, the halting problem of any tag-system can be Turing reduced to
its word problem: Solving the word problem with all target words y that are
shorter than k will tell whether the source word eventually halts. So also the
word problem must be undecidable.



Remark. Our sample 3-tag ({0, 1}, 3, g) with g(0) = 00 and g(1) = 1101 is
still a mystery. It is not known whether its word problem is decidable or not. It
is not even known whether there exists any word that neither eventually halts
nor enters a cycle.

(If one of these always happens then the word problem and the halting problem
are both decidable.)


