Symbolic dynamics: Homework 1 (27.1.2025)

1. Let $X = \{0, 1, 2, ...\}$, and let $\mathcal{T} = \{\emptyset\} \cup \{U_0, U_1, U_2, ...\}$ where for every *i*

$$U_i = \{i, i+1, i+2, \ldots\}.$$

- (a) Show that \mathcal{T} is a topology of X.
- (b) Is \mathcal{T} compact ? Is \mathcal{T} metric ?
- (c) Which subsets of X are compact ?
- (d) Determine which sequences of elements of X converge to 0, and determine also which sequences converge to 1.
- 2. Let X be a set with a topology \mathcal{T} . Prove the following three properties of closed sets (i.e., complements of open sets). Note that these properties are the duals of the three axioms of open sets.
 - (a) The empty set \emptyset is closed, and X is closed,
 - (b) the intersection of any number of closed sets is closed, and
 - (c) the union of a finite number of closed sets is closed.
- 3. Prove the following properties of the topological closure A of $A \subseteq X$.
 - (a) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$,
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$,
 - (c) $\overline{\overline{A}} = \overline{A}$.
- 4. Let \mathcal{T} be a topology on X, and let $A \subseteq X$ be a non-empty subset. The induced topology on A is defined as $\{A \cap U \mid U \in \mathcal{T}\}$.
 - (a) Prove that the induced topology is a topology on A.
 - (b) Prove that the closed sets of the induced topology are exactly the sets sets $A \cap F$ where $F \subseteq X$ is closed under \mathcal{T} .
 - (c) The closure of $S \subseteq A$ under the induced topology is $\overline{S} \cap A$ where \overline{S} is the closure of S under \mathcal{T} .
 - (d) $B \subset A$ is compact under induced topology if and only $B \subset A$ is compact under \mathcal{T} .
- 5. (a) Prove that in a metric space X, every compact $A \subseteq X$ is closed and bounded. (Bounded means that A is contained in some ε -ball.)
 - (b) Prove that the converse is not true: there is a metric space where a closed and bounded set is not necessarily compact.
- 6. Prove that an open subset of a Baire space is also a Baire space (under the induced topology).
- 7. Let X be a compact space, and suppose the topology has a base all of whose members are clopen (closed and open). Prove that a set is clopen if and only if it is a finite union of base sets.