
Introduction

A discrete time topological dynamical system is a continuous transforma-
tion

f : X −→ X

on a compact metric space X . Iterating the system from an initial point
x ∈ X yields a trajectory

x 7→ f (x) 7→ f 2(x) 7→ . . .

One is typically interested in how sensitive the system is small changes in the
initial point x, or in mixing properties of the system, or in identifying attractors
or subsystems, etc.



Example. Let X = [0, 1] and f (x) = 4x(1− x), the so-called Logistic map.

An initial point x = 0.5 has the trajectory

0.5 7→ 1 7→ 0 7→ 0 . . .

that leads to a fixed point in two steps. The system is chaotic in the sense
that a tiny change in the initial point may get magnified and lead to a totally
different trajectory (butterfly effect).

Here are the first 20 iterates from x = 0.501:



An observer can only observe a system up to a certain precision =⇒ space
X is partitioned into a finite number of mutually distinguishable parts:
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The observed trajectories are then infinite words (=sequences of symbols), rep-
resenting the observations at times t = 0, 1, 2, . . .

Some sequence may be impossible, e.g., maybe there is no point whose trajec-
tory reads acd . . . . Then word acd does not appear in any valid sequence. This
leads to subshifts: sets of sequences obtained by forbidding some finite words.



Different types on subshifts based on the complexity of the forbidden set:

� finitely many forbidden words =⇒ subshift of finite type

� regular language forbidden =⇒ sofic subshift

� RE language forbidden =⇒ effective subshift

If f is bijective then one can also consider two-way infinite trajectories

. . . f−2(x), f−1(x), x, f (x), f 2(x) . . . ,

which leads to bi-infinite words and two-sided subshifts.

More generally, we may consider dynamical systems with several transforma-
tions f1, . . . , fn that can be applied in an arbitrary order.



These topics are studied in the field of topological dynamics. Everything
hinges on f being a continuous map of a compact metric space. Thus we begin
with a short review of metric spaces, topology, compactness and continuity.

Symbolic dynamics is a sub-field of topological dynamics where the consid-
ered systems are shifts on sets of infinite words (or infinite configurations).
These sets are given a suitable metric that makes them into compact spaces,
and thus the general results of topological dynamics can be applied.



Notations

• The natural numbers N = {0, 1, 2, . . . } contain 0.

• Composition of functions is from right-to-left so

(g ◦ f )(x) = g(f (x)).

• For sets A and B, we denote by BA the set of functions

f : A −→ B.

• The restriction of function f : A −→ B to subset S ⊆ A is denoted by f|S.

• For a function f : A −→ B any S ⊆ A and T ⊆ B, we denote

f−1(T ) = {a ∈ A | f (a) ∈ T},
f (S) = {f (s) | s ∈ S}.

• idA the identity function A −→ A.



Metric spaces and topology

The usual Euclidean distance d on Rk has the following properties: For all
x, y, z ∈ Rk

(a) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y; (positivity),

(b) d(x, y) = d(y, x); (symmetry) and

(c) d(x, y) ≤ d(x, z) + d(z, y); (the triangle inequality).

Many properties of the space can be proved using these properties only, so it
makes sense to define: A metric space is a pair (X, d) where X is a set and

d : X ×X −→ R

is a metric (a function that measures distances between elements of X) that
satisfies (a), (b) and (c) for all elements x, y, z ∈ X .



For every ε > 0 and x ∈ X we denote

Bε(x) = {y ∈ X | d(x, y) < ε}

and call Bε(x) the (open) ε-ball with center x.

A set U ⊆ X is open if

∀x ∈ U, ∃ε > 0 : Bε(x) ⊆ U.

A set is closed if its complement is open

A set is clopen if it is both open and closed.



Example.

• Every open ball Bε(x) = {y ∈ X | d(x, y) < ε} is open.

• Every closed ball Bε(x) = {y ∈ X | d(x, y) ≤ ε} is closed.



U is open ⇐⇒ ∀x ∈ U, ∃ε > 0 : Bε(x) ⊆ U.

Proposition. Let (X, d) be a metric space. Then

(i) ∅ and X are open,

(ii) arbitrary unions of open sets are open, and

(iii) intersections of finitely many open sets are open.

Proof.

Corollary. A set is open if and only if it is a union of open balls.

Proof.



Example. Let X = R and d(x, y) = |x− y|. This the the usual metric of
real numbers.

• Open balls:

• Open sets:

• Closed intervals [a, b] are examples of closed sets.

• Set Q of rational numbers is not open, not closed

• Clopen sets: ∅ and R.



(i) ∅ and X are open,

(ii) arbitrary unions of open sets are open, and

(iii) intersections of finitely many open sets are open.

Many properties of metric spaces can be proved using properties (i), (ii) and
(iii) only.

Further abstraction: A pair (X, T ) whereX is a set and T is a family of subsets
of X is a topological space, family T is called a topology on X , and sets
in T are called open if axioms (i), (ii) and (iii) are satisfied.

Thus the family of open sets of a metric space (X, d) forms a topology on
X . It is called a metric topology. There are also topologies that are not
metrizable, i.e., not defined by any metric.



Example. For any X , let T contain all subsets of X . Then T is a topology,
the discrete topology of X .

The discrete topology is metrizable as it is defined by the discrete metric

d(x, y) =

{
1, if x ̸= y,
0, if x = y.

This metric satisfies the (strong) triangular inequality

d(x, y) ≤ max{d(x, z), d(z, y)}.

All singleton sets {x} are open balls.



Example. For any set X let T = {X, ∅}. Then T is a topology, the trivial
topology of X .

If |X| ≥ 2 then T is not defined by any metric:



Consistently with metric spaces:

A set is closed if its complement is open

A set is clopen if it is both open and closed.

By de Morgan’s laws closed sets behave dually to open sets:

Proposition. Let (X, T ) be a topological space.

(i) ∅ and X are closed,

(ii) arbitrary intersections of closed sets are closed, and

(iii) unions of finitely many closed sets are closed.



Further terminology: Let (X, T ) be a top. space.

• x ∈ X is isolated if {x} is open. In the metric case:

• A space is perfect if it has no isolated points.

• Let A ⊆ X . The closure of A is

A =
⋂

Fclosed
A⊆F

F.

It is the smallest closed set that contains A:

F closed, A ⊆ F =⇒ A ⊆ F.

• Set A ⊆ X is dense if A = X .



Denseness of a set is proved by showing that it has a non-empty intersection
with every non-empty open set:

Lemma. A set A ⊆ X is dense if and only if for every open U ̸= ∅ it holds
that A ∩ U ̸= ∅.

Proof.



• Dual to closure: The interior of A is

A◦ =
⋃

V open
V⊆A

V.

It is the largest open subset of A:

V open, V ⊆ A =⇒ V ⊆ A◦.

• A set A is a neighborhood of point x if x ∈ A◦. Equivalently: there exists
open U such that x ∈ U ⊆ A.



Example. Consider R and the usual topology.

• Every open ball contains infinitely many points so there are no isolated points.
The space is perfect.

• The closure of Q is R, so Q is dense in R. The interior of Q is the empty set.

• The closure of (0, 1) is [0, 1].

• Z is closed, so it is its own closure.

Example. The discrete topology is far from perfect because every point
is isolated.



Let A ⊆ X and let d be a metric on X . Then d restricted to A × A is the
induced metric on A.

Let A ⊆ X and let T be a topology on X . Then

{V ∩ A | V ∈ T }

is a topology on A, the induced topology.

Let T be the metric topology defined by d on X . The topology that T induces
on A is the same as the metric topology defined by the induced metric on A.

Always, when considering a subset of a topological (or metric) space, the default
is that we assume the induced topology (metric) on A.



Example. The metric induced by the usual metric of R on subset Z is

d(n,m) = |n−m| for all n,m ∈ Z.

Then every singleton set {n} is an open ball, and hence the induced topology
on Z is the discrete topology. The discrete metric

d(n,m) =

{
1, if n ̸= m,
0, if n = m

defines the same topology.



Convergence of sequences

A topological space (X, T ) is Hausdorff if for every x ̸= y there are open Ux

and Uy such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅. In other words, any two
distinct points have non-intersecting neighborhoods:

Example. Every metric space is Hausdorff: For x ̸= y choose

ε = d(x, y)/2

and use
Ux = Bε(x),
Uy = Bε(y).

Metric =⇒ Hausdorff =⇒ Topology

The trivial topology {∅, X} is not Hausdorff if |X| ≥ 2.



In a Hausdorff space the singleton sets {x} are closed: For every y ̸= x there
exists an open set Vy such that x ̸∈ Vy. The complement of {x} is⋃

y ̸=x

Vy,

thus open as a union of open sets.



A sequence x1, x2, . . . converges to x if for every open neighborhood U of x
there is n ∈ N such that xi ∈ U for all i ≥ n.

In the metric setting: For every ε > 0 there is n ∈ N such that d(xi, x) < ε
for all i ≥ n.

Example. Under the trivial topology {∅, X} every sequence converges to
every point!

Proposition. In a Hausdorff topology every converging sequence converges
to a unique point.

Proof.

We denote the unique limit by limi→∞ xi.



Base of a topology

A family B ⊆ T is a base of topology T iff every open set is a union of some
members of B.

Example. In a metric space (X, d) open sets are precisely unions of open
balls. Thus the family

{Bε(x) | x ∈ X, ε > 0}
of all open balls is a base.

Proposition. A family B ⊆ T is a base of topology T if and only if

∀U ∈ T ,∀x ∈ U,∃B ∈ B : x ∈ B ⊆ U.

Proof.



Compactness

Let T be a topology on X , and let A ⊆ X .

A family U ⊆ T is called an open cover of A if

A ⊆
⋃
V ∈U

V.

A subfamily U ′ ⊆ U of U is called a subcover if it is also a cover of A.

Set A ⊆ X is called compact if every open cover of A has a finite subcover
of A. The topology is called compact if the whole space X is compact.

In other words: a topology is compact iff every family of open sets whose union
is X has a finite subfamily whose union is X .



Example. In the usual topology of R

A = {0} ∪ {1
n
| n ∈ Z+}

is compact:

On the other hand,

B = {1
n
| n ∈ Z+}

is not compact:



Compactness of X could as well be defined using a dual concept:

Proposition. Topology of X is compact if and only if every family of closed
sets whose intersection is empty has a finite subfamily whose intersection is
empty.

Corollary. Let
F1 ⊇ F2 ⊇ F3 ⊇ . . .

be an infinite chain of closed sets in a compact space X . If Fi ̸= ∅ for all i then
∞⋂
i=1

Fi ̸= ∅.



Compactness in metric spaces is equivalent to sequential compactness. We only
need one direction of the equivalence:

Proposition. Let X be a compact metric space. Every sequence of elements
of X has a converging subsequence.

(A subsequence of a sequence x1, x2, . . . is a sequence xi1, xi2, . . . for some
i1 < i2 < . . . .)

Proof.



In compact metric spaces compact sets are exactly the closed sets:

Proposition A. Let X be a compact topological space. For A ⊆ X

A closed =⇒ A compact.

Proposition B. Let X be a Hausdorff topological space. For A ⊆ X

A compact =⇒ A closed.

Proofs.



Countability

Proposition. A compact metric space has a countable base and a countable
dense set of points.

Proof.



Baire property

Set A ⊆ X is residual if it is the intersection of countably many dense open
sets. A topological space X is a Baire space if every residual set is dense.

That is: in a Baire space, if U1, U2, . . . are open sets such that U i = X for all
i then also A = X where

A =

∞⋂
i=1

Ui.

Example. Set Q with the usual metric d(x, y) = |x−y| is not a Baire space:

For every q ∈ Q the set Q \ {q} is open and dense, but the (countable)
intersection ⋂

q∈Q

Q \ {q}

is empty.



Baire property

Set A ⊆ X is residual if it is the intersection of countably many dense open
sets. A topological space X is a Baire space if every residual set is dense.

That is: in a Baire space, if U1, U2, . . . are open sets such that U i = X for all
i then also A = X where

A =

∞⋂
i=1

Ui.

Proposition. Every compact metric space is a Baire space.

Proof.



Continuity

Let X, Y be topological spaces. Function f : X −→ Y is continuous at
point x ∈ X if

V ⊆ Y open, f (x) ∈ V
=⇒ ∃ open U ⊆ X : x ∈ U and f (U) ⊆ V.

(For every open neighborhood V of f (x) there exists an open neighborhood U
of x such that f (U) ⊆ V .

x f(x)

f

V
U

f(U)

Function f : X −→ Y is continuous if it is continuous at every x ∈ X .



x f(x)

f

V
U

f(U)

Examples.

• If X has the discrete topology the every f : X −→ Y is continuous. (Choose
U = {x}.)

• If Y has the trivial topology the every f : X −→ Y is continuous. (Choose
U = X : works because V = Y .)

• A constant function (∀x ∈ X : f (x) = a for some fixed a ∈ Y ) is continuous.
(Choose U = X .)

• If X has the trivial topology and Y the discrete topology then constant
functions are the only continuous functions:



Proposition. The following conditions are equivalent:

(i) Function f : X −→ Y is continuous,

(ii) pre-image f−1(V ) is open for each open V ⊆ Y ,

(iii) pre-image f−1(F ) is closed for each closed F ⊆ Y .

Proof.



In the metric case: f is continuous if

∀ε > 0, ∀x ∈ X, ∃δ > 0 : f (Bδ(x)) ⊆ Bε(f (x)).

x f(x)

Ɛ

δ

f

Number δ may depend on point x. If δ can be chosen independently of x then
function f is uniformly continuous:

∀ε > 0, ∃δ > 0, ∀x ∈ X : f (Bδ(x)) ⊆ Bε(f (x)).

Every uniformly continuous function is continuous. In the compact cases also
the converse holds:

Proposition. LetX and Y be compact metric spaces. Function f : X −→ Y
is continuous if and only if it is uniformly continuous.



If there exists a positive constant r such that δ = r · ε works for all x and ε,
then f is Lipschitz continuous.

It is an isometry if distances remain unchanged:

d(f (x), f (y)) = d(x, y) for all x, y ∈ X.

Clearly:
f isometry

⇓
f Lipschitz continuous

⇓
f uniformly continuous

⇓
f continuous

Note: Continuity is defined for all topological spaces; the other three concepts
only for metric spaces.



Proposition. Let X be a metric space and Y a topological space. Then f :
X −→ Y is continuous if and only if for every converging sequence x1, x2, . . .
the sequence f (x1), f (x2), . . . converges and

lim
i→∞

f (xi) = f ( lim
i→∞

xi).

Proof.



Proposition. Let f : X −→ Y be continuous. For every compact A the set
f (A) is compact.

Proof.



Proposition. Let f : X −→ Y be a continuous bijection where X is a
compact and Y is a Hausdorff topological space. Then the inverse function
f−1 : Y −→ X is also continuous.

Proof.

If f : X −→ Y is a bijection and both f and f−1 are continuous then f is a
homeomorphism and spaces X and Y are homeomorphic. This is the
“isomorphism” of topological structures.

Corollary. Continuous bijection between compact metric spaces is a homeo-
morphism.



The Cantor space

Let A be a non-empty finite set, the alphabet, whose elements are letters.

For any (countable, infinite) set M , the set

AM

consists of all assignments c : M −→ A of letters to elements in M . These are
called configurations, or simply points of space AM .

Configurations are “colorings” of M by letters. We often denote c(m) by cm.



Example. If M = N then a configuration c is a (one-way) infinite word

c0c1c2 . . .

where ci = c(i) ∈ A. For example,

001010011101000110 . . .
101010101010 . . .
000000000000 . . .

are elements of {0, 1}N.



Example. If M = Z then a configuration c is a bi-infinite word

. . . c−2c−1.c0c1c2 . . .

(One may write the dot “.” before the position 0 to indicate the origin.)

For example,

. . . 00101001.1101000110 . . .
. . . 10101.0101010 . . .
. . . 00000.0000000 . . .

are elements of {0, 1}Z.



Example. If M = Zd then a configuration c is a coloring of the d-dimensional
grid:

A={   ,   }



We mostly consider AN and AZ, the sets of infinite words. We then also need
the concept of finite words.

Finite words.

A finite word over alphabet A is a finite sequence of letters. The length of a
word w is denoted |w|.

01101, 010, 0, ε

are words over the alphabet A = {0, 1}. The empty word ε has length zero.

The letters of word w are indexed 0,1,2,etc. and we denote its i’s letter by wi,
so

w = w0w1 . . . wn−1

for w of length n.

An is the set of words of length n.

A∗ is the set of all finite words. So

A∗ = A0 ∪ A1 ∪ A2 ∪ . . .



A language is a set L ⊆ A∗ of words over a fixed alphabet. For example

{0, 101, 1101}
{ε, 0, 00, 000, 0000, . . . }
∅
{ε}

are languages over the alphabet {0, 1}. The second language is infinite, the
others are finite.



The concatenation of words u and v is uv. Its length is |uv| = |u|+ |v|. The
n-fold repetition of word w ww . . . w is denoted by wn. The notations may be
combined in a single word, and we use parentheses as needed:

010(10)3001401 =

A prefix is any sequence of leading symbols of a word.

A suffix is any sequence of trailing symbols of a word.

A subword is any sequence of consecutive symbols that appears in a word.

For example, word w = 010 has the following prefixes, suffixes and subwords:



For a word u of length n we denote

u[m,k] = umum+1 . . . uk

(where 0 ≤ m ≤ k < n) for the subword from position m to position k.

u[m,k) = umum+1 . . . uk−1

is the subword up to (but not including) position k. Similarly we define u(m,k]

and u(m,k).

001010001[2,4] =

001010001[2,4) =

001010001(2,4) =



We use similar notations also on infinite words (=configurations) c ∈ AN and
c ∈ AZ.

We also have infinite repetitions: For a non-empty finite word u we denote

� by u∞ the one-way infinite periodic word

uuu . . .

� by ∞u the analogous left-infinite repetition

. . . uuu

which is an element in A−N

� by ∞u∞ the bi-infinite periodic word

. . . uu.uu . . .



(01)4(10)∞ =

∞(01)1.110∞ =

(01)4(10)∞ [6,8] =

∞(01)1.110∞ [−2,2] =



Next we define a metric on the set X = AN, and prove that the space we
obtain is compact.

For x, y ∈ AN we define

d(x, y) =

{
0, if x = y,
2−min {k | xk ̸=yk}, if x ̸= y.

The metric considers two configurations to be close to each other if they have
a long common prefix (=one needs to look far to see the first difference).

01010101010010101 . . . and
01010111010101010 . . .

are closer to each other than

0100000000000000 . . . and
0000000000000000 . . .



d(x, y) =

{
0, if x = y,
2−min {k | xk ̸=yk}, if x ̸= y.

Proposition. Function d : AN × AN −→ R is a metric.

Proof.



d(x, y) =

{
0, if x = y,
2−min {k | xk ̸=yk}, if x ̸= y.

For any r ∈ R and x, y ∈ AN we have

d(x, y) < 2−r ⇐⇒ yk = xk for all k ≤ r.

The open ball of radius ε = 2−r centered at x ∈ AN is then

Bε(x) = {y ∈ AN | yk = xk for all k ≤ r}.

Thus open balls are precisely sets defined by finite prefixes u ∈ A∗ as follows:

{y ∈ AN | y has prefix u }
u ∗ ∗ ∗ ∗ . . .



More generally, for any finite domain D ⊆ N and finite pattern w ∈ AD we
define the cylinder

[w] = {x ∈ AN | x|D = w}

of configurations that contain pattern w in domain D. We call D the shape
of the pattern and the cylinder.

For example, configurations

∗ ∗ 0 ∗ 10 ∗ ∗ ∗ ∗ . . .

are in a cylinder [w] of shape D = {2, 4, 5}.

Open balls are precisely cylinders of shapes {0, 1, . . . , r} for some r.



If D ⊆ E are two finite domains then every cylinder [w] of shape D is a finite
union of cylinders of shape E:

[w] =

Any finite D ⊆ N is a subset of E = {0, 1, . . . , r} for a big enough r
=⇒ Every cylinder is a finite union of open balls, and hence open.

Cylinders of shape D form a finite partitioning of AN

=⇒ every cylinder is also closed.

Conclusion: Cylinders are a countable clopen base of the topology.



Topological spaceAN is also perfect: it has no isolated points because cylinders
are infinite sets.

Theorem. The metric space (AN, d) is compact. Thus it is a perfect and
compact metric space that has a countable clopen base.

Proof.



By compactness, every sequence of configuration has a converging subsequence.
What does convergence mean in our metric ?

Lemma. A sequence x(1), x(2), . . . of configurations ofAN converges to x ∈ AN

if and only if

∀k ∈ N,∃n ∈ N,∀i > n : x
(i)
k = xk.

(For every cell k ∈ N, the symbol in k becomes fixed after a finite initial part
of the sequence.)

Proof.



Examples.

x(n) = 1n0∞

The sequence x(1), x(2), . . . converges to



Examples.

y(n) = a0∞ where a = 0 for even n and a = 1 for odd n

Does this sequence converge?



Analogous metric topology exists on AM for any countable infinite M .

Cylinders of AM are defined by patterns w ∈ AD of finite shapesD ⊆ M :

[w] = {x ∈ AM | x|D = w}.

A bijection α : N −→ M (=an enumeration of elements of M) defines a
bijection α̂ : AM −→ AN

α̂(x) = xα(0)xα(1)xα(2) . . .



For example, a “spiral” enumeration of Z2 maps a configuration of AZ2
into AN

as follows:



Define metric on AM so that α̂ is an isometry: the distance of x, y ∈ AM is
d(α̂(x), α̂(y)).

Function α̂ maps cylinders to cylinders so the topology on AM has a clopen
base consisting of the cylinders of AM .

Remark: The concept of a cylinder does not depend on the choice of α:
different choices of α define the same topology.

Convergence of sequences of elements of AM is as in AN: Sequence x(1), x(2), . . .

converges to x if for each m ∈ M we have x
(i)
m = xm for all large enough i.



So we get a compact metrizable topology on AZ, the set of two-way infinite

configurations, on multidimensional configuration spaces AZd
, etc.

All these are homeomorphic to AN. Thus each AM is a perfect and compact
metric space that has a countable clopen base.

It turns out that these properties uniquely characterize the space (up to home-
omorphism).

Theorem. Every non-empty perfect and compact Hausdorff space that has a
countable clopen base is homeomorphic to {0, 1}N.

We call such a space the Cantor space.

Proof.



So we call a topological space X the Cantor space iff it has all these prop-
erties:

� X ̸= ∅,
� X is perfect (=no isolated points),

� X is compact,

� X has the Hausdorff property,

� X has a countable clopen base.

By the theorem such spaces are all homeomorphic with each other, i.e., topo-
logically identical.

A topological space that does not have one or more of these properties is not
homeomorphic to the Cantor space (because the given properties are all pre-
served by homeomorphisms.)



Example. TheCantor set is the subset of [0, 1] ⊆ R obtained by repeatedly
removing the (open) middle third of intervals:

F0 = [0, 1]
F1 = F0 \ (13,

2
3) = [0, 13] ∪ [23, 1]

F2 = F1 \
(
(19,

2
9) ∪ (79,

8
9)
)
= [0, 19] ∪ [29,

3
9] ∪ [69,

7
9] ∪ [89, 1]

The Cantor set is the limit F = F0∩F1∩F2∩ . . . , with the usual metric of R.
Set F is a non-empty compact set because F0 ⊇ F1 ⊇ F2 ⊇ . . . for non-empty
closed Fi and [0, 1] is compact.

A real number x ∈ [0, 1] is in F if and only if it has a representation in base 3
only using digits 0 and 2. The bijection f : {0, 2}N −→ F

f (c) = c0/3 + c1/9 + c2/27 + · · · =
∞∑
i=0

ci/3
i+1

(c is mapped to the number that 0.c0c1c2 . . . represents in base 3) is continuous,
and hence a homeomorphism:

x, y ∈ {0, 2}N are close
=⇒ x, y have a long common prefix

=⇒ f (x), f (y) are close in the usual metric of R.


