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1 Preliminaries

1.1 Introduction

Discrete-time topological dynamics studies iterates of continuous maps f : X −→ X on
compact metric spaces X. If X is partitioned into a finite number of parts, one obtains
information about trajectories of points x ∈ X from the infinite sequences that record at all
times t the part that contains f t(x):

bbccde...
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b

c d

ex

f(x)

Depending on f , some finite sequences of parts may not occur in a trajectory of any point.
For example, if no point in set a is mapped by f to such a point in c which is mapped into
d then the word acd does not occur in any trajectory. This approach leads to the study
of infinite words – i.e., infinite sequences of symbols from a finite alphabet – obtained by
forbidding some finite subwords. Sets of infinite words obtained by forbidding some finite
subwords are called subshifts, and they are a central object of study in the field of symbolic
dynamics.

If one studies trajectories from initial points, that is, considers time steps t = 0, 1, 2, . . . ,
then one obtains words that are one-way infinite and the corresponding subshifts are called
one-sided. If f is bijective, i.e. a homeomorphism, one may as well consider bi-infinite
trajectories

. . . f−2(x), f−1(x), x, f(x), f 2(x) . . . ,

which leads to bi-infinite words and two-sided subshifts.
More generally, we may consider dynamical systems with several transformations f1, . . . , fn

that can be applied in arbitrary order. The setup is formalized by viewing the system as a
continuous group or semigroup action.

Depending on the complexity of the set of forbidden subwords, one obtains various fami-
lies of subshifts. A subshift determined by forbidding a finite set of words is called subshift
of finite type, or SFT. A sofic subshift is obtained by forbidding a regular language, that
is, words recognized by a finite automaton. If we only assume there is an algorithm that
lists the forbidden words, the subshift determined by these words is an effective subshift.

The course is structured as follows: We start with a short review of the properties of
compact metric spaces as they play a crucial role in the field. We introduce the shift space,
the compact metric space of infinite words. We then continue to basic questions in discrete-
time topological dynamics, including concepts related to chaos: sensitivity of the system to
initial conditions and mixing properties. These are introduced in the setting of arbitrary

1



continuous (semi-)group actions. After these (rather lengthy) preliminaries we finally are
able to move on to symbolic dynamics and various types of subshifts.

A few words about our notations: The natural numbers N = {0, 1, 2, . . . } contain 0. For
sets A and B, we denote by BA the set of functions A −→ B. Composition of functions is
from right-to-left so (g ◦ f)(x) = g(f(x)). For any function f : A −→ B, not necessarily
injective, and for any S ⊆ A and T ⊆ B, we denote f−1(T ) = {a ∈ A | f(a) ∈ T} and
f(S) = {f(s) | s ∈ S} for the pre-image and the image sets of T and S under f , respectively.
The restriction of f to S ⊆ A is denoted by f|S. For any set A, we denote by idA the identity
function A −→ A.

Recall also the following algebraic concepts. A semigroup is a set A with an associative
binary operation ⋆, i.e., (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) for all a, b, c ∈ A. A semigroup A is a monoid
if it also has an identity element e that satisfies a ⋆ e = a and e ⋆ a = a for all a ∈ A. A
group is a monoid A where every element a ∈ A has an inverse element a−1 ∈ A such that
a ⋆ a−1 = a−1 ⋆ a = e, the unique identity element of A.

1.2 A short review of compact metric spaces

Open and closed sets

A metric space is a pair (X, d) where X is a set and d : X × X −→ R is a metric, a
function that measures distances between elements of X. The metric d has to satisfy the
following axioms: for all x, y, z ∈ X

(a) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y; (positivity),

(b) d(x, y) = d(y, x); (symmetry) and

(c) d(x, y) ≤ d(x, z) + d(z, y); (the triangle inequality).

For every ε > 0 and x ∈ X we denote

Bε(x) = {y ∈ X | d(x, y) < ε}

and call Bε(x) the (open) ε-ball with center x. Let us call a set U ⊆ X open iff

∀x ∈ U, ∃ε > 0 : Bε(x) ⊆ U.

A set is closed if its complement is open, and a set is clopen if it is both open and closed.

Proposition 1.1 Let (X, d) be a metric space. Then

(i) ∅ and X are open,

(ii) arbitrary unions of open sets are open, and

(iii) intersections of finitely many open sets are open.
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Proof. Property (i) is trivial. To see (ii), let V be an arbitrary family of open sets, and let

U =
⋃︂
V ∈V

V

be the union of sets V in V . To prove that U is open, consider an arbitrary x ∈ U . We have
that x ∈ V for some V ∈ V . As V is open there exists ε > 0 such that Bε(x) ⊆ V . But
V ⊆ U so that also Bε(x) ⊆ U .

To prove (iii) consider a set U = V1∩ · · · ∩Vn where Vi are open. Let x ∈ U be arbitrary.
For all i ∈ {1, . . . , n} we have x ∈ Vi, and because Vi is open there is εi > 0 such that
Bεi(x) ⊆ Vi. Taking ε = min{ε1, . . . , εn} we have that ε > 0 and Bε(x) ⊆ Bεi(x) ⊆ Vi for
all i. Thus Bε(x) ⊆ U , proving that U is open. □

Corollary 1.2 A set is open if and only if it is a union of open balls.

Proof. Let us first show that every open set is a union of open balls: Let U be open. For
every x ∈ U there exists an open ball Vx ⊆ U that contains x. Then U is the union of open
balls Vx over all x ∈ U .

For the converse direction it is enough to show that open balls are open, so that by
property (ii) of Proposition 1.1 also arbitrary unions of open balls are open: let U = Bε(x)
be an open ball, and let y ∈ U be arbitrary. Denote ε′ = ε− d(x, y) > 0. If z ∈ Bε′(y) then
d(z, x) ≤ d(z, y) + d(y, x) < ε′ + d(x, y) = ε, so that z ∈ U . So Bε′(y) ⊆ U , proving that U
is open. □

Example 1.3. Let X = R be the set of real numbers and define d(x, y) = |x− y|. Then d is
a metric on R, the usual metric of real numbers. Open balls are precisely the open intervals
(a, b) for a < b, and thus open sets are unions on open intervals. Closed intervals [a, b] are
examples of closed sets. Set Q of rational numbers is neither open nor closed because every
open interval contains both rational and irrational numbers. The only clopen sets are ∅
and R. (To see this, note that if A ⊆ R and a < b are such that a ∈ A and b ̸∈ A then
c = sup{x | x ∈ A, x < b} is such that that for every ε > 0 the set Bε(c) contains both
elements of A and elements of the complement of A. Thus either A or its complement is not
open.) □

A pair (X, T ) where X is a set and T is a family of subsets of X is a topological space,
and T is called a topology on X, if it satisfies the following three axioms:

(i) ∅ ∈ T and X ∈ T ,

(ii) the union of any number of sets in T is in T , and

(iii) the intersection of finitely many elements of T is always in T .
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By Proposition 1.1 the family of open sets of a metric space (X, d) forms a topology on X.
It is called a metric topology. There are also topologies that are not metrizable, i.e., not
defined by any metric.

Example 1.4. For any X, let T contain all subsets of X. Then T is a topology, the
discrete topology of X. The discrete topology is metrizable as it is defined by the discrete
metric d(x, y) = 1 for x ̸= y and d(x, y) = 0 for x = y. This metric satisfies the triangular
inequality even in a stronger form

d(x, y) ≤ max{d(x, z), d(z, y)}.

Under this metric all singleton sets {x} are open balls.

Also {X, ∅} is a topology, the trivial topology of X. If X contains at least two points
then the trivial topology is not defined by any metric: for x ̸= y, under any metric d, we
have y ̸∈ Bε(x) for ε = d(x, y), and thus Bε(x) is an open set containing x but not containing
y. □

The concept of a topological space emerges as a generalization of a metric space, and
it turns out that in many proofs one only needs the axioms (i), (ii) and (iii) of open sets
rather than the full power of axioms (a), (b) and (c) of metric spaces. Consistently with
this, sets in a topology T are called open, and their complements are called closed. In
topological and symbolic dynamics we mostly consider metrizable spaces, so in the following
we focus on properties of metric spaces although several results will be proved for more
general topological spaces.

Let (X, d) be a metric space and let A ⊆ X. The restriction of d on A × A is a metric
on A, the induced metric. Open sets under the induced metric are then precisely the
intersections of A and the open sets of X under the original metric d. More generally then,
for any topological space (X, T ) and for any A ⊆ X we define the induced topology on A
to be the family {A∩U | U ∈ T } of the intersections of A and the open sets in the original
topology T . In case of a metric space, the induced topology is then the topology defined
by the induced metric. By default, we assume the induced metric and the induced topology
whenever considering a subset of a metric space or a topological space.

Example 1.5. The usual metric of R induces on N a metric that defines the discrete
topology. It is not the discrete metric of Example 1.4 but defines the same open sets. □

Note that the concept of a closed set is dual with the concept of an open set. The
following properties easily follow using de Morgan’s laws.

Proposition 1.6 Let (X, T ) be a topological space.

(i) The empty set ∅ is closed, and X is closed,

(ii) the intersection of any number of closed sets is closed, and

(iii) the union of a finite number of closed sets is closed.
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A point x ∈ X is called isolated if {x} is open. In the case of a metric space this means
that there exists ε > 0 such that there are no other elements of X within distance ε from x.
A topological space is perfect if it has no isolated points.

Example 1.7. The usual topology of R is perfect because every open ball contains infinitely
many points. The discrete topology is far from perfect because every point is isolated. □

Let A ⊆ X. The closure A of A is the intersection of all closed sets that contain A. It is
then the smallest closed set that contains A. That is: A is closed, and if A ⊆ F for a closed
set F then also A ⊆ F . Notice that A itself is closed if and only if A = A. Set A is called
dense in X if A = X.

Example 1.8. Consider the usual topology of R. The closure of Q is R, so Q is dense in
R. The closure of the open interval (0, 1) is the closed interval [0, 1], while the set Z is its
own closure; indeed, Z is a closed set. □

Dual to the closure is the interior A◦ of A ⊆ X. It is the union of all open subsets of
A. It is the greatest open subset of A. That is: A◦ is open, and for any open U ⊆ A holds
that U ⊆ A◦. A set A is open if and only if A◦ = A. We call a set A a neighborhood of
point x if x ∈ A◦, that is, if there exists an open set U such that x ∈ U ⊆ A.

Convergence of sequences

A topological space is a Hausdorff space if for every x ̸= y there are open Ux and Uy

such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅. In other words, any two distinct points have
non-intersecting neighborhoods.

Example 1.9. Every metric topology is Hausdorff. Indeed, if x ̸= y then d(x, y) > 0. If
we choose ε = 1

2
d(x, y) then Bε(x) and Bε(y) are non-intersecting neighborhoods of x and

y. The trivial topology {∅, X} is not Hausdorff when |X| ≥ 2. □

A sequence x1, x2, . . . of points of X converges to point x ∈ X if for every open U ⊆ X
that contains x there is positive integer n such that xi ∈ U for all i ≥ n. In the metric
setting this is equivalent to saying that for every ε > 0 there is n such that d(xi, x) < ε for
all i ≥ n.

Note that in general topological spaces a converging sequence may converge to several
different points, but if the topology is Hausdorff (e.g. metric) the limit is unique.

Proposition 1.10 In Hausdorff topology every converging sequence converges to a unique
point.

Proof. Suppose x1, x2, . . . converges to x and y where x ̸= y. Since X is Hausdorff, there are
open sets U and V such that x ∈ U , y ∈ V and U ∩V = ∅. By the definition of convergence,
xi ∈ U and xi ∈ V for all sufficiently large i, a contradiction. □
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Note: the proposition does not hold in all topological spaces – the Hausdorff assumption
is needed. For example, in the trivial topology T = {∅, X} every sequence converges to
every point. In a Hausdorff topology we denote by limi→∞ xi the unique point into which
the sequence x1, x2, . . . converges, if it exists. This point is the limit of the sequence.

Another useful property of Hausdorff spaces is that single element sets {x} are closed.
Indeed, for every y ̸= x there exists an open set Uy such that x ̸∈ Uy so that the complement
of {x} is open as the union of open sets Uy over all y ̸= x.

Base of a topology

A family B of open sets is called a base (or a basis) of a topology iff every open set is the
union of some members of B.
Example 1.11. In any metric space (X, d), by Corollary 1.2, open sets are precisely unions
of open balls. Thus the family {Bε(x) | x ∈ X, ε > 0} of all open balls is a base. □

The following proposition gives a simple condition to check if a family B is a base.

Proposition 1.12 Let (X, T ) be a topological space. A family B ⊆ T of open sets is a base
of T if and only if for every open set U and every x ∈ U there exists some B ∈ B such that
x ∈ B ⊆ U .

Proof. If B is a base then any open set U is a union of sets in B and thus for any x ∈ U
there is B ∈ B such that x ∈ B ⊆ U .

Conversely, let B be a family of open sets with the property that for every open U and
x ∈ U there exists B ∈ B such that x ∈ B ⊆ U . Unions of sets in B are clearly open as
unions of open sets. To prove that B is a base of T consider an arbitrary open set U . For
every x ∈ U there is some Bx ∈ B such that x ∈ Bx ⊆ U , and then clearly U is the union of
sets Bx over all x ∈ U . □

Compactness

Next we define compactness, a central concept in these lectures. Let A ⊆ X where X is a
topological space. A family U of open sets is called an open cover of A if every element of
A belongs to some V ∈ U , that is, if

A ⊆
⋃︂
V ∈U

V.

A subfamily U ′ ⊆ U of an open cover U of A is called a subcover if it is also a cover of A.
Set A ⊆ X is called compact if every open cover of A has a finite subcover of A. The

topology is called compact if the whole space X is compact. In other words, a topology is
compact iff every family of open sets whose union is X has a finite subfamily whose union
is X.
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Example 1.13. In the usual topology of R the set

A = {0} ∪ { 1
n
| n ∈ Z+}

is compact. Namely, an open set that contains 0 covers all but finitely many elements of A.
So any open cover of A contains a finite subcover: Open set U that covers 0 together with a
finite number of open sets that cover the finitely many elements of A that are outside of U .

On the other hand, set B = { 1
n
| n ∈ Z+} is not compact. It has an open cover in which

every open set covers exactly one element of B. Such cover has no finite subcover. □

The following proposition states the finite intersection property. It is dual to the open
cover property we used as the definition. We state the property for the whole space X:

Proposition 1.14 Topology of X is compact if and only if every family of closed sets whose
intersection is empty has a finite subfamily whose intersection is empty.

Proof. This follows directly from the definition of compactness and de Morgan’s laws: A
family of open sets is a cover of X if and only if the family of their complements has empty
intersection. □

We typically apply the previous proposition in the following set-up:

Corollary 1.15 Let F1 ⊇ F2 ⊇ F3 ⊇ . . . be an infinite chain of closed sets in a compact
space X. If

∞⋂︂
i=1

Fi = ∅,

then Fi = ∅ for some i. □

The next proposition states that in compact metric spaces sequences of points can not
“escape to infinity”. In fact, this property characterizes compactness of a metric space, but
we only need the implication in one direction. Recall that a subsequence of x1, x2, . . .
is another sequence xi1 , xi2 , . . . where i1 < i2 < . . . . A subsequence is hence obtained by
picking infinitely many elements of the sequence, preserving their relative order.

Proposition 1.16 Let X be a compact metric space. Every sequence has a converging
subsequence.

Proof. Let x1, x2, . . . be arbitrary sequence, xi ∈ X.
Suppose first that for every x ∈ X there is some εx > 0 such that xk ∈ Bεx(x) only

for finitely many indices k. Clearly the family of Bεx(x) over all x ∈ X is an open cover
of X, so by compactness it has a finite subcover. So there is a finite set A ⊆ X such that

7



{Bεx(x) | x ∈ A} covers X. But this contradicts the fact that for large enough indices k the
elements xk are not in Bεx(x) for any x ∈ A.

Thus we see that there must exist x ∈ X such that for every ε > 0 one has xi ∈ Bε(x) for
infinitely many indices i. But then the sequence x1, x2, . . . has a subsequence that converges
to x: There namely is a subsequence whose n’th element belongs to B 1

n
(x). □

Next we show that in compact metric spaces compact sets are exactly the closed sets.

Proposition 1.17 If X is a compact topological space then every closed A ⊆ X is compact.

Proof. Let A ⊆ X be closed. Consider an open cover of A. Together with the complement
of A it forms an open cover of X. By compactness of X this has a finite subcover of X,
from which we obtain a finite subcover of A by removing the complement of A (if present).
Hence A is compact. □

Proposition 1.18 If X is Hausdorff then every compact A ⊆ X is closed.

Proof. Let A ⊆ X be compact. Let x ∈ X \ A. By the Hausdorff property, for every a ∈ A
there are open sets Ua and Va such that a ∈ Ua, x ∈ Va and Ua ∩ Va = ∅. Sets Ua form an
open cover of A so by compactness of A there is a finite subcover Ua1 , . . . , Uam of A. But
then the intersection

Vx = Va1 ∩ · · · ∩ Vam

of the corresponding sets Vai is an open set satisfying x ∈ Vx and Vx ∩ A = ∅. The union of
sets Vx over all x ∈ X \A is the complement of A. Since the union is open, we see that A is
closed. □

Corollary 1.19 Let X be a compact metric space. Then A ⊆ X is compact if and only if
it is closed. □

Countability

A topological space is separable if it has a countable dense subset, and it is second count-
able if it has a countable base. Compact metric spaces are separable and second countable.

Proposition 1.20 A compact metric space has a countable base and a countable dense set
of points.

Proof. For every n the cover of X by the open balls B1/n(x) has a finite subcover Bn. The
open balls in these finite subcovers for n = 1, 2, 3, . . . form a countable set B = B1∪B2∪ . . .
of open sets.
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Let us prove that B is a base. For every open U and every x ∈ U there exists ε > 0 such
that Bε(x) ⊆ U . Choose an integer n > 2/ε. Because Bn covers X, there exists B1/n(y) ∈ Bn
such that x ∈ B1/n(y). Because 1/n < ε/2 we have

B1/n(y) ⊆ Bε(x) ⊆ U.

It follows from Proposition 1.12 that B is a base.
To find a countable dense set of points, simply take an element from each base set. □

Baire property

A set A ⊆ X is called residual if it is the intersection of countably many dense open sets.
A topological space X is called a Baire space if every residual set is dense. That is, if
U1, U2, . . . are open sets such that for all i hold U i = X, then the set

A =
∞⋂︂
i=1

Ui

is dense. In particular, A is then non-empty.
Intuitively, dense open sets are “big” and contain almost all elements of X, and the

Baire property corresponds to the idea in measure theory that countable intersections of full
measure sets have full measure.

Proposition 1.21 Every compact metric space is a Baire space.

Proof. Let U1, U2, . . . be open dense sets, and let A be their intersection. Let U be an
arbitrary non-empty open set. It is enough to prove that U ∩ A ̸= ∅. Let us define a
sequence V0, V1, V2, . . . of non-empty open sets as follows: V0 = U , and for every n ≥ 1, we
choose as Vn a non-empty, open set whose closure is a subset of Vn−1∩Un. Such Vn exists for
the following reasons: Set Vn−1 ∩ Un is open, and non-empty by the denseness of Un. This
means that Bε(x) ⊆ Vn−1 ∩ Un for some ε > 0 and x ∈ X. Then Bε/2(x) can be selected as
Vn, because its closure is a subset of Bε(x).

Closures of Vn form a decreasing chain

V 0 ⊇ V 1 ⊇ V 2 ⊇ . . .

of non-empty closed sets. By Corollary 1.15 their intersection is non-empty. The intersection
is a subset of every Un and also of U , so we conclude that A ∩ U ̸= ∅. □
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Continuity

Finally, a few words about continuous functions. Let X and Y be two topological spaces. A
function f : X −→ Y is continuous at point x ∈ X if for every open V ⊆ Y that contains
f(x) there exists an open neighborhood U ⊆ X of x such that f(U) ⊆ V . We call function
f : X −→ Y continuous if it is continuous at every x ∈ X.

Example 1.22. If X has the discrete topology then every function f : X −→ Y is continu-
ous. Also, if Y has the trivial topology {∅, Y } then every f : X −→ Y is continuous. In all
topological spaces X and Y all constant functions f : X −→ Y are continuous. If X has the
trivial topology and Y has the discrete topology then the constant functions are the only
continuous functions. □

Proposition 1.23 Let f : X −→ Y be a function between two topological spaces. The
following conditions are equivalent:

(i) Function f : X −→ Y is continuous,

(ii) pre-image f−1(V ) is open in X for every open V ⊆ Y ,

(iii) pre-image f−1(C) is closed in X for every closed C ⊆ Y .

Proof. (i) =⇒ (ii): Suppose f is continuous and let V ⊆ Y be open. Let x ∈ f−1(V ) be
arbitrary, so f(x) ∈ V . From continuity it follows that there is an open U ⊆ X such that
f(U) ⊆ V and x ∈ U . This means that x ∈ U ⊆ f−1(V ), which implies that f−1(V ) is open.

(ii) =⇒ (i): Suppose f−1(V ) is open for every open V ⊆ Y . Let x ∈ X be arbitrary. Let us
show that f is continuous at point x. Let f(x) ∈ V for open V ⊆ Y . Then U = f−1(V ) is
an open set that satisfies x ∈ U and f(U) ⊆ V . So f is continuous at x.

(ii) ⇐⇒ (iii): Follows directly from the fact that for every A ⊆ Y holds

X \ f−1(A) = f−1(Y \ A).

□

If X and Y are metric spaces with metrics dX and dY , respectively, then continuity of f
can be stated as follows:

∀ε > 0, ∀x ∈ X, ∃δ > 0 : f(Bδ(x)) ⊆ Bε(f(x)).

Here, number δ may depend not only on ε > 0 but also on point x. If δ can be chosen
independently of x then function f is called uniformly continuous:

∀ε > 0, ∃δ > 0, ∀x ∈ X : f(Bδ(x)) ⊆ Bε(f(x)).

10



Even more restrictively, if there exists a positive constant r such that δ = r ·ε works for all x
and ε, then f is Lipschitz continuous. An isometry satisfies dY (f(x), f(y)) = dX(x, y) for
all x, y ∈ X, and is hence Lipschitz continuous. So in metric spaces we have the implications

f isometry =⇒ f Lipschitz continuous =⇒ f uniformly continuous =⇒ f continuous.

Note that apart from continuity the concepts above are defined for metric spaces only;
continuity is defined also on non-metric topological spaces. For us uniform continuity is
particularly important since on compact metric spaces it turns out to be equivalent to con-
tinuity:

Proposition 1.24 Let (X, dX) and (Y, dY ) be compact metric spaces. A continuous function
f : X −→ Y is uniformly continuous.

Proof. Homework. □

Note that compositions of continuous functions are continuous, and compositions of uni-
formly continuous functions are uniformly continuous.

The following proposition characterizes continuous functions from a metric space in terms
of converging sequences. We use this characterization later to study continuity in shift spaces,
e.g., in Example 2.7.

Proposition 1.25 Let X be a metric space and Y a topological space. Then f : X −→ Y is
continuous if and only if for every converging sequence x1, x2, . . . the sequence f(x1), f(x2), . . .
converges and

lim
i→∞

f(xi) = f( lim
i→∞

xi).

Proof. ”=⇒”: Suppose that f is continuous and let x1, x2, . . . be a converging sequence of
elements of X. Let x = limi→∞ xi. Let us prove that f(x1), f(x2), . . . converges to f(x).
Let U be an open set that contains f(x). Then f−1(U) is open and x ∈ f−1(U). Because
x1, x2, . . . converges to x there is n such that xi ∈ f−1(U) for all i ≥ n. But then f(xi) ∈ U
for all i ≥ n.

”⇐=”: Let x ∈ X. To prove that f is continuous at point x, we assume the contrary and
derive a contradiction. So suppose there is an open V ⊆ Y that contains f(x) such that for
every δ there is a point y in Bδ(x) such that f(y) ̸∈ V . Using δ = 1

i
for positive integers i we

see that for every i there is xi ∈ X such that d(xi, x) <
1
i
and f(xi) ̸∈ V . Sequence x1, x2, . . .

converges to x so by the hypothesis sequence f(x1), f(x2), . . . converges to f(x) ∈ V . But
this is not possible since all f(xi) ̸∈ V . □

In all topological spaces, images of compact sets under continuous maps are compact:

Proposition 1.26 Suppose function f : X −→ Y is continuous. For every compact A the
set f(A) is compact.

11



Proof. Consider an open cover of f(A) by open sets Vi. Then, by Proposition 1.23 the sets
f−1(Vi) form an open cover of A. By compactness of A there is a finite subcover of A by
f−1(Vi) where i ∈ F for some finite set F . But then the corresponding sets Vi for i ∈ F form
a finite subcover of f(A). Hence f(A) is compact. □

The next proposition implies that continuous bijections between compact metric spaces
have continuous inverse functions.

Proposition 1.27 Let f : X −→ Y be a continuous bijection where X is a compact and Y
is a Hausdorff topological space. Then the inverse function f−1 : Y −→ X is also continuous.

Proof. By Proposition 1.23 it is enough to show that for every closed A ⊆ X also f(A) is
closed. But if A ⊆ X is closed then by Proposition 1.17 it is also compact. By Proposi-
tion 1.26 set f(A) is also compact, and then by Proposition 1.18 set f(A) is closed. □

A continuous bijection f : X −→ Y between topological spaces is a homeomorphism
if the inverse function f−1 : Y −→ X is also continuous. Proposition 1.27 implies that
continuous bijections between compact metric spaces are homeomorphisms. We say that
two topological spaces are homeomorphic if there is a homeomorphism between them.
Homeomorphic spaces are “topologically isomorphic” with each other: they have identical
topological properties as the homeomorphism bijectively relates their open sets.

1.3 The Cantor space

The relevant compact metric space in symbolic dynamics is the shift space, which is home-
omorphic to the Cantor set. In fact, we prove in this section that all non-empty compact
metric spaces with a countable clopen base and without isolated points are homeomorphic
to the Cantor set, and hence they can be called the Cantor space.

We start the section by introducing the most basic notations and concepts related to
languages and words. Let A be a finite set containing at least two elements. We call A an
alphabet. The elements of the alphabet are called letters, and a word is a finite sequence
of letters. If w is a word then |w| denotes its length. (Note the same notation |S| is used for
the cardinality of a set S but this should not cause confusion.) The empty word has length
0, and it is denoted by ε. For n ∈ N, we denote An = {u0 . . . un−1 | ai ∈ A} for the set of
words of length n over the alphabet A. The i’th letter of word u is ui where the indexing
starts with 0 on the leftmost letter. Note that A0 = {ε} contains exactly one element. The
set of all words over alphabet A is A∗ = A0 ∪ A1 ∪ A2 ∪ . . . . A language is a set of words
over a fixed alphabet. The language is finite if it contains only a finite number of words.

The concatenation uv of two words u and v is the word obtained by writing the first
word followed by the second one as a single word. The empty word ε is the identity for
concatenation. The n-fold repetition of word u is un, e.g. u3 = uuu. In particular, u0 = ε.

A prefix of a word is any sequence of leading symbols of the word, and a suffix is
any sequence of trailing symbols of the word. A subword is any sequence of consecutive
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symbols that appears in the word. For a word u of length n and integers m, k such that
0 ≤ m ≤ k < n we denote by u[m,k] = umum+1 . . . uk the subword from position m to position
k. By u[m,k) = umum+1 . . . uk−1 we denote the subword up to (but not including) position k,
and we define analogously u(m,k] and u(m,k). Note that u[m,m) is the empty word.

Let us define next infinite words, that we also call configurations. For an alphabet A,
the set AN consists of all assignments N −→ A of letters to natural numbers. These are
one-way infinite words over A. Analogously, elements of AZ are the bi-infinite words. For
M = N or M = Z, and for any u ∈ AM , we use the analogous notations ui, u[m,k], u[m,k)

etc. as for the finite words for the letter in position i ∈M , for the word um . . . uk, the word
um . . . uk−1 and so on. When writing down a bi-infinite word we may place a dot before
position zero, as in u = . . . u−2u−1.u0u1u2 . . .

For a non-empty finite word u we denote by u∞ the one-way infinite periodic word
uuu . . . , by ∞u the analogous left-infinite repetition . . . uuu (which is an element in A−N),
and by ∞u∞ the bi-infinite periodic word . . . uu.uu . . . . These notations may be combined
so that, for example, ∞(01)1.110∞ is the word . . . 010101 1.11 000 . . .

In the following we consider the set X = AN of right-infinite words, and define a metric
on AN that makes it a compact metric space. (Analogous considerations can be made on
AZ, and actually on AM for any countable set M .) For x, y ∈ AN we define

d(x, y) =

{︃
0, if x = y,
2−min {k | xk ̸=yk}, if x ̸= y.

The metric considers two configurations to be close to each other if they have a long common
prefix and one needs to look far to see the first difference.

Lemma 1.28 Function d : AN × AN −→ R is a metric.

Proof. We have to check the three defining properties of a metric:

(a) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

(b) d(x, y) = d(y, x), and

(c) d(x, y) ≤ d(x, z) + d(z, y).

The first two conditions (a) and (b) are immediate. The triangle inequality (c) follows from
the fact that for every k ∈ N, if xk ̸= yk then xk ̸= zk or zk ̸= yk. This means that
d(x, z) ≥ d(x, y) or d(z, y) ≥ d(x, y), so even the strong form d(x, y) ≤ max{d(x, z), d(z, y)}
of the triangle inequality holds. □

We call AN endowed with metric d a one-sided shift space. (The reason for this name
becomes clear in Examples 2.5 and 2.6.) The open ball of radius ε = 2−r centered at x ∈ AN

is
Bε(x) = {y ∈ AN | yk = xk for all k ≤ r}.
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These sets form a base of our topology. More generally, for any finite domain D ⊆ N and
finite pattern w ∈ AD we define the cylinder

[w] = {x ∈ AN | x|D = w}

of configurations that contain pattern w in domain D. Note that if D ⊆ E are two finite
domains then every cylinder [w] with domain D is a finite union of cylinders with domain
E:

[w] =
⋃︂

v∈AE

v|D=w

[v].

Open balls are cylinders. Moreover, any finite domain D ⊆ N is a subset of the domain
E = {0, 1, . . . , r} for a big enough r. Cylinders with domain E are open balls of radius
ε = 2−r. Every cylinder is thus a finite union of open balls, and therefore open.

Cylinders with any fixed domain D form a finite partitioning of AN. It follows that every
cylinder is also closed. We conclude that cylinders form a countable clopen base of
the topology. Topological space AN is also perfect: it has no isolated points. Recall that a
point x is isolated if the singleton {x} is open. However, cylinders are infinite so no point
can be isolated.

Next we prove that our metric topology on AN is compact.

Theorem 1.29 The metric space (AN, d) is compact.

Proof. Because there is a countable base B of cylinders, every open cover C of AN has a
countable subcover C ′: indeed, for every B ∈ B, choose in the subcover C ′ a set C ∈ C such
that B ⊆ C, if such a C exists. Collection C ′ has at most as many elements as B, and thus
it is a countable subfamily of C. Also C ′ covers AN: because C is a cover and B is a base, for
every c ∈ AN there are B ∈ B and C ∈ C such that c ∈ B ⊆ C. By the construction of C ′
there is some C ′ ∈ C ′ such that B ⊆ C ′.

Next we show that a countable open cover C ′ = {V0, V1, . . . } has a finite subcover. For
every n ∈ N, let Fn be the complement of V0 ∪ · · · ∪ Vn. Sets Fn are closed and form a
decreasing chain F0 ⊇ F1 ⊇ . . . . If some Fn is empty then {V0, . . . , Vn} is a finite subcover
of C ′, and the proof is complete.

Suppose then that Fn ̸= ∅ for all n ∈ N. Let us prove that the intersection F0 ∩ F1 ∩ . . .
is non-empty, contradicting the fact that C ′ covers AN. (Note that the complement of F0 ∩
F1 ∩ . . . is the union V0 ∪ V1 ∪ . . . .)

Denote Dn = {0, 1, . . . , n} for all n ∈ N. There are finitely many patterns with domain
D0 so for some such pattern p0 ∈ AD0 the intersections Fi ∩ [p0] are non-empty for all i ∈ N.

By the same argument, using sets Fi ∩ [p0] in place of sets Fi, there is a pattern p1 with
domain D1 such that all Fi ∩ [p0]∩ [p1] are non-empty. Repeating likewise, we obtain for all
j ∈ N patterns pj with domain Dj such that

Fi ∩ [p1] ∩ [p2] ∩ · · · ∩ [pj]
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are non-empty for all i ∈ N.
Define a configuration c ∈ AN by c(k) = pk(k) for all k ∈ N. The non-emptiness of

intersections [p1] ∩ [p2] ∩ · · · ∩ [pj] means that pj(k) = pk(k) = c(k) for all j ≥ k ≥ 0. Thus
c ∈ [pj] for all j ∈ N.

Let us prove that c ∈ Fi for all i ∈ N. Suppose the contrary: c ̸∈ Fi for some i. Because
the complement of Fi is open, there is a cylinder [c|D] ⊆ AN \Fi. But D ⊆ Dj for some large
enough j, and then

[pj] = [c|Dj
] ⊆ [c|D] ⊆ AZd \ Fi,

contradicting [pj] ∩ Fi ̸= ∅. Thus c ∈ F0 ∩ F1 ∩ . . . . □

The compactness of AN can also be obtained as a direct corollary to Tychonoff’s theorem,
which states that cartesian products of compact spaces are again compact. Our topology
on AN is namely the product of discrete topologies on A, and the finite space A is of course
compact.

We have established the following result.

Theorem 1.30 Metric space AN is compact. It has a countable base of clopen sets and no
isolated points. □

It follows from compactness, using Proposition 1.29, that every sequence of configuration
has a converging subsequence. Next lemma states an intuitive meaning of convergence.

Lemma 1.31 Let x(1), x(2), . . . be a sequence of configurations, x(i) ∈ AN. The sequence
converges to x ∈ AN if and only if for every k ∈ N there exists nk such that x

(n)
k = xk for all

n > nk.

Proof. First suppose that x(1), x(2), . . . converges to x, and let k ∈ N be arbitrary. Consider
the cylinder U = [xk] with singleton domain D = {k}. It is a neighborhood of x so the

convergence to x implies that for all sufficiently large n holds x(n) ∈ U , that is, x
(n)
k = xk.

Conversely, assume that for every k holds x
(n)
k = xk for all sufficiently large n. It follows

then that for any finite D ⊆ N also holds that x
(n)
|D = x|D for all sufficiently large n. This

means that, for sufficiently large n, the configuration x(n) is in the (unique) cylinder of domain
D that contains x. Since cylinders are a base of the topology, it follows that limn→∞ x(n) = x,
as claimed. □

Example 1.32. Let x(n) = 1n0∞. The sequence x(1), x(2), . . . converges to 1∞. Let then
y(n) = a0∞ where a = 0 for even n and a = 1 for odd n. This sequence does not converge.

□

Above we have discussed a topology on AN but the analogous topology can be defined
on AM for any countable infinite set M . Cylinders of AM are defined by patterns w ∈ AD

on finite domains D ⊆M in the same manner as above:

[w] = {x ∈ AM | x|D = w}.
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Any bijection α : N −→ M defines a bijection α̂ : AM −→ AN that maps coordinates of
configurations according to α, that is, by α̂(x)m = xα(m) for all m ∈ N, x ∈ AM . Thus the
symbols written by x in M are “linearized” into the sequence

α̂(x) = xα(0)xα(1)xα(2) . . .

The bijection α̂ carries our metric d on AN over to AM in the obvious way: the distance of
any two configurations x, y ∈ AM is d(α̂(x), α̂(y)). Thus α̂ is an isometry. Isometry α̂ is
also a bijection between cylinders of AN and AM , so the topology on AM has a clopen base
consisting of the cylinders of AM . For each AM , the cylinders provide a most convenient
base of the topology. Note that the concept of a cylinder does not depend on the choice of
α, so that while different choices of α may give different metrics on AM , the topologies they
define are the same.

Convergence of sequences of elements of AM in the topology has the analogous meaning
as in AN: A sequence of configurations converges if and only if for each position m ∈M the
symbol assigned to m stabilizes to a fixed value after a finite initial segment of the sequence.

So we get, for example, a compact metrizable topology on AZ, the set of two-way in-
finite configurations, as well as on multidimensional configuration spaces AZd

studied in
multidimensional symbolic dynamics. These spaces are homeomorphic to AN.

Let us finish the section by showing that all compact metric spaces that have a countable
clopen base and that have no isolated points are homeomorphic to each other. A famous
example of such a space is the Cantor’s middle-thirds set: the subset S of R containing
numbers in the interval [0, 1] that have a ternary (that is, base-3) expansion without digit
1. It is easy to see that the ternary representation of numbers gives a bijection between S
and {0, 2}N that takes the usual topology of R to our topology on {0, 2}N.

Theorem 1.33 Let X be a non-empty compact Hausdorff space that has a countable clopen
base and has no isolated points. Then X is homeomorphic to {0, 1}N.

Proof. Let B1, B2, . . . be a clopen base of X, and let A = {0, 1}. We inductively assign to
each finite word u ∈ A∗ a non-empty clopen subset Cu of X as follows:

(i) Cε = X.

(ii) Assume a non-empty clopen Cu has been defined. We next construct Cu0 and Cu1.
Let k ∈ N be minimum such that Cu ∩ Bk ̸= ∅ and Cu ∩ (X \ Bk) ̸= ∅. Such k exists
because Cu contains at least two points (there are no isolated points so a singleton set
is not open), and by the Hausdorff property there is a base set Bk that separates these
two points. We set Cu0 = Cu∩Bk and Cu1 = Cu∩ (X \Bk) using the smallest available
k. Clearly these sets are again clopen and non-empty.

Note that if u is a prefix of v then Cv ⊆ Cu, and note that, for every n, the sets Cu for u ∈ An

form a partitioning of X. Note also that if |u| = k then either Cu ⊆ Bk or Cu ⊆ X \ Bk.
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This follows from the fact that on the i’th round of the algorithm, the chosen k in step (ii)
must satisfy k ≥ i as otherwise that k would have been chosen on an earlier round.

For infinite words w ∈ AN we define

Cw =
∞⋂︂
k=0

Cw0...wk
.

By Corollary 1.15 the set Cw is non-empty as the intersection of a decreasing sequence of non-
empty closed sets. But Cw cannot contain two distinct points: By the Hausdorff property
there is a base set Bk that separates these two points, which implies that Cw0...wk

cannot
contain both these points. Recall that the recursive construction would have chosen this Bk

in step (ii) at latest on the k’th round.
We conclude that for all w ∈ AN we have Cw = {xw} for some xw ∈ X. Now define

a function f : AN −→ X by f(w) = xw. It is one-to-one (because Cu0 ∩ Cu1 = ∅ for
all finite words u) and surjective (because for every n, the sets Cu for u ∈ An partition
X). Let us prove that f is continuous. If f(w) ∈ Bk then Cw0...wk

∩ Bk ̸= ∅. But then
Cw0...wk

⊆ Bk so that f(y) ∈ Bk for any word y that has prefix w0 . . . wk. In other words, an
open neighborhood of w is mapped into Bk. We conclude that f−1(Bk) is open for all base
sets Bk, which is enough to show that f is continuous.

A continuous bijection between compact Hausdorff spaces is a homeomorphism (Propo-
sition 1.27). □

Based on the theorem we call any non-empty compact metric space that has a countable
clopen base and no isolated points the Cantor space.

2 Discrete-time dynamical systems

2.1 Basic concepts and examples

A dynamical system (X, f) consists of a compact metric space X and a continuous function
f : X −→ X. Set X is the phase space of the system and f is its transformation. If f is
bijective (i.e. a homeomorphism) then the system is invertible, and the dynamical system
(X, f−1) is the inverse system.

The forward trajectory of a point x ∈ X is the sequence x, f(x), f 2(x), . . . . A two-way
trajectory is any bi-infinite sequence (xi)i∈Z of points xi ∈ X that satisfies xi+1 = f(xi)
for all i ∈ Z. The forward orbit of x is the set that contains the elements of its forward
trajectory, that is, O(x) = {fn(x) | n ∈ N}. A two-way orbit is a set of points of a two-way
trajectory. So we use the term trajectory for a sequence of consecutive points, and the term
orbit for the set of these points.

Point x ∈ X is periodic if fn(x) = x, for some n > 0. It is eventually periodic if
O(x) is finite, that is, if fn(x) = fm(x) for some n ̸= m. A fixed point satisfies f(x) = x,
and an eventually fixed point has the property that fn+1(x) = fn(x), for some n ∈ N.
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In invertible dynamics eventually periodic (or eventually fixed) points are periodic (fixed,
respectively).

Let us begin with a number of examples. In addition to the shift spaces AN and AZ,
compact metric spaces used in the examples include the closed unit interval [0, 1] of real
numbers and the closed circle T defined in Example 2.1 below. Recall that compact sets of
R are precisely the bounded closed sets, so [0, 1] is indeed compact.

Example 2.1. Let us denote by T the set [0, 1) endowed with metric d(x, y) = min{|x −
y|, 1− |x− y|}. Set T is the circle: it is useful to think the interval being bent into a ring,
gluing together points 0 and 1, as shown on the left illustration below. Distance d is then
the shortest distance between given points along the ring, as seen in the picture on the right:

0=1
|x-y|

1-|x-y|

x

y

0=1

1/4

1/2

3/4

This is indeed a metric (homework). For any r ∈ R we denote the integer and the fractional
parts of r by

⌊r⌋ = max{n ∈ Z | n ≤ r}, and
frac(r) = r − ⌊r⌋.

Then frac(r) ∈ T for all r ∈ R, and the mapping r ↦→ frac(r) from R to T is continuous.
Continuity follows from the fact that d(frac(x), frac(y)) ≤ |x − y|, so that r ↦→ frac(r) is
even Lipschitz continuous. It also follows that the circle T is compact as the image of the
compact set [0, 1] under the continuous function r ↦→ frac(r). □

We denote r = s (mod 1) when frac(r) = frac(s).

Example 2.2. Let X = T be the circle from Example 2.1. For α ∈ R define the rotation
by α as the function ρα : T −→ T that maps x ↦→ frac(x + α). Function f = ρα is a
homeomorphism of the circle. In fact, it is an isometry as d(x, y) = d(f(x), f(y)) holds for
all x, y ∈ T.

If α = m
n
is rational then f = ρα has finite order because fn(x) = x + nα = x +m = x

(mod 1), for all x ∈ T. So fn = idT and all points are periodic. If α is irrational then
the orbit of every point is dense. To see this notice that O(0) is infinite so that for every
ε > 0 there exist n1 < n2 such that d(fn1(0), fn2(0)) < ε. But then for n = n2 − n1 we have
0 < d(fn(0), 0) < ε. Function fn is a rotation by fn(0) so it is clear that Bε(f

in(x)) for
i ∈ N cover T, for all initial x ∈ T. We conclude that for all x, y ∈ T and all ε > 0, the orbit
O(x) contains points within distance ε from y. All orbits are hence dense. □
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Example 2.3. Again, we consider the circle T. The doubling map ×2 : T −→ T maps
x ↦→ frac(2x):

0 10.5

1

Function ×2 is (Lipschitz) continuous on T, but it is not injective because ×2(x) = ×2(x+
1
2
).

Every rational point x = m
n
is eventually periodic because its trajectory only contains rational

points with denominator n, and there are only finitely many such points. For example, the
trajectory 1

6
, 1
3
, 2
3
, 1
3
, . . . of x = 1

6
is eventually periodic but not periodic. Only rational

numbers with an odd denominator are periodic. Irrational numbers have infinite orbits.
Analogously, for any integer n, we define the multiplication ×n : x ↦→ frac(nx) by n. □

Example 2.4. Let X = [0, 1] under the usual metric, and let f(x) = x2. Function f is
a homeomorphism of [0, 1] so we have an invertible dynamical system. In this system the
trajectories of all initial points except x = 1 converge to limit 0. In the inverse system
([0, 1], f−1) all trajectories except for x = 0 converge to 1. □

Example 2.5. Let X = AZ be the two-sided shift space defined in Section 1.3 where A
is an alphabet with at least two letters. Define the two-sided left shift σ : AZ −→ AZ as
follows: σ(x)k = xk+1 for all x ∈ AZ and all k ∈ Z. Function σ translates infinite words
one position to the left. The left shift is clearly continuous since the pre-images of cylinders
are cylinders. It is also bijective and its inverse is the right shift σ−1. Periodic points are
precisely the words ∞u∞ where u is a non-empty finite word. The dynamical system (AZ, σ)
is called a (two-sided) full shift.

□

Example 2.6. Let X = AN be the one-sided shift space. The one-sided left shift σ : AN −→
AN is defined analogously to the two sided-case by σ(x)k = xk+1 for all x ∈ AN and all
k ∈ N. One-sided shift is not bijective because it erases the first letter of the infinite word:
σ(ax) = x for all a ∈ A and x ∈ AN. The dynamical system (AN, σ) is called a one-sided
full shift. □

Example 2.7. Let X = AZ be again the two-sided shift space. Let D ⊆ Z be finite, the
neighborhood, and let ϕ : AD −→ A be a function, the local rule. Define f : AZ −→ AZ as
follows: for all x ∈ AZ and k ∈ Z we have f(x)k = ϕ(σk(x)|D), where σ is the left shift. In
other words, the new symbol in position k is obtained by applying the local rule ϕ on the
pattern seen in x in domain k + D, that is, the D-pattern around position k. Function f
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is a cellular automaton. To prove that f is continuous, consider any converging sequence
x(1), x(2), . . . of configurations, with limit limi→∞ x(i) = x. The convergence means that for
every k ∈ Z, the symbols in domain k +D eventually stabilize in the sequence, so that for
all large enough n

σk(x(n))|D = x
(n)
|k+D = x|k+D = σk(x)|D.

But then also f(x(n))k = f(x)k for all large enough n. This means that the sequence
f(x(1)), f(x(2)), . . . converges to f(x). By Proposition 1.25 function f is continuous. If f is
a bijection then f is a reversible cellular automaton.

Notice also that cellular automaton f commutes with the left shift σ of Example 2.5: we
have f ◦ σ = σ ◦ f because for all x ∈ AZ and k ∈ Z holds

(f ◦ σ)(x)k = ϕ(σk(σ(x))|D) = ϕ(σk+1(x)|D) = f(x)k+1 = (σ ◦ f)(x)k.

We’ll see in Section 3 that cellular automata are the only continuous functions AZ −→ AZ

that commute with the left shift (Theorem 3.7).
Cellular automata on the one-sided shift space AN are defined analogously. In this case

the neighborhood D ⊆ N is also one-sided, so a cell does not see any cells on its left.
Analogously we can define a multidimensional cellular automaton on the configuration space
AZd

, or more generally, a cellular automaton over group or even a monoid M , in which case
the configurations are elements of AM and the neighborhood is some finite D ⊆M . □

Homomorphisms

Let (X, f) and (Y, g) be dynamical systems. A function h : X −→ Y is a homomorphism
if it is continuous and has the commutation property

h ◦ f = g ◦ h.

In this case h ◦ fn = gn ◦ h for all n ∈ N. The following diagram commutes

f

g

f

g

h

f

g

f

g

h

f

g

f

g

h

f

g

f

g

h h

so the trajectories of f are mapped to trajectories of g. In mathematics in general, homo-
morphisms are structure preserving maps: In the case of dynamical systems the structures to
be preserved are the topology (preserved by continuity) and the transformation (preserved
by the commutation property).

A surjective homomorphism is called a factor map, and in this case system (Y, g) is a
factor of (X, f). An injective homomorphism is an embedding. A bijective homomorphism
is a conjugacy. Notice that a conjugacy is a homeomorphism between the metric spaces
X and Y . Two dynamical systems are (topologically) conjugate if there is a conjugacy
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between them. Conjugate systems are “the same”: one just has to look into one “through
the homeomorphism” h to see the other.

It follows from the commutation property that fn(x) = x implies gn(h(x)) = h(x). It
means that a homomorphism has to map a periodic point x to a periodic point and, moreover,
the shortest period of the image has to divide the period of x. Similar property applies to
eventually periodic points: if fn(x) = fm(x) then gn(h(x)) = gm(h(x)).

Example 2.8. We return to rotations from Example 2.2. For every α, the system (T, ρ2α)
is a factor of (T, ρα). A factor map is the doubling map ×2 : x ↦→ frac(2x) of Example 2.3.
Continuity and surjectivity of ×2 are clear, and the commutation property ×2◦ρα = ρ2α◦×2

is seen by the direct calculation

(×2 ◦ ρα)(x) = 2(x+ α) = 2x+ 2α = (ρ2α ◦ ×2)(x) (mod 1).

□

Example 2.9. Consider then the doubling and the tripling systems (T,×2) and (T,×3).
System (T,×2) has only one fixed point x = 0 while (T,×3) has two fixed points 0 and 1

2
so

the systems are not conjugate. □

Example 2.10. Consider full shifts (AZ, σA) and (BZ, σB) over alphabets A = {0, 1} and
B = {0, 1, 2}. Here, σA and σB are the left shifts. We have AZ ⊆ BZ and the identity id|AZ

is an embedding of AZ to BZ. On the other hand, the function h that changes every symbol
2 in all configurations into symbol 1 is a factor map from BZ to AZ. There is no embedding
from (BZ, σB) to (AZ, σA) because the first one has three fixed points and the second one
only two. There is also no factor map from (AZ, σA) to (BZ, σB). This follows easily from
entropy considerations that we learn later. □

Example 2.11. Let us find a factor map from a full shift to the doubling map. For
x ∈ {0, 1}N we define

(x)2 =
∞∑︂
k=0

xk2
−k−1

to be the real number in interval [0, 1] with binary expansion 0.x0x1x2x3 . . . . We further
identify the boundaries 0 and 1 of the interval, and define the function φ : {0, 1}N −→ T by
φ(x) = frac((x)2). If σ is the left shift on {0, 1}N and ×2 is the doubling map on T then
φ ◦ σ = ×2 ◦ φ. This is verified by a direct calculation: For any x ∈ {0, 1}N

(φ ◦ σ)(x) =
∞∑︂
k=0

xk+12
−k−1 =

∞∑︂
i=1

xi2
−i =

∞∑︂
i=0

xi2
−i = 2

∞∑︂
i=0

xi2
−i−1 = (×2 ◦ φ)(x) (mod 1).

Let us also verify that φ is continuous. If x, y ∈ {0, 1}N start with the same prefix of
length n then |(x)2 − (y)2| ≤

∑︁∞
k=n 2

−k = 2−n+1 in the usual metric of [0, 1]. It follows that
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x ↦→ (x)2 is continuous, and as φ(x) is the composition of this function and the continuous
function x ↦→ frac(x), also φ is continuous. Clearly φ is surjective so it is a factor map from
({0, 1}N, σ) to (T,×2).

Note that φ is not injective because there are numbers with two different binary expan-
sions, one ending 111 . . . and one ending 000 . . . . Systems ({0, 1}N, σ) and (T,×2) are in
fact not conjugate because any conjugacy would be a homeomorphism between metric spaces
{0, 1}N and T. These spaces are not homeomorphic because the only clopen subsets of T are
T and ∅, i.e., T is not the Cantor space. □

A homomorphism from a dynamical system to itself is an endomorphism, and a con-
jugacy from a system to itself is an automorphism. Automorphisms of (X, f) form a
group under the operation of function composition, the automorphism group of (X, f).
Similarly, the endomorphisms form a monoid, the endomorphism monoid of (X, f).

Example 2.12. Cellular automata f : AZ −→ AZ, defined in Example 2.7, are endomor-
phisms of the full shift (AZ, σ), defined in Example 2.5. Reversible cellular automata are
automorphisms. We’ll see in Section 3 that these are the only endomorphisms and automor-
phisms. □

Example 2.13. Circle rotations, defined in Example 2.2, commute with each other, so ρα
is an automorphism of (T, ρβ), for all α, β ∈ R. If β is irrational then there are no other
automorphisms. □

Dynamical systems as monoid actions

In the dynamical systems above a single function f was iterated over time. The system can
also be understood as a function X × N −→ X defined by (x, k) ↦→ fk(x), where we have
taken the “time” k as a second argument. The possible times k form the monoid N under
the operation of addition. We have the obvious property fm+k = fk ◦ fm that links the
monoid operation to composition of transformations.

We can generalize this. Let M be a monoid with identity 1M . We use the multiplicative
notation for the monoid operation. A (right) monoid action of M on set X is a function
f : X×M −→ X that satisfies the conditions (i) and (ii) below. For every m ∈M we denote
by fm : X −→ X the function x ↦→ f(x,m), the action of m on X. It is the transformation
by generalized “time” m.

(i) f 1M = idX (the identity of M acts as the identity function on X),

(ii) fmk = fk ◦ fm for all m, k ∈ M (the action by a product of two monoid elements is
the composition of the actions by the elements).

A dynamical system over monoid M is a pair (X, f) where X is a compact metric space
and f is a monoid action of M on X such that for all m ∈M the function fm is continuous.
Note that if M is a group then each fm is bijective with the inverse function f (m−1).
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Our earlier definition of dynamical systems (X, f) coincides with this definition for the
additive monoid N if we choose as the monoid action the mapping (x, k) ↦→ fk(x). This
action is uniquely determined by f . If f is a bijection then we can view (X, f) either as
a dynamical system over N or as a dynamical system over Z. In the latter case the action
(x, k) ↦→ fk(x) for negative k uses the inverse function of f . Remark that in the new
notation, function f in (X, f) is the monoid action X × N −→ X, while in our previous
notation it denoted the action f 1 by 1 ∈ N on X. When there is no risk of confusion we
continue denoting f 1 by f , and in the notation (X, f) for dynamical systems over N and Z,
letter f stands both for the monoid action and for f 1.

More generally, if monoid M is generated by G ⊆ M then an M -action f is uniquely
determined by functions f g for generators g ∈ G. Indeed, for m = g1 . . . gk we have fm =
f gk ◦ · · · ◦ f g1 .

Remark: One can define left monoid actions analogously but the property (ii) becomes
fmk = fm ◦ fk. We choose to use right actions so that the monoid operations and func-
tion compositions are in the compatible order to conveniently define shift actions by M on
configurations in AM , as discussed in the following example.

Example 2.14. Let A be a finite alphabet and let M be a countable monoid. The shift
action σ of M on the configuration space AM is defined by σm(x)k = xmk for all m, k ∈M
and all x ∈ AM . In other words, when shifting by m ∈M the contents of cell mk get moved
to cell k. This clearly satisfies condition (i) in the definition of right actions, and condition
(ii) is verified by

σmn(x)k = x(mn)k = xm(nk) = σm(x)nk = σn(σm(x))k.

The two-sided and the one-sided full shifts of Examples 2.5 and 2.6 correspond to the cases
M = Z and M = N, respectively. (Although, strictly speaking, the two-sided full shift was
defined as an N-action on AZ. But from now on we take it as a Z-action and include also
the negative shifts, i.e., shifts to the right.) □

Orbit closures and subsystems

We now have a more general concept of a dynamical system. In these lectures we mostly
consider N- and Z-actions, but the general framework has the advantage that we no longer
need to give separate definitions for one-sided and two-sided concepts. For example, the
trajectory of point x ∈ X is the element of t ∈ XM defined by tm = fm(x), and its
orbit is the set O(x) = {fm(x) | m ∈ M}. This captures both the concept of a forward
orbit (corresponding to M = N) and two-way infinite orbit when the system is invertible
(corresponding to M = Z).

Also the concept of a homomorphism readily works in the more general setting: A ho-
momorphism between two dynamical systems (X, f) and (Y, g) over the same monoid M
is a continuous function h : X −→ Y that satisfies h ◦ fm = gm ◦ h for all m ∈ M . Again,
this coincides with our previous definition (and in this case there is no difference if invertible
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dynamical systems are considered as N- of Z-actions). It is clearly enough to verify the
condition h ◦ fm = gm ◦ h for generators m of M .

We can define new concepts more uniformly. Let (X, f) be a dynamical system over any
monoid M . Subset Y ⊆ X of the phase space is invariant if fm(Y ) ⊆ Y for all m ∈M . If
non-empty Y is closed and invariant then restricting f to Y ×M gives a dynamical system
(Y, f|Y×M), a subsystem of (X, f). We simply say that Y ⊆ X is a subsystem when f is
clear from the context. Note that here it makes a difference whether an invertible system is
viewed as a dynamical system over N or Z: a subsystem over N may be non-invariant under
the Z-action. An non-empty intersection of subsystems is again a subsystem.

The orbit O(x) of a point is invariant by definition. However, it is not necessarily closed.
To get a subsystem, we consider its topological closure O(x), the orbit closure of x

Lemma 2.15 The orbit closure O(x) of x is a subsystem, the smallest subsystem that con-
tains x.

Proof. Set O(x) is closed by definition. Let us prove invariance. Let y ∈ O(x) and m ∈M be
arbitrary. There are y1, y2, · · · ∈ O(x) such that limi−→∞ yi = y. Then each fm(yi) ∈ O(x)
and, because fm is continuous, limi−→∞ fm(yi) = fm(y). This means that fm(y) ∈ O(x).
We conclude that the orbit closure is a subsystem. It is the smallest subsystem containing x:
If Y ⊆ X is any subsystem containing x then O(x) ⊆ Y by invariance of Y , and O(x) ⊆ Y
because Y is closed. □

By the same proof, more generally, if Y is any invariant set then its closure Y is a subsystem.
We call point x ∈ X transitive if O(x) = X. So the trajectories of transitive points

explore the whole phase space.

Example 2.16. Consider the circle rotation (T, ρα) by irrational α, introduced in Exam-
ple 2.2. We can view it as a system over N or Z. Either way, all x ∈ T are transitive because
by Example 2.2 already the forward orbits are all dense. In contrast, if α is rational then
there are no transitive points because all orbits are finite. □

2.2 Mixing properties

Some dynamical systems (X, f) mix the phase space X in the sense that all parts of X
contain points that evolve to the vicinity of all other points. This mimics situations such as
stirring a drop of milk in a cup of coffee. We have several variants of the mixing property.

Transitivity

Dynamical system (X, f) over monoid M is (topologically) transitive if for all non-empty
open U, V ⊆ X there exists m ∈ M and x ∈ U such that fm(x) ∈ V . In other words,
it must be possible to get from any open set to any other open set by the dynamics. The
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condition ∃x ∈ U : fm(x) ∈ V can be written equivalently as (fm)−1(V ) ∩ U ̸= ∅ or as
fm(U) ∩ V ̸= ∅.

Transitivity of the system is closely related to existence to transitive points, as shown
by the following propositions. Recall that residual sets are countable intersections of dense
open sets, and that by Proposition 1.21 they are non-empty in compact metric spaces.

Proposition 2.17 Let M be a group. A dynamical system (X, f) over M is transitive if
and only if it has a transitive point. In this case, the set of transitive points is residual.

Proof. Let T ⊆ X be the set of transitive points. We prove a cycle of three implications:

(X, f) is transitive =⇒ T is residual =⇒ T ̸= ∅ =⇒ (X, f) is transitive

The first two implications hold on any monoid M but the proof of the third implication uses
the group structure of M .

• (X, f) is transitive =⇒ T is residual: By Proposition 1.20 the topology has a countable
base B1, B2, . . . . For every i = 1, 2 . . . , let

Ui =
⋃︂

m∈M

(fm)−1(Bi) = {x ∈ X | O(x) ∩Bi ̸= ∅}

be the set of points that can be mapped to Bi by the system. Set Ui is open as a union of
open sets, and it is dense because by transitivity it contains an element of every non-empty
open set. Let U be the intersection of all Ui. Set U is residual as a countable intersection
of dense open sets. We have U = T : indeed, x ∈ T if and only if O(x) intersects every base
set Bi. But this is equivalent to x ∈ Ui for every i, that is, equivalent to x ∈ U .

• T is residual =⇒ T ̸= ∅: Compact metric spaces are Baire-spaces by Proposition 1.21, so
every residual set is non-empty.

• T ̸= ∅ =⇒ (X, f) is transitive: This is the only implication where we use the fact that M
is a group. Let x ∈ T . Consider arbitrary non-empty open sets U and V . By transitivity of
x, there are m,n ∈ M such that fm(x) ∈ U and fn(x) ∈ V . Let y = fm(x). Then y ∈ U
and fm−1n(y) = (fm−1n ◦ fm)(x) = fmm−1n(x) = fn(x) ∈ V . □

The last implication of the proof used the fact M is a group, and the following example
shows that the existence of a transitive point does not guarantee the transitivity of the
system when M = N.

Example 2.18. Let X = {1, 1
2
, 1
4
, . . . } ∪ {0} under the usual metric of reals. This set is

compact (similar to Example 1.13). Define f(x) = x
2
. Then (X, f) is a dynamical system

over N and x = 1 is a transitive point. However, the system is not transitive because no
point of the open set {1

2
} can be mapped to the open set {1}. □

The transformation f in Example 2.18 is not surjective. In fact, over N, transitivity is
equivalent to being surjective and having a transitive point.
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Proposition 2.19 A dynamical system (X, f) over N is transitive if and only if it has a
transitive point and f : X −→ X is surjective. In this case the set of transitive points is
residual.

Proof. The first two implications in the proof of Proposition 2.17 apply to any monoid M ,
so transitivity implies that the set of transitive points is residual and, in particular, that
there is a transitive point. Transitivity also implies surjectivity: Suppose f is not surjective.
The image of a compact set under a continuous function is compact, so f(X) is topologically
closed. Its complement is a non-empty open set U . Note that fm(X)∩U = ∅ for all m > 0.
Pick x, y ∈ X such that x ∈ U and y ̸= x. (Clearly non-surjectivity implies that |X| ≥ 2
so such y exists.) By the Hausdorff property there are disjoint open neighborhoods Vx ⊆ U
and Vy of x and y respectively. Now fm(Vy) ∩ Vx = ∅ for all m > 0 and also f 0(Vy) = Vy

has empty intersection with Vx. We conclude that no point of Vy can be mapped to Vx, a
contradiction with the transitivity of the system.

Conversely, suppose the system is surjective and there is a transitive point x. Transitivity
of f can be proved as follows. Let U, V be two arbitrary non-empty open sets. By transitivity
of x there exists n ∈ N such that fn(x) ∈ U . The set (fn)−1(V ) is open and, by virtue of
surjectivity, non-empty. So there exists m ∈ N such that fm(x) ∈ (fn)−1(V ), that is,
fn+m(x) ∈ V . Point y = fn(x) now satisfies y ∈ U and fm(y) ∈ V , confirming transitivity
of f .

□

Remark: The second part of the proof only used commutativity of N, so by an analogous
proof we see that for any commutative monoid M a system (X, f) is transitive if it has a
transitive point and if all fm are surjective. However, the other implication fails: There are
systems over M = N2 that are transitive but not surjective.

Mixingness

The following stronger mixing property we only define for the case M = N. Dynamical
system (X, f) over N is (topologically) mixing if for all non-empty open U, V ⊆ X the
transitivity condition fm(U) ∩ V ̸= ∅ holds for all sufficiently large m. In other words, for
all U, V there exists n ∈ N such that for all m > n there is x ∈ U such that fm(x) ∈ V .

Clearly a mixing system is transitive. Moreover, a mixing system has the property that
eventually points from all open sets get close to each other: Let U, V and W be any non-
empty open sets. If f is mixing then for all sufficiently large n we have fn(U) ∩W ̸= ∅ and
fn(V ) ∩W ̸= ∅ simultaneously.

Example 2.20. An isometry is not mixing if X contains at least two points: Let x ̸= y and
let ε = 1

4
d(x, y). Denote U = Bε(x) and V = Bε(y). Then for all x′ ∈ U , y′ ∈ V and n ∈ N

we have d(fn(x′), fn(y′)) > 2ε. In particular, there is no n such such that fn(U) ∩ U ̸= ∅
and fn(V ) ∩ U ̸= ∅ simultaneously. If f were mixing such n would exist.

We conclude that a rotation ρα of the circle T is not mixing for any α because it is an
isometry. □
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Example 2.21. Full shifts AN and AZ are mixing. Let [u] and [v] be arbitrary cylinders,
with domains D and E respectively. All large enough n have the property D ∩ (n+E) = ∅
so that there exists a configuration x with pattern u in domain D and pattern v in domain
n+ E. But this means that x ∈ [u] and σn(x) ∈ [v]. □

It is a simple observation that factor maps preserve the mixing properties:

Proposition 2.22 Let (X, f) and (Y, g) be dynamical systems over monoid M , and let
h : X −→ Y be a factor map.

(a) If (X, f) is transitive so is (Y, g).

(b) In the case M = N, if (X, f) is mixing so is (Y, g).

Proof. Let U, V ⊆ Y be non-empty open sets. Then h−1(U) and h−1(V ) are non-empty open
subsets of X. If m ∈M is such that fm(h−1(U))∩ h−1(V ) ̸= ∅ then also fm(U)∩ V ̸= ∅. □

Example 2.23. The doubling map ×2 on the circle T is mixing. By Example 2.11 it is the
factor of the full shift {0, 1}N, and full shifts are mixing by Example 2.21. □

Minimality

A dynamical system (X, f) is minimal if it has no proper subsystems. Because the orbit
closure O(x) of every x ∈ X is a subsystem, in minimal systems all orbits must be dense.

Proposition 2.24 Dynamical system (X, f) over M is minimal if and only if all x ∈ X
are transitive points.

Proof. If (X, f) is minimal then the subsystems O(x) must be equal to X, that is, points x
are transitive. Conversely, if (X, f) is not minimal then it has a proper subsystem Y ⊊ X.
But for x ∈ Y we have O(x) ⊆ Y so x is not transitive. □

A minimal system is always transitive. Indeed, if non-empty U and V are open then by
minimality the orbit of every point in U intersects with V . So fm(U) ∩ V ̸= ∅ for some
m ∈M , confirming transitivity.

However, a minimal system over M = N does not need to be mixing:

Example 2.25. Consider again the circle rotation (T, ρα) by irrational α. By Example 2.16,
all x ∈ T are transitive points. By Proposition 2.24 the system is minimal. However, by
Example 2.20 it is not mixing. □

A factor of a minimal system is also minimal: If h : X −→ Y is a factor map then
every point y ∈ Y has a pre-image x ∈ X, and for every non-empty open U ⊆ Y the set
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h−1(U) ⊆ X is non-empty and open. By minimality the orbit of x intersects h−1(U), so it
follows that the orbit of y intersects U .

Next we show that every system has a minimal subsystem. This can be proved directly
using Zorn’s lemma. We present an elementary topological proof.

Theorem 2.26 Every dynamical system (X, f) over monoid M contains a minimal subsys-
tem.

Proof. By Proposition 1.20 the topology has a countable base B1, B2, . . . . For every i =
1, 2, . . . , let

Ui =
⋃︂

m∈M

(fm)−1(Bi) = {x ∈ X | O(x) ∩Bi ̸= ∅}

be the set of points that can be mapped to Bi by the system. Set Ui is open as a union
of open sets, so its complement Fi = X \ Ui is closed. Moreover, Fi is invariant so it is a
subsystem (or the empty set). Set Fi contains all those points whose orbits do not visit Bi.

Inductively we construct a sequence X0 ⊇ X1 ⊇ X2 ⊇ . . . of subsystems of X as follows.
It starts with X0 = X. Then suppose that Xi−1 has been defined. If Xi−1 ∩ Fi = ∅ then
Xi = Xi−1, else Xi = Xi−1 ∩ Fi. Then Xi is a subsystem. Let

Y =
∞⋂︂
i=0

Xi.

Then Y is closed and invariant, and it follows from the compactness that Y ̸= ∅. So Y is a
subsystem.

Let us show that Y is minimal. Suppose on the contrary that there exist y ∈ Y that is
not transitive in Y , that is, that for some base set Bi holds Y ∩ Bi ̸= ∅ but O(y) ∩ Bi = ∅.
The latter condition implies that y ∈ Fi. Now, Y ∩ Fi ̸= ∅ because of point y, so that
Xi−1 ∩ Fi ̸= ∅ and the construction assigns Xi = Xi−1 ∩ Fi. This means that Y ⊆ Fi, which
contradicts Y ∩Bi ̸= ∅. □

2.3 Recurrence

A periodic point x ∈ X returns exactly back to its initial value regularly under the iteration
of f . This is a very strong form of repetition. One can define a number of weaker repe-
tition properties. The most important of them, uniformly recurrence, is closely related to
minimality, and we define it for dynamical systems over arbitrary monoid M . Concepts of
recurrence and quasi-periodicity we only define for systems over N.
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Recurrent points

Let (X, f) be a dynamical system over monoid N. We say x ∈ X is recurrent if it returns
back to its every open neighborhood:

∀openU∋x,∃k > 0 : fk(x) ∈ U.

In fact, a recurrent point returns to its open neighborhoods infinitely many times:

Lemma 2.27 Point x ∈ X is recurrent if and only if its forward trajectory has a subsequence
that converges to x. In particular, a recurrent point returns to each open neighborhood of x
infinitely many times.

Proof. Let x ∈ X be recurrent. If x is periodic then x, x, . . . is a subsequence of the
trajectory. If x is not periodic we pick for every n > 0 the smallest kn > 0 such that
fkn(x) ∈ B1/n(x). Then k1 ≤ k2 ≤ . . . . The set {kn | n > 0} is infinite because fkn(x) ̸= x for
all n so that fkn(x) ̸∈ B1/m(x) for all large enough m. It follows that there are n1 < n2 < . . .
such that kn1 < kn2 < . . . , so the subsequence fkn1 (x), fkn2 (x), . . . of the trajectory converges
to x. The reverse implication is trivial, and also the last claim follows directly. □

Uniformly recurrent points

Let (X, f) be a dynamical system over an arbitrary monoid M . Point x ∈ X is uniformly
recurrent (or almost periodic) if it returns back to every open neighborhood U of x
frequently in the sense that at any time the system can return to U within bounded time.
More precisely, for every open neighborhood U of x there exists finite R ⊆M such that from
every point of the orbit of x one can get to U by one of the transformations f r, r ∈ R:

∀openU∋x,∃finiteR ⊆M, ∀k ∈M,∃r ∈ R : (f r ◦ fk)(x) ∈ U.

Over M = N, the difference between recurrent and uniform recurrent points is that the
time gaps between consecutive returns to an open neighborhood are bounded if the point is
uniformly recurrent. The bound may be different for different neighborhoods. Also recur-
rent points return to open neighborhoods infinitely many times but the time gaps between
consecutive returns do not need to be bounded.

Example 2.28. Consider the one-sided full shift (AN, σ) for A = {0, 1}. If x ∈ AN is any
sequence that contains as finite subwords all u ∈ A∗ then x is recurrent but not uniformly
recurrent. Recurrence follows from the fact that every finite word necessarily appears in-
finitely many times in x. But the return times to the cylinder [x0] with domain {0} are not
bounded because x contains as subword 0n and 1n with arbitrary large n. □

Uniformly recurrent points have the important property that all points of minimal dy-
namical systems are uniformly recurrent. Minimal dynamical systems are precisely the orbit
closures of uniformly recurrent points.
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Theorem 2.29 The orbit closure O(x) is minimal if and only if x is uniformly recurrent.

Proof. Assume O(x) is minimal. Let U be an arbitrary open neighborhood of x. All points
of a minimal system are transitive (Proposition 2.24) so for every y ∈ O(x) there exists
m ∈ M such that fm(y) ∈ U . This means that the open sets (fm)−1(U) over m ∈ M cover
O(x). By compactness there is a finite subcover, say (f r)−1(U) for r ∈ R. But this means
that for all y ∈ O(x) there exists r ∈ R such that f r(y) ∈ U , confirming that x is uniformly
recurrent.

Conversely, assume that x is uniformly recurrent. Let y ∈ O(x) be arbitrary. Let us
show that x ∈ O(y). It then follows that O(x) = O(y) so that y is transitive in O(x). This
is enough to show that O(x) is minimal.

So let U be an arbitrary open neighborhood of x. Because we are in a metric space,
there is an open neighborhood V of x such that V ⊆ V ⊆ U . (To see this, note that an
ε-ball around x is contained in U and we can take as V the 1

2
ε-ball around x.) Because x is

uniformly recurrent, there is finite R ⊆M such that

O(x) ⊆
⋃︂
r∈R

(f r)−1(V ).

By taking the closure,

O(x) ⊆
⋃︂
r∈R

(f r)−1(V ) ⊆
⋃︂
r∈R

(f r)−1(U).

In particular, for y ∈ O(x) we have that f r(y) ∈ U for some r ∈ R. Because U was arbitrary,
it follows that x ∈ O(y). □

Corollary 2.30 Minimal systems are orbit closures of uniformly recurrent points, and all
points of a minimal system are uniformly recurrent. Every dynamical system contains a
uniformly recurrent point. □

Example 2.31. It was shown in Example 2.25 that the circle rotation (T, ρα) by irrational
α is minimal. It follows that every x ∈ T is uniformly recurrent. By Example 2.2 the points
x ∈ T are not periodic. □

Quasi-periodic points

Let (X, f) be a dynamical system over monoid M = N or M = Z. A quasi-periodic x
returns back to each neighborhood periodically:

∀openU∋x,∃p,∀i ∈M : f ip(x) ∈ U.

We clearly have the following implications:

x periodic =⇒ x quasi-periodic =⇒ x uniformly recurrent =⇒ x recurrent
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Example 2.32. By Example 2.31 all x ∈ T are non-periodic but uniformly recurrent under
the rotation f = ρα by an irrational α. There are no quasi-periodic points because, for every
period p, the set {x, fp(x), f 2p(x), . . . } is the orbit of x under the irrational rotation by pα,
and hence dense. □

Example 2.33. Quasi-periodic elements of AN and AZ are called Toeplitz-sequences. For
M = N or M = Z, a configuration x ∈ AM is a Toeplitz-sequence if for every m ∈ M there
exists p > 0 such that xm = xm+ip for all i ∈ M . In other words, every symbol belongs to
an infinite arithmetic progression of identical symbols. Any quasi-periodic point must have
this property, as seen by considering cylinders with singleton domain in the definition of
quasi-periodicity. Conversely, if x is Toeplitz then every finite pattern in x must be part of
an arithmetic progression of identical patterns, where as the period one can take the least
common multiple of the periods for the individual symbols of the pattern, guaranteed by the
Toeplitz-property. Hence the quasi-periodicity follows as cylinders are a base of the topology.

For an example of a non-periodic Toeplitz-sequence, consider A = {0, 1} and the sequence
x ∈ AN where xk = 1 if and only if k + 1 = m2n for some odd integers n,m. The sequence
starts 010001010100 . . . . Every positive integer k+1 can be written uniquely as k+1 = m2n

for an odd m. With period p = 2n+1 we then have that xk = xk+ip for all i ∈ N, because
k + ip + 1 = m2n + i2n+1 = (m + 2i)2n and m + 2i is odd. The sequence is clearly not
periodic: For every p we have that xp−1 ̸= x2p−1. □

2.4 Sensitivity to initial conditions

Some dynamical systems have the property that small changes in the initial state may be
amplified over time (“butterfly effect”). Also here we have several variants of the phenomenon
depending on the strength of the amplification. At the opposite end of the spectrum we have
equicontinuous systems that are stable under perturbations.

Equicontinuity

Recall that a family S of functions X −→ Y between metric spaces is called equicontinuous
at x ∈ X if all f ∈ S are continuous at x using a common parameter value: For every ε > 0
there exists δ > 0 such that for all f ∈ S holds f(Bδ(x)) ⊆ Bε(f(x)).

Let (X, f) be a dynamical system over monoid M . The system is equicontinuous at
x ∈ X if the family {fm | m ∈ M} is equicontinuous at x. In this case we say that x is an
equicontinuity point of the system. Stated briefly, the system is equicontinuous at x iff

∀ε > 0,∃δ > 0, ∀m ∈M, ∀y ∈ Bδ(x) : d(fm(y), fm(x)) < ε.

We say that a system is equicontinuous if it is equicontinuous at all x ∈ X, and we call it
almost equicontinuous if the set of equicontinuity points is a residual set.
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Example 2.34. The circle rotation (T, ρα) is equicontinuous. In fact, any isometry is
equicontinuous by definition. □

Proposition 2.35 In a transitive dynamical system (X, f) over an arbitrary monoid M ,
every equicontinuity point is transitive.

Proof. Let x ∈ X be an equicontinuity point, and let z ∈ X and ε > 0 be arbitrary. By the
equicontinuity of x there exists an open neighborhood U of x such that d(fm(y), fm(x)) < ε/2
for all y ∈ U and all m ∈ M . By transitivity there is y ∈ U and m ∈ M such that
d(fm(y), z) < ε/2. Using the triangle inequality we get that d(fm(x), z) ≤ d(fm(y), fm(x))+
d(fm(y), z) < ε. We conclude that O(x) is dense.

□

Example 2.36. In the circle rotation (T, ρα) all x ∈ T are equicontinuity points. If
α is irrational then the system is transitive, and all points are transitive confirming the
proposition above. If α is rational then no point is transitive: this shows that the assumption
about transitivity of the system is necessary in the proposition. □

Sensitivity

Dynamical system (X, f) over monoid M is called sensitive if there exists ε > 0, the
sensitivity constant, such that arbitrarily close to any point there is another point and a
time when the trajectories of the two points deviate by at least ε:

∃ε > 0,∀x ∈ X, ∀δ > 0,∃m ∈M,∃y ∈ Bδ(x) : d(fm(y), fm(x)) ≥ ε.

A sensitive system has no equicontinuity points. The converse is not true in general, but if a
system over a group or over the monoid N is transitive then we have the following dichotomy.

Proposition 2.37 Let M be a group or M = N. Let (X, f) be a transitive dynamical system
over M and let E ⊆ X be the set of its equicontinuity points. Then exactly one of the two
following conditions holds:

(i) The system is sensitive and E = ∅.

(ii) The system is not sensitive and E is a residual set (and hence non-empty).

Proof. For any ε > 0 we define the set

Eε = {x ∈ X | ∃δ > 0,∀m ∈M : fm(Bδ(x)) ⊆ Bε(f
m(x))}
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of points that satisfy the equicontinuity condition for ε. This means that E is the intersection
of Eε over all ε > 0. Note also that (X, f) is sensitive with sensitivity constant ε if and only
if Eε = ∅.
1◦ Assume that some Eε is empty. Then E = ∅ and the system (X, f) is sensitive with
sensitivity constant ε, so condition (i) holds.

2◦ Assume then that Eε ̸= ∅ for all ε > 0. Then the system does not have a sensitivity
constant and it is hence not sensitive. It remains to prove that E is a residual set, that is,
a countable intersection of dense open sets.

We start by proving backward invariance: that (fk)−1(Eε) ⊆ Eε, for all k ∈ M . This
is the only part of the proof where we use the fact that M is a group or M = N. So let
fk(x) ∈ Eε. Then there exists δ > 0 such that fm(Bδ(f

k(x))) ⊆ Bε(f
m(fk(x))) for all

m ∈ M . Because of continuity of fk, there exists δ′ > 0 such that fk(Bδ′(x)) ⊆ Bδ(f
k(x)),

so that
fkm(Bδ′(x)) ⊆ fm(Bδ(f

k(x))) ⊆ Bε(f
km(x))

holds for all m ∈ M . This proves that fn(Bδ′(x)) ⊆ Bε(f
n(x)) for all n ∈ kM . If M

is a group then kM = M so we have x ∈ Eε. If M = N then kM contains all n ∈ N
except 0, 1, . . . , k−1. But by using continuity of fn, choosing δ′ sufficiently small guarantees
fn(Bδ′(x)) ⊆ Bε(f

n(x)) also for these finitely many values of n. Hence x ∈ Eε also in this
case.

Let us next prove that there is an open set Uε between Eε and E2ε. Consider any x ∈ Eε.
When fm(Bδ(x)) ⊆ Bε(f

m(x)) then for any y ∈ Bδ/2(x) we have that

fm(Bδ/2(y)) ⊆ fm(Bδ(x)) ⊆ Bε(f
m(x)) ⊆ B2ε(f

m(y)).

This means that every x ∈ Eε has an open neighborhood Bδ/2(x) that is contained in E2ε.
The union of these open neighborhoods over all x ∈ Eε is an open set Uε that satisfies

Eε ⊆ Uε ⊆ E2ε,

as required.
It is now clear that E is the countable intersection of open sets U1/n, over n = 1, 2, . . . .

It suffices to show that each Uε is dense. So let U ̸= ∅ be an open set. By transitivity, there
is m ∈M such that U ∩ (fm)−1(Uε/2) ̸= ∅. On the other hand,

(fm)−1(Uε/2) ⊆ (fm)−1(Eε) ⊆ Eε ⊆ Uε

so that U ∩ Uε ̸= ∅. In other words Uε is dense. □

Expansivity

A very strong form of sensitivity to initial conditions is expansivity. It requires that there
exists ε > 0, the expansivity constant, such that the trajectories of any distinct points
eventually deviate by at least ε:

∃ε > 0,∀x, y ∈ X : x ̸= y =⇒ (∃m ∈M : d(fm(y), fm(x)) ≥ ε).
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If space X has no isolated points then expansivity implies sensitivity, with the same constant
ε. Indeed, every open neighborhood of every point x contains another point y ̸= x, which
by expansivity deviates from the trajectory of x under the dynamics.

Example 2.38. Consider the full shift (AM , σ) over monoid M . If x, y ∈ AM and x ̸= y
then xm ̸= ym for some m ∈ M . But then σm(x) and σm(y) differ at cell 1M . This means
the system is expansive, where we can choose expansivity constant ε > 0 so that any two
configurations differing at cell 1M have distance at least ε.

Clearly any subsystem of an expansive system is also expansive. We see that all subsys-
tems of full shifts (called subshifts) are also expansive. These are the main systems studied
by symbolic dynamics so that we always have this strong form of sensitivity. □

2.5 Chaos

We have learned about three types of properties of dynamical systems: mixing properties
(transitivity, mixingness, minimality, transitive points), regularity properties (periodicity,
quasi-periodicity, recurrence, uniform recurrence), and stability vs. sensitivity properties
(equicontinuity, sensitivity, equicontinuity points, expansivity).

In a chaotic dynamical system there is regular and transitive behavior densely everywhere
in the phase space, with sensitivity so that small changes in the initial state may change
regular behavior into transitive behavior or vice versa. Different precise definitions of chaos
have been proposed. One of the classical definitions is the following. A dynamical system
(X, f) over the monoid N is called Devaney chaotic if

1. it is transitive,

2. it is sensitive, and

3. periodic points are dense in X.

It turns out that if X is an infinite set then the second condition is implied by the other two:
an infinite transitive system with a dense set of periodic points is automatically sensitive
to initial conditions. We obtain this as a corollary to the following result that is stated for
systems over arbitrary monoids:

Lemma 2.39 Suppose that a dynamical system (X, f) over a monoid M satisfies the fol-
lowing properties:

(a) The system is transitive.

(b) There exist orbits with a positive distance from each other:

∃a > 0 ∃u, v ∈ X ∀n, k ∈M : d(fn(u), fk(v)) > a.

(c) The set of uniformly recurrent points is dense in X.
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Then the system is sensitive.

Proof. Let a > 0 and u, v ∈ X be as in (b). To prove that ε = a/8 works as a sensitivity
constant, let x ∈ X and let δ > 0 be arbitrary, as in the definition of sensitivity. We may
assume, without loss of generality, that δ < a/8.

By (b) and the triangle equality, either d(x, fn(u)) > a/2 for all n ∈M or d(x, fk(v)) >
a/2 for all k ∈M . By symmetry we may assume the former. Let U = Bδ(x) denote the open
ball of radius δ around x. By the condition (c) there exists a uniformly recurrent y ∈ U .
So for some finite R ⊂ M we have that whenever k ∈ M there exists r ∈ R such that
(f r ◦ fk)(y) ∈ U . The set

V =
⋂︂
r∈R

(f r)−1(Bδ(f
r(u)))

is open as a finite intersection of open sets. It is also non-empty because u ∈ V . By
transitivity of the system, there exists z ∈ U and k ∈ M such that fk(z) ∈ V . As noted
above, there exists r ∈ R such that (f r ◦ fk)(y) ∈ U . On the other hand, because fk(z) ∈ V
and r ∈ R, we have that (f r ◦ fk)(z) ∈ Bδ(f

r(u)). Thus, by the triangle inequality,

d((f r ◦ fk)(y), (f r ◦ fk)(z)) ≥ d(x, f r(u))− d(x, (f r ◦ fk)(y))− d((f r ◦ fk)(z), f r(u))
> a/2− δ − δ
> a/2− a/8− a/8
= a/4.

Hence, either d((f r ◦ fk)(y), (f r ◦ fk)(x)) > a/8 or d((f r ◦ fk)(z), (f r ◦ fk)(x)) > a/8. Thus
either y or z confirms sensitivity. □

Corollary 2.40 Let (X, f) be a dynamical system over the monoid N. Assume that X is
infinite, the system is transitive, and the periodic points are dense. Then the system is
sensitive.

Proof. Let u be one of the temporally periodic points. Its orbit is finite and therefore the
complement of the orbit is open. Because X is infinite the complement of the orbit is also
non-empty. By the density of the periodic points there exists a periodic point v in the
complement. The finite, periodic orbits of u and v are disjoint and therefore they have a
positive distance from each other. Thus the condition (b) of the previous lemma is satisfied.
Because periodic points are automatically uniformly recurrent, also (c) is satisfied. It follows
from the lemma that the system is sensitive. □

Example 2.41. The doubling map ×2 : T −→ T of Example 2.3 is Devaney chaotic.
Indeed, as noted in Example 2.3, rational numbers with odd denominators are periodic, so
the periodic points are densely in T. By Example 2.23 the doubling map is mixing and hence
transitive. Sensitivity now follows from the corollary above. □
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3 Symbolic dynamics

In symbolic dynamics the objects of study are the full shift dynamical systems (AM , σ)
over monoids M , introduced in Example 2.14, their subsystems and their endomorphisms.
Subsystems are called subshifts. By the definition of a subsystem, a subshift is a non-empty
topologically closed subset S ⊆ AM such that σm(S) ⊆ S for all m ∈ M . If M is a group
then from σm−1

(S) ⊆ S we get that S = σm(σm−1
(S)) ⊆ σm(S), so that for a subshift S

over a group we have that σm(S) = S for all m ∈M .
In Section 3.1 we give basic definitions that apply to all monoids M . After that, in the

rest of these notes, the focus is on the one-dimensional cases M = Z and M = N. These we
first saw in Examples 2.5 and 2.6. Their subsystems are two-sided and one-sided subshifts,
respectively.

3.1 Subshifts: basic definitions

A subshift S is fully characterized by the finite patterns that occur in its configurations.
Recall that a finite pattern w ∈ AD over alphabet A and monoid M assigns letters to cells in
a finite domain D ⊆M , and that the corresponding cylinder [w] contains all configurations
x ∈ AM such that x|D = w.

We define
LS = {w ∈ AD | D ⊆M finite, [w] ∩ S ̸= ∅}

and call LS the language of S. It consists of all those finite patterns that occur in some
element of S.

Proposition 3.1 If S ̸= T are distinct subshifts then LS ̸= LT .

Proof. This follows directly from the fact that for any subshift S ⊆ AM ,

AM \ S =
⋃︂

w ̸∈LS

[w].

Indeed, using the openness of AM \ S and the fact that cylinders are a base, we have that
x ̸∈ S if and only if x ∈ [w] for some w ̸∈ LS. □

Note that there are sets of finite patterns that are not a language of any subshift. An-
other, concrete way to describe subshifts is in terms of forbidden patterns. We say that
configuration x ∈ AM avoids pattern w if σm(x) ̸∈ [w] holds for all m ∈ M , that is, no
translate of x has pattern w at D.

Let P be a set of finite patterns. The set of configurations that avoid all patterns in P
is denoted by

XP = {x ∈ AM | ∀m ∈M,∀w ∈ P : σm(x) ̸∈ [w] }.
It is shown in the following proposition that, unless empty, set XP is a subshift, and that

every subshift arises this way. Note that every set P then defines some subshift XP , but
there may be several different sets that define the same subshift.
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Proposition 3.2 Set S ⊆ AM is a subshift (or the empty set) if and only if S = XP for a
set P of finite patterns.

Proof. The complement of XP is

AM \XP =
⋃︂

m∈M

⋃︂
w∈P

(σm)−1([w]),

so it is open as a union of open sets (σm)−1([w]). We conclude that XP is topologically
closed. Let us prove that σm(XP ) ⊆ XP : If x is such that σm(x) ̸∈ XP for some m ∈ M ,
then there are k ∈M and w ∈ P such that σk(σm(x)) ∈ [w]. But then σmk(x) ∈ [w], proving
that x ̸∈ XP . We conclude that σm(XP ) ⊆ XP , and therefore XP is a subshift (or the empty
set).

Conversely, let S be any subshift (or the empty set). Let P be the complement of LS, so
that w ∈ P if and only if [w] ∩ S = ∅. Let us show that S = XP :

“⊆” If x ̸∈ XP then σm(x) ∈ [w] for some m ∈ M and w ∈ P . But if x ∈ S then also
σm(x) ∈ S. In this case [w] ∩ S ̸= ∅, a contradiction with w ∈ P .

“⊇” If x ̸∈ S then, by the openness of AM \ S, there exists a cylinder [w] such that x ∈ [w]
and [w] ∩ S = ∅. By the definition of P we have w ∈ P . We conclude that x contains
a forbidden pattern w, hence w ̸∈ XP .

□

Corollary 3.3 For every subshift S we have S = XP where P is the complement of LS.

We mostly use forbidden patterns to define subshifts. This formalism also provides a
fruitful approach to classifying subshifts.

Subshifts of finite type

The simplest subshifts are those defined by forbidding a finite number of patterns: Subshift
S is called a subshift of finite type (SFT) if S = XP for a finite set P . Note that the
same subshift may be defined using different sets of forbidden patterns. So if a subshift
is defined by an infinite set of forbidden patterns this, naturally, does not imply that the
subshift would not be of finite type: there maybe another finite set that defines it.

Example 3.4. Let M = Z and A = {0, 1}. Consider the SFT Sgm defined by forbidding
word 11, that is, S = XP for P = {11}. This is the golden mean shift. □

Example 3.5. Consider the subshift Seven ⊆ {0, 1}Z over M = Z, defined by forbidding
words 102n+11 for all n ∈ N. This is called the even shift because any two consecutive
occurrences of 1’s must have an even number of 0’s between them. The subshift is defined
by forbidding a regular language. Then also the language of the subshifts – in this case the
set of finite words that appear in the subshift – is regular, recognized by the finite automaton
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where all states are considered initial and final. Such subshifts obtained by forbidding a
regular language are called sofic. These will be discussed later in Section 3.2. The even shift
is not of finite type: suppose Seven = XP for a finite set P of finite patterns. Let n be such
that the domains of all patterns in P fit inD = {−n, . . . , n−1}. Configurations x1 =

∞102n1∞

and x2 =∞102n+11∞ contain identical subwords of length 2n. Because x2 ̸∈ Seven there is
an occurrence of a forbidden pattern in x2, which means that there is the same forbidden
pattern in x1. But this contradicts the fact that x1 ∈ Seven. □

Example 3.6. Once again, let M = Z and A = {0, 1}. Now we forbid all patterns that
contain both symbols 0 and 1. This only allows two configurations ∞0∞ and ∞1∞. Although
we forbid infinitely many patterns this subshift is of finite type: the same subshift is defined
by forbidding two patterns 01 and 10.

□

Homomorphisms

Let A and B be alphabets, and let S ⊆ AM be a subshift. Let D ⊆ M be finite (the
neighborhood) and let ϕ : (LS ∩AD) −→ B be a function that assigns a symbol of B to each
D-pattern that appears in some element of S. The local rule ϕ determines the block map
f : S −→ BM by f(x)m = ϕ(σm(x)|D) for all x ∈ S and all m ∈M . Function f applies ϕ at
each cell on the D-pattern around the cell.

Note the similarity of the definition to cellular automata, discussed in Example 2.7.
Analogously to Example 2.7, it is easy to see that f is a homomorphism (S, σ) −→ (BM , σ).
To see continuity, consider any converging sequence x(1), x(2), . . . of configurations, with
limit limi→∞ x(i) = x. By convergence, for every m ∈ M and all sufficiently large n
we have x

(n)
|mD = x|mD, so that also f(x(n))m = f(x)m. This means that the sequence

f(x(1)), f(x(2)), . . . converges to f(x), and by Proposition 1.25 function f is continuous. To
see commutation with σm for all m ∈M , one calculates for any x ∈ AM and k ∈M that

f(σm(x))k = ϕ(σk(σm(x))|D) = ϕ(σmk(x)|D) = f(x)mk = σm(f(x))k,

so that f ◦ σm = σm ◦ f .
In fact, block maps are precisely the homomorphisms between subshifts:

Theorem 3.7 (Curtis-Hedlund-Lyndon) Let S ⊆ AM be a subshift. A function f :
S −→ BM is a homomorphism from (S, σ) to (BM , σ) if and only if it is a block map.
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Proof. We saw above that block maps are homomorphisms so it remains to show that every
homomorphism is a block map. Let f : S −→ BM be any homomorphism. It is uniformly
continuous as a continuous function between compact metric spaces (homework). It follows
that there is a finite D ⊆ M such that x|D = y|D =⇒ f(x)1M = f(y)1M holds for x, y ∈ S.
Define ϕ : (LS ∩ AD) −→ B so that ϕ(x|D) = f(x)1M for all x ∈ S. By commutation of f
with σ we then have for all x ∈ S and all m ∈M that

f(x)m = σm(f(x))1M = f(σm(x))1M = ϕ(σm(x)|D),

which confirms that f is the block map determined by ϕ.
□

Example 3.8. Let Sgm be the golden mean subshift of Example 3.4. Let D = {0, 1} ⊆ Z,
and define local function ϕ : (LSgm ∩ {0, 1}D) −→ {0, 1} by

00 ↦→ 1,
01 ↦→ 0,
10 ↦→ 0.

Let f : Sgm −→ {0, 1}Z be the corresponding block map. Then in f(Sgm) consecutive 1’s
must be separated by an even number of 0’s. Indeed, a pre-image of any word in 10∗1 must
have form 00(10)n0 for some n, and this word is mapped to 102n1. So f(Sgm) is a subset of
Seven, the even subshift of Example 3.5. But in fact every x ∈ Seven has a pre-image so that
f is a factor map from the golden mean subshift onto the even subshift. □

Example 3.9. By Theorem 3.7, the endomorphisms of a full shift are precisely its cellular
automata, and its automorphisms are precisely the reversible cellular automata. This holds
over any monoid M . More generally, the endomorphisms of a subshift S are called cellular
automata on subshift S. By Theorem 3.7 they are all block maps. □

Now we can prove that a subshift that is conjugate to an SFT is also an SFT. We first
collect in a lemma simple properties that we combine to obtain this result.

Lemma 3.10 Following three properties hold:

(a) Let f : AM −→ AM be an endomorphism of a full shift. Its fixed point set {x ∈
AM | f(x) = x} is an SFT (or empty).

(b) Let f : AM −→ BM be a homomorphism between full shifts, and let S ⊆ BM be an
SFT. Then f−1(S) is an SFT (or empty).

(c) A finite intersection of SFTs is an SFT (or empty).
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Proof. (a) By Theorem 3.7, homomorphism f : AM −→ AM is a block map, determined by
a finite neighborhood D ⊆ M and a local rule ϕ : AD −→ A. Without loss of generality we
may assume that 1M ∈ D. Define P = {w ∈ AD | ϕ(w) ̸= w1M}. Then f(x) = x if and only
if x ∈ XP :

x ̸∈ XP ⇐⇒ ∃m ∈M : σm(x)|D ∈ P
⇐⇒ ∃m ∈M : ϕ(σm(x)|D) ̸= σm(x)1M
⇐⇒ ∃m ∈M : f(x)m ̸= xm

⇐⇒ f(x) ̸= x.

Because P is finite, the fixed point set XP is an SFT or empty.

(b) By Theorem 3.7, homomorphism f : AM −→ BM is a block map, determined by a finite
neighborhood D ⊆M and a local rule ϕ : AD −→ B. Because S ⊆ BM is an SFT, there is a
finite set P of patterns such that S = XP . Without loss of generality we may assume that all
patterns in P have the same finite domain E ⊆M . Let F = ED, and define g : AF −→ BE

in such a way that for all x ∈ AM

g(x|F ) = f(x)|E.

This can be done because x|F = y|F =⇒ f(x)|E = f(y)|E.
Let P ′ = {w ∈ AF | g(w) ∈ P}. Then XP ′ = f−1(S): We have x ̸∈ XP ′ if and only if

for some m ∈ M we have g(σm(x)|F ) ∈ P . And we have f(x) ̸∈ S if and only if for some
m ∈M we have σm(f(x))|E ∈ P . But these two conditions are equivalent because

σm(f(x))|E = f(σm(x))|E = g(σm(x)|F ).

(c) Clearly XP ∩XQ = XP∪Q. We see that a non-empty intersection of two SFTs is an SFT.
□

Proposition 3.11 Let S ⊆ AM and T ⊆ BM be conjugate subshifts. If S is of finite type
so is T .

Proof. Let f : S −→ T be a conjugacy. By Theorem 3.7 it is a block map, defined by a finite
neighborhood D ⊆ M and a local rule ϕ : (LS ∩ AD) −→ B. We may, arbitrarily, extend ϕ
to D-patterns outside of LS. We get a block map f̂ : AM −→ BM such that f̂|S = f .

Let g : T −→ S be the inverse of f . It is also a conjugacy so, as above, there is a block
map ĝ : BM −→ AM such that ĝ|T = g.

By Lemma 3.10(a), the set F = {x ∈ BM | f̂(ĝ(x)) = x} of fixed points of f̂ ◦ ĝ is
an SFT. By Lemma 3.10(b), the set P = ĝ−1(S) = {x ∈ BM | ĝ(x) ∈ S} is an SFT.
By Lemma 3.10(c), the intersection F ∩ P is an SFT. But F ∩ P = T : If x ∈ T then
ĝ(x) = g(x) ∈ S and f̂(ĝ(x)) = f̂(g(x)) = f(g(x)) = x. Conversely, if x ∈ F ∩ P then
ĝ(x) ∈ S so that x = f̂(ĝ(x)) = f(ĝ(x)) ∈ T . □

40



Sofic shifts

Sofic shifts are factors of SFTs: A subshift S ⊆ BM is sofic if there exists a subshift of finite
type S0 ⊆ AM and a homomorphism h : S0 −→ BM such that S = h(S0). Subshift S0 is
an SFT cover of S. We prove in Section 3.2 that in the one-dimensional case M = Z this
definition coincides with the property of being determined by forbidding a regular language,
as discussed in Example 3.5.

Intuitively, an SFT cover of a sofic shift provides “hidden information” that is erased by
the factor map. Namely, consider S ′ ⊆ AM ×BM such that (x, y) ∈ S ′ if and only if x ∈ S0

and y = h(x). Set S ′ can be viewed as a subshift over alphabet A × B by identifying the
elements of (A× B)M and AM × BM in the natural way. Subshift S ′ is conjugate to S0 by
the map x ↦→ (x, h(x)). The projection π : S ′ −→ S that erases the first track, defined by
(x, y) ↦→ y, is a factor map. So S ′ is an SFT cover of S where the hidden information is the
content of the first track.

Example 3.12. By Example 3.8 the even subshift is a factor of the golden mean SFT and
hence it is sofic. By Example 3.5 it is defined by forbidding words of a regular language.
The golden mean subshift is an SFT cover of the even shift.

Directly from the definition of sofic shifts we obtain the following:

Proposition 3.13 Let S ⊆ AM be a sofic shift and T ⊆ BM a subshift. If T is a factor of
S then T is sofic. In particular, if T is conjugate to S then T is sofic.

Proof. Let S0 be an SFT cover of S and h : S0 −→ S a factor map. If f : S −→ T is a factor
map then f ◦h : S0 −→ T is also a factor map, proving that T is sofic with SFT cover S0. □

Effective subshifts

In the following we assume that M is a finitely generated monoid with decidable word
problem. This means that there exists an algorithm to determine if two given products
g1 . . . gn and g′1 . . . g

′
k of generators are equal. It is easy to see that decidability of the word

problem is independent of the finite generator set used.
A finite pattern is given as a finite set of pairs (m, a) where m ∈M (given as a product

of generators) and a ∈ A. The pattern assigns symbol a in cell m. Decidability of the
word problem is used to make sure that a given finite pattern is consistent, that is, that
it does not try to assign two different symbols in the same monoid element. One can then
also algorithmically determine if two given finite patterns are identical. Moreover, there is a
Gödel numbering of finite subsets of the monoid: There is a list D1, D2 . . . of finite Di ⊆M
such that every finite subset of M appears exactly once in the list, and there are algorithms
to produce Di for any given number i, and to produce i such that Di = D for any given
finite D ⊆ M . To get such an enumeration one can produce, in some fixed order, for every
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n = 1, 2, 3, . . . the (finite) set of all finite subsets of M whose elements are a product of at
most n generators, and add to the list only those sets that are not yet there.

A set P of finite patterns is called recursive if there is an algorithm to decide if a given
pattern w is in P , and P is called recursively enumerable if there is a semi-algorithm to
recognize elements of P . Equivalently to the semi-algorithm, elements of a recursively enu-
merable set are listed by an enumeration algorithm that produces for any given i the i’th
pattern in the list.

A subshift XP defined by a recursively enumerable set P of forbidden patterns is called
effective. In fact, effective subshifts are equivalently defined by a recursive set of forbidden
patterns, as shown by Proposition 3.15 below. Its proof is based on the following observation:

Lemma 3.14 Fix a Gödel numbering D1, D2 . . . of all finite subsets of M . Let Alg be an
algorithm that produces for any given positive integer n a finite pattern wn with domain Din.
If i1 ≤ i2 ≤ i3 ≤ . . . then P = {wn | n ∈ N} is recursive.

Proof. Finite sets are recursive. Let us then assume that P is infinite. An algorithm to test
if a given finite pattern w is in P works as follows: First compute i such that the domain of
w is Di. Using algorithm Alg enumerate w1, w2, . . . until

(a) we find wn = w, or

(b) we find wn whose domain Din has in > i, i.e., whose domain comes later in the Gödel
numbering than the domain of w.

In case (a) we have w ∈ P , and in case (b) we can conclude that w ̸∈ P because all patterns
that come later in the list have domains Dj with j > i. Note that eventually either (a) or
(b) must happen because P is infinite and therefore contains patterns with a domain Dj for
some j > i. □

Let us call a list w1, w2, . . . of finite patterns monotonic if it has the property of the
lemma: i1 ≤ i2 ≤ i3 ≤ . . . where Din is the domain of pattern wn.

Proposition 3.15 Let M be a finitely generated monoid with decidable word problem, and
let S ⊆ AM be a subshift. The following are equivalent:

(a) S = XP for a recursively enumerable set P of finite patterns, that is, S is effective,

(b) S = XP for a recursive set P of finite patterns,

(c) The complement of LS is recursively enumerable.

Proof. The implication (b) =⇒ (a) is trivial because every recursive set is recursively enu-
merable, and the implication (c) =⇒ (a) follows directly from Corollary 3.3.

Let us prove next that (a) implies (b). First we fix a Gödel numbering D1, D2 . . . of all
finite subsets of the monoid. Let S = XP for a recursively enumerable set P of finite patterns,
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and let w1, w2, . . . be a list of the elements of P produced by an enumeration algorithm Alg.
The idea of the proof is to “pad” the patterns wi into bigger domains to obtain a monotonic
enumeration of bigger patterns w′

1, w
′
2, . . . such that P ′ = {w′

i | i = 1, 2, 3 . . . } defines the
same subshift S = XP ′ as P . The new list is produced by the following algorithm:

n ←− 0

for i=1,2,3,. . . do

begin

w ←− wi

D ←− domain of wi

repeat

n←− n+1

until D ⊆ Dn

output all e ∈ ADn such that e|D = w
end

Let P ′ be the set of patterns produced by the algorithm. It is clear – because n never
decreases – that patterns are produced in monotonic order with respect to Gödel numbering
D1, D2 . . . . By Lemma 3.14 we have that P ′ is a recursive set. Moreover:

� For every e ∈ P ′ with domain D′, there exists w ∈ P with domain D ⊆ D′ such that
w = e|D. It follows that XP ⊆ XP ′ .

� For every w ∈ P with domain D, there exists domain D′ such that D ⊆ D′ and all
patterns e ∈ AD′

with e|D = w are in P ′. It follows that XP ′ ⊆ XP .

We conclude that XP ′ = XP .

Let us prove that (a) implies (c). Let S = XP for a recursively enumerable set P of
finite patterns. For a finite pattern w ∈ AD and for m ∈ M , the translate w(m) ∈ AmD of
pattern w by m is defined by (w(m))mn = wn for all n ∈ D. Then σm(x) ∈ [w] if and only if
x ∈ [w(m)]. The set P ′ = {w(m) | w ∈ P,m ∈ M} of all translates of patterns in P is also
recursively enumerable and XP = XP ′ . We have that

AM \ S =
⋃︂
u∈P ′

[u]

because x ∈ S if and only if x ̸∈ [u] for all u ∈ P ′.
A finite pattern w ∈ AD is in the complement of LS if and only if [w] ∩ S = ∅. This is

equivalent to

[w] ⊆
⋃︂
u∈P ′

[u].

By compactness of [w], this is further equivalent to the existence of a finite F ⊆ P ′ such
that

[w] ⊆
⋃︂
u∈F

[u].

43



This last condition can be tested algorithmically when w and F are given: One generates
all patterns e ∈ AE where E is the union of the domains of w and the patterns in F , and
verifies that for each such e, either e|D ̸= w or e|D(u) = u for some u ∈ F with domain D(u).
Because all finite subsets of a recursively enumerable P ′ can be recursively enumerated, we
have a semi-algorithm for the complement of LS. □

3.2 One-dimensional symbolic dynamics

See the last homework set for some results.
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