
Topological dynamical systems (discrete time)

A dynamical system (X, f ) consists of a compact metric space X and a
continuous function f : X −→ X .

SetX is the phase space and f is the transformation. If f is bijective (i.e.
a homeomorphism) then the system is invertible, and the dynamical system
(X, f−1) is the inverse system.

• The forward trajectory of a point x ∈ X is the sequence

x, f (x), f 2(x), . . . .

• The forward orbit of x is the set

O(x) = {fn(x) | n ∈ N}

of points on its trajectory.

(So the trajectory is an element of XN and the orbit is an element of 2X .)



• A two-way trajectory is any bi-infinite sequence

. . . , x−2, x−1, x0, x1, x2, . . .

that satisfies xi+1 = f (xi) for all i ∈ Z, and the corresponding two-way orbit
is the set

{xi | i ∈ Z}
of the trajectory.

If the system is invertible the a two-way trajectory is determined by x = x0:

. . . , f−2(x), f−1(x), x, f (x), f 2(x), . . .



• Point x ∈ X is periodic if fn(x) = x, for some n > 0.

• x is eventually periodic if O(x) is finite, that is, if fn(x) = fm(x) for
some n ̸= m.

• x is a fixed point if f (x) = x.

• x is eventually fixed if fn+1(x) = fn(x), for some n ∈ N.

In invertible dynamics eventually periodic points are periodic, and eventually
fixed points are fixed points.

In our examples we we use as phase spaces the Cantor spaces AN and AZ, the
unit interval [0, 1] under the usual distance |x − y|, and the closed unit circle
T.



Example. Let us denote T = [0, 1), the circle, endowed with the metric

d(x, y) = min{|x− y|, 1− |x− y|}.
Interpretation: The interval is bent into a ring, gluing together points 0 and 1.
Distance d is then the shortest distance between points along the ring.
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For r ∈ R denote its integer and fractional parts by

⌊r⌋ = max{n ∈ Z | n ≤ r}, and
frac(r) = r − ⌊r⌋.

Then frac(r) ∈ T for all r ∈ R, and the mapping

r 7→ frac(r)

from R to T is (Lipschitz) continuous as

d(frac(x), frac(y)) ≤ |x− y|.
The circle space (T, d) is compact: it is the image of the compact set [0, 1]
under the continuous map r 7→ frac(r).



If frac(r) = frac(s) we denote r = s (mod 1).

Example. Let X = T be the circle. For α ∈ R define the rotation ρα :
T −→ T by α as the function

x 7→ frac(x + α).
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Function ρα is an isometry and hence continuous. It is bijective and therefore
homeomorphism.

If α = m
n is rational then f = ρα has finite order because for all x ∈ T

fn(x) =

so that fn = idT. All points are periodic.

If α is irrational then the orbit of every point is dense:



Example. The doubling map on the circle ×2 : T −→ T maps x 7→
frac(2x):

0 10.5
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Function ×2 is (Lipschitz) continuous on T, but it is not injective:

• Every rational point x = m
n is eventually periodic:

• For example, the trajectory of x = 1
6:

• A point x is periodic iff it can be written as x = m
n for an odd n.

• Irrational numbers have infinite orbits.

Analogously, for any integer n, we define the multiplication ×n : x 7→ frac(nx)
by n.



Example. X = [0, 1] under the usual metric,

f : x 7→ x2.

Function f is a homeomorphism of [0, 1] so the dynamical system is invertible.

Trajectories of all initial points except x = 1 converge to limit 0. In the inverse
system ([0, 1], f−1) all trajectories except for x = 0 converge to 1.



Example. Let X = AN. The one-sided left shift σ : AN −→ AN maps

σ(x)k = xk+1

for all x ∈ AN and all k ∈ N:

x0 x1 x2 x3 · · · 7→ x1 x2 x3 x4 . . .

Function σ translates infinite words one position to the left, deleting the leftmost
symbol. It is surjective but not injective (if |A| > 1): every point has |A|
pre-images.

The left shift is continuous because the pre-image of a cylinder is a cylinder:

The dynamical system (AN, σ) is called a one-sided full shift.



Example. Let X = AZ. The two-sided left shift σ : AZ −→ AZ maps

σ(x)k = xk+1

for all x ∈ AZ and all k ∈ Z:

. . . x−2 x−1 . x0 x1 x2 · · · 7→ x−1 x0 . x1 x2 x3 . . .

Function σ translates infinite words one position to the left. It is bijective:
the inverse function σ−1 is the right-shift.

Pre-images of cylinders are cylinders =⇒ σ is continuous.

Periodic points are precisely ∞u∞ for u ∈ A∗, u ̸= ε.

The invertible dynamical system (AZ, σ) is a (two-sided) full shift.



Example. LetA = {0, 1} and define rule 110 as the function f : AZ −→ AZ

such that for all x ∈ AZ and all k ∈ Z

f (x)k = φ(xk−1, xk, xk+1)

where φ : A3 −→ A is the local rule given by the following table:

111 −→ 0
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 1
010 −→ 1
001 −→ 1
000 −→ 0

(Every cell updates its symbol by applying the rule above on the pattern around
the position.)





Rule 110 is continuous on AZ:

Let x(1), x(2), . . . be a sequence of configurations that converges to x ∈ AZ. By
convergence

∀k ∈ Z, ∃n ∈ N, ∀i > n : x
(i)
|{k−1,k,k+1} = x|{k−1,k,k+1}.

Now x
(i)
|{k−1,k,k+1} = x|{k−1,k,k+1} implies that f (x(i))k = f (x)k, so that

∀k ∈ Z, ∃n ∈ N, ∀i > n : f (x(i))k = f (x)k.

This means that f (x(1)), f (x(2)), . . . converges to f (x).

Thus f is continuous.



Generalizing rule 110. Let X = AZ for any finite A.

Let D ⊆ Z be finite, and let

φ : AD −→ A

be a function, the local rule.

Define f : AZ −→ AZ by: for x ∈ AZ and k ∈ Z

f (x)k = φ(σk(x)|D)

(where σ is the left shift.)

=⇒ The new symbol in position k is obtained by applying the local rule ϕ on
the D-pattern around position k.

Function f is a cellular automaton. If f is bijective then f is a reversible
cellular automaton.



Function f is continuous (same proof as for rule 110). Also f commutes
with the left shift σ:

f ◦ σ = σ ◦ f.



Generalizing further. We can analogously define one-sided cellular

automata on AN and multi-dimensional cellular automata on AZd
.



Consider, for example, Game-of-Life on {0, 1}Z2
. Call symbol 0 dead and

symbol 1 alive.

Each cell counts the number of alive cells in the eight surrounding cells:

� If the cell is alive then it stays alive (survives) iff it has two or three live
neighbors. Otherwise it dies of loneliness or overcrowding.

� If the cell is dead then it becomes alive iff it has exactly three living neigh-
bors.
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Homomorphisms

Let (X, f ) and (Y, g) be dynamical systems. A function h : X −→ Y is a
homomorphism if it

� is continuous and

� has the commutation property h ◦ f = g ◦ h.
f

g

f

g

h h

In this case h ◦ fn = gn ◦ h for all n ∈ N:

f

g
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h h

The trajectories of f are mapped to trajectories of g.



A homomorphism preserves the two structures we have in dynamical systems:
the topology (preserved by continuity) and the transformation (preserved by
the commutation property).

� Factor map = a surjective homomorphism. In this case system (Y, g)
is a factor of (X, f ).

� Embedding = an injective homomorphism.

� Conjugacy = a bijective homomorphism. In this case systems (X, f )
and (Y, g) are conjugate.

Conjugacy is thus also a homeomorphism between the metric spaces X and Y .
Conjugate systems are “the same”: one just has to look into one “through the
homeomorphism” h to see the other.



Commutation property implies

fn(x) = x =⇒ gn(h(x)) = h(x).

So a homomorphism maps a periodic point x to a periodic point h(x) and the
shortest period of h(x) has to divide the period of x.

Similarly for eventually periodic points:

fn(x) = fm(x) =⇒ gn(h(x)) = gm(h(x)).



Example: Rotations (T, ρa).

For every α, the system (T, ρ2α) is a factor of (T, ρα).

A factor map is the doubling map ×2 : x 7→ frac(2x). It is continuous and
surjective.

The commutation property: For every x ∈ T:

(×2 ◦ ρα)(x) =



Example. There is no embedding of the tripling system (T,×3) into the
doubling system (T,×2):

(T,×2) has one fixed point x = 0.
(T,×3) has two fixed points 0 and 1

2.

An injective homomorphism from (T,×3) to (T,×2) would map 0 and 1
2 to two

distinct fixed points of (T,×2).



Example. Let A = {0, 1} and B = {0, 1, 2} and consider the full shifts
(AZ, σA) and (BZ, σB).

(i) AZ ⊆ BZ and the identity id|AZ is an embedding of AZ to BZ.

(ii) Function h that changes every symbol 2 in all configurations into symbol 1
is a factor map from BZ to AZ.

(iii) There is no embedding from (BZ, σB) to (A
Z, σA) because the first one has

three fixed points and the second one only two.

(iv) There is no factor map from (AZ, σA) to (BZ, σB). Proof using entropies.



Example. A factor map from full shift ({0, 1}N, σ) to the doubling system
(T,×2).

For x ∈ {0, 1}N denote

(x)2 =

∞∑
k=0

xk2
−k−1

for the number in [0, 1] with binary expansion 0.x0x1x2x3 . . . . We define a
factor map φ : {0, 1}N −→ T by

x 7→ frac((x)2).



Example. A factor map from full shift ({0, 1}N, σ) to the doubling system
(T,×2).

For x ∈ {0, 1}N denote

(x)2 =

∞∑
k=0

xk2
−k−1

for the number in [0, 1] with binary expansion 0.x0x1x2x3 . . . . We define a
factor map φ : {0, 1}N −→ T by

x 7→ frac((x)2).

� φ is continuous: If x, y ∈ {0, 1}N start with the same prefix of length n
then

|(x)2 − (y)2| ≤
∞∑
k=n

2−k = 2−n+1

so that x 7→ (x)2 is continuous T −→ [0, 1]. We know frac(·) is continuous
[0, 1] −→ T so φ is a composition of two continuous maps.

� φ is surjective: every number has a binary representation.

� Commutation property φ ◦ σ = ×2 ◦ φ: For any x ∈ {0, 1}N

(φ ◦ σ)(x) =



Example. A factor map from full shift ({0, 1}N, σ) to the doubling system
(T,×2).

For x ∈ {0, 1}N denote

(x)2 =

∞∑
k=0

xk2
−k−1

for the number in [0, 1] with binary expansion 0.x0x1x2x3 . . . . We define a
factor map φ : {0, 1}N −→ T by

x 7→ frac((x)2).

Factor map φ is not injective because there are numbers with two different
binary expansions, one ending 111 . . . and one ending 000 . . . .

0.1000 · · · = 0.01111 · · · = 1

2
.

Systems ({0, 1}N, σ) and (T,×2) are not conjugate because {0, 1}N and T
are not homeomorphic.



� Endomorphism = a homomorphism from a dynamical system to itself.

� Automorphism = a conjugacy from a system to itself.



Example. Cellular automata f : AZ −→ AZ are endomorphisms of the full
shift (AZ, σ). Reversible cellular automata are automorphisms.

These are the only endomorphisms and automorphisms. (Proof later.)



Example. Circle rotations commute with each other, so ρb is an automor-
phism of (T, ρa) for all a, b ∈ R. If a is irrational then there are no other
automorphisms. (Homework.)



Group, semigroup and monoid.

� A semigroup (G, ⋆) is a set G together with a binary operation ⋆ : G×
G −→ G that satisfies the axiom of associativity:

∀a, b, c ∈ G : (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).

� A monoid is a semigroup that also has an identity element:

∃e ∈ G : ∀a ∈ G : a ⋆ e = e ⋆ a = a.

� A group is a monoid where every element has an inverse element:

∀a ∈ G : ∃b ∈ G : a ⋆ b = b ⋆ a = e

where e is the identity element. The inverse element of a (i.e. b above) is
usually denoted by a−1.

As with usual multiplication, we usually do not write the operation symbol ⋆
so that associativity, for example, reads

(ab)c = a(bc).



Recall subgroup/submonoid/subsemigroup of G.

For A ⊆ G we denote ⟨A⟩ for the smallest subgroup/ submonoid/subsemigroup
of G that contains A.

� G semigroup:

⟨A⟩ = {g1 ⋆ g2 ⋆ · · · ⋆ gn | n ≥ 1, gi ∈ A}.

� G monoid:

⟨A⟩ = {g1 ⋆ g2 ⋆ · · · ⋆ gn | n ≥ 0, gi ∈ A}.
(case n = 0 gives the identity e.)

� G group:

⟨A⟩ = {g1 ⋆ g2 ⋆ · · · ⋆ gn | n ≥ 0, gi or g
−1
i ∈ A}.

Subset A ⊆ G generates G if ⟨A⟩ = G. We are especially considering finite
generating sets A.



Automorphisms of a dynamical system (X, f ) form a group under the operation
of function composition, the automorphism group of (X, f ).

Endomorphisms of (X, f ) form a monoid, the endomorphism monoid of
(X, f ).



Dynamical systems as monoid actions

In a dynamical system (X, f ) the functions f k are continuous for all times
k ∈ N, and they satisfy fm+k = f k ◦ fm.

We can view the system as a function

X × N −→ X

that maps (x, k) 7→ f k(x).

Time N is a monoid under addition “+” and property fm+k = f k ◦ fm links
the monoid operation “+” to compositions of f .

We can consider any monoid M as “generalized time”: associate to each m ∈
M a continuous function fm and require that fmk = f k ◦ fm holds for all
m, k ∈ M .



Let M be a monoid with identity 1M . A (right) monoid action of M on set
X is a function

f : X ×M −→ X

that satisfies the following conditions (i) and (ii), where for every m ∈ M we
denote fm : X −→ X for the function x 7→ f (x,m):

(i) f 1M = idX ,

(ii) fmk = f k ◦ fm for all m, k ∈ M .

A dynamical system over monoid M is a pair (X, f ) where X is a
compact metric space and f is a monoid action of M on X such that for all
m ∈ M the function fm is continuous.

If M is a group then each fm is bijective with the inverse function f (m−1):



(i) f 1M = idX,

(ii) fmk = f k ◦ fm for all m, k ∈ M .

M = (N,+): This is our standard setting. Function f 1 is the continuous
function that we iterate over time:

f k = f 1 ◦ f 1 ◦ · · · ◦ f 1.

M = (Z,+): Now the monoid is a group and f 1 has to be a bijection (homeo-
morphism) and f−1 is its inverse. Now f−k is an k-fold iteration of f−1.

M = ⟨G⟩ is generated by G ⊆ M : The dynamical system is uniquely
determined by functions f g for g ∈ G:



(i) f 1M = idX,

(ii) fmk = f k ◦ fm for all m, k ∈ M .

Example. Let M be a countable monoid (e.g. finitely generated), A a finite
set, and consider X = AM .

The shift action σ of M on the configuration space AM is defined by

∀m, k ∈ M, ∀x ∈ AM : σm(x)k = xmk.

(When shifting by m ∈ M the contents of cell mk get moved to cell k.)

Then σm is continuous for all m ∈ M .

Let us verify the conditions of monoid actions:

(i)

(ii)



Why “generalized time” M ?

� Many concepts and proofs work without change for any monoid M in place
of N. Even continuous time with monoid (R,+).

� Especially in symbolic dynamics there is wide interest on multidimensional

shift spaces AZd
where the shift is a Zd-action. Also shift spaces AG for

other groups G are studied.

� No need to consider N- and Z-actions (when f bijective) separately.

Trajectory and orbit revisited. Let (X, f ) be a dynamical system over
monoid M .

� The trajectory of point x ∈ X is t ∈ XM defined by tm = fm(x) for all
m ∈ M .

� The orbit of x ∈ X is the set

O(x) = {fm(x) | m ∈ M}

ForM = N these coincide with our earlier concepts of forward trajectory/orbit.

ForM = Z these coincide with our earlier concepts of two-way trajectory/orbit
of invertible systems.



Homomorphism revisited. Let (X, f ) and (Y, g) be a dynamical systems
over the same monoid M .

A homomorphism from (X, f ) to (Y, g) is a function h : X −→ Y that

� is continuous, and

� satisfies the commutation property

∀m ∈ M : h ◦ fm = gm ◦ h.

For M = N or M = Z (and invertible system) this coincides with our earlier
concept of a homomorphism.

IfM = ⟨A⟩ is generated by A ⊆ M then it is enough to verify the commutation
property on the generators:

∀m ∈ A : h ◦ fm = gm ◦ h.



Subsystems

Let (X, f ) be a dynamical system over any monoid M .

A subset Y ⊆ X of invariant if

∀m ∈ M : fm(Y ) ⊆ Y.

Example. The orbit O(x) of any x ∈ X is invariant.



If Y ̸= ∅ is

� closed and

� invariant

then
(Y, f|Y×M)

is a dynamical system, a subsystem of (X, f ). We also simply call Y a
subsystem of (X, f ).

Remark: In the classical setting it makes a difference whether the system is
considered as an

� N-system (only positive time): forward trajectories of x ∈ Y have to stay
inside Y , or

� or a Z-system (also negative time): bi-infinite orbits need to stay in Y .



Example. Full shifts (AZ, σ) have many subsystems. These are called (two-
sided) subshifts. For any language L ⊆ A∗ the set

{x ∈ AZ | no word of L is a subword of x }

is a subshift (if non-empty).



Lemma. Let Y ⊆ X be invariant for M -system (X, f ) and Y ̸= ∅. Then the
closure Y is a subsystem of (X, f ).

Proof.

The orbit closure O(x) of x ∈ X is the topological closure of the orbit of
x ∈ X .

Corollary. The orbit closureO(x) of every x ∈ X is a subsystem, the smallest
subsystem that contains x.



Point x ∈ X is transitive if O(x) = X .

Example. Circle rotation (T, ρα). We can view it as a system over N or Z.

� If α is irrational then all x ∈ T are transitive: already the forward orbits
are all dense.

� If α is rational then every x ∈ T has a finite orbit. Each such finite orbit is
a subsystem.



A dynamical system (X, f ) is minimal if it has no proper subsystems.

Proposition. Dynamical system (X, f ) over M is minimal if and only if all
x ∈ X are transitive points.

Proof.

Example. Circle rotations (T, ρα) with irrational α are minimal.



Mixing properties.

By mixing properties of a dynamical system g : X −→ X we mean its tendency
to mix different parts of its phase space X . Mixingness comes in different
variants of various strengths.



First mixing property: Transitivity

Dynamical system (X, f ) over monoid M is transitive if for all non-empty
open U, V ⊆ X there exists m ∈ M such that

∃x ∈ U : fm(x) ∈ V

U V

∀U,V: ∃m,x: x

f m
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f m

or equivalently
fm(U) ∩ V ̸= ∅

U V

f m

f  (U)
m

∀U,V: ∃m:

or equivalently
(fm)−1(V ) ∩ U ̸= ∅

U V

f m(f   ) (V)
m

∀U,V: ∃m:
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Proposition. Let M be a group. A dynamical system (X, f ) over M is
transitive if and only if it has a transitive point. In this case, the set of transitive
points is residual.

Proof. Let T be the set of transitive points of the system. We prove three
implications:

(X, f ) is transitive ⇒ T is residual ⇒ T ̸= ∅ ⇒ (X, f ) is transitive

First two hold for any monoid M , the third needs M to be a group.



(X, f ) is transitive ⇒ T is residual ⇒ T ̸= ∅ ⇒ (X, f ) is transitive

This holds for any monoid M :



(X, f ) is transitive ⇒ T is residual ⇒ T ̸= ∅ ⇒ (X, f ) is transitive

This holds for any monoid M .

Proof: The compact metric space X is a Baire space so residual sets are dense,
thus non-empty.



(X, f ) is transitive ⇒ T is residual ⇒ T ̸= ∅ ⇒ (X, f ) is transitive

Here M is assumed to be a group:



Example. Let X = {1, 12,
1
4, . . . } ∪ {0} under the usual metric of R.

Let f (x) = x
2 .

Then (X, f ) is a dynamical system over N.
(X compact, f continuous.)

Point x = 1 is a transitive point.

The system is not transitive: Consider U = {12} and V = {1}.

Remark: Function f is not surjective.



Proposition. A dynamical system (X, f ) over N is transitive if and only if
it has a transitive point and f 1 : X −→ X is surjective. In this case the set of
transitive points is residual.

Proof. Let T be the set of transitive points.

1) (X, f ) is transitive ⇒ T is residual ⇒ T ̸= ∅
holds in any monoid, including N.

2) (X, f ) is transitive ⇒ f 1 is surjective:

3) T ̸= ∅ and f 1 is surjective ⇒ (X, f ) is transitive:



Stronger mixing property: Mixingness

This property we only define in the “classical” setup: Let (X, f ) be a dynamical
system over the monoid (N,+). It is mixing if for all non-empty open U, V ⊆
X

fm(U) ∩ V ̸= ∅
holds for all large enough m ∈ N:

U V

∀U,V: ∃ ∃n: m ≥ n: x:∀
x

f
m

A mixing system is transitive.

Also: For any non-empty open U1, . . . , Us and V1, . . . , Vt we have that for all
large enough m holds that

∀i, j : fm(Ui) ∩ Vj ̸= ∅.



Example. Assume |X| ≥ 2. An isometry on X is not mixing:

In particular: a rotation ρα of the circle T is not mixing for any α.



Example.

Full shifts AN and AZ are mixing:



Proposition. Let (X, f ) and (Y, g) be dynamical systems over monoid M ,
and let h : X −→ Y be a factor map.

(a) If (X, f ) is transitive so is (Y, g).

(b) In the case M = N, if (X, f ) is mixing so is (Y, g).

Proof.



Example. The doubling map ×2 on the circle T is mixing: it is the factor of
the full shift {0, 1}N.



Minimality again

Recall: A dynamical system (X, f ) isminimal if it has no proper subsystems.
Equivalently: all x ∈ X are transitive points.

A minimal system is always transitive: if non-empty U and V are open then
by minimality the orbit of every point in U intersects with V .

A minimal system over M = N does not need to be mixing:

Example. A circle rotation (T, ρα) by irrational α is minimal but not mixing.



Theorem. Every dynamical system (X, f ) over any monoid M contains a
minimal subsystem.



Recurrence

A periodic point x ∈ X returns exactly back to its initial value regularly under
the iteration of f . This is a very strong form of recurrence.

We consider three weaker types of recurrence:

� recurrence (only for systems over the monoid (N,+)),

� uniform recurrence (the most important concept of these three; related
to minimality),

� quasi-periodicity (only for systems over the monoid (N,+)).



Recurrent points

Let (X, f ) be a dynamical system over monoid N.

Point x ∈ X is recurrent if it returns back to its every open neighborhood:

∀ open U ∋ x : ∃k > 0 : f k(x) ∈ U.

Lemma. x ∈ X is recurrent if and only if its forward trajectory has a subse-
quence that converges to x.

Proof.

Corollary. A recurrent point x returns to each open neighborhood of x in-
finitely many times.



Uniformly recurrent points

Let (X, f ) be a dynamical system over an arbitrary monoid M . Point x ∈ X
is uniformly recurrent if for every open neighborhood U of x there exists
a finite R ⊆ M such that

∀k ∈ M : f kr(x) ∈ U for some r ∈ R.

(At any time k the system can return to U within bounded time, i.e., time
belonging to fixed finite R.)

Difference to recurrence on M = N:

� uniformly recurrent points keep on returning to their open neighbor-
hoods within bounded time gaps. (The bound may be different for
different neighborhoods.)

� recurrent points return to their open neighborhoods infinitely many times
but the time gaps between consecutive returns do not need to be bounded.



Example. One-sided full shift (AN, σ) for A = {0, 1}.

If x ∈ AN is any sequence that contains all u ∈ A∗ as finite subwords then x is
recurrent but not uniformly recurrent.



Theorem. The orbit closure O(x) is minimal if and only if x is uniformly
recurrent.

Proof.

Corollary. Minimal systems are orbit closures of uniformly recurrent points,
and all points of a minimal system are uniformly recurrent. Every dynamical
system contains a uniformly recurrent point.



Example. The circle rotation (T, ρα) by irrational α is minimal. So every
x ∈ T is uniformly recurrent. No point is periodic.



Quasi-periodic points

Let (X, f ) be a dynamical system over monoid M = (N,+) or M = (Z,+).

A quasi-periodic x returns back to each neighborhood periodically:

∀ open U ∋ x : ∃p ≥ 1 : ∀i ∈ M : f ip(x) ∈ U.

Note: the period p may be different for different neighborhoods U .

We clearly have the following implications:

x periodic
=⇒ x quasi-periodic

=⇒ x uniformly recurrent
=⇒ x recurrent

Example. Rotations (T, ρa) with irrational a. All x ∈ T are non-periodic
but uniformly recurrent.

There are no quasi-periodic points: for every period candidate p, the set
{x, ρpa(x), ρ2pa (x), . . . } is dense as the orbit of x under the irrational rotation
by pa.



Example. Quasi-periodic elements of AN and AZ are precisely the so-called
Toeplitz-sequences.

For M = N or M = Z, a configuration x ∈ AM is a Toeplitz-sequence if
for every m ∈ M there exists p > 0 such that xm = xm+ip for all i ∈ M .

x quasi-periodic =⇒ x Toeplitz: Consider visits to the single site cylinder
[xm] at position m.

x Toeplitz =⇒ x quasi-periodic: every finite pattern in a Toeplitz x is part
of an arithmetic progression of identical patterns (the least common multiple
of the periods for the individual symbols of the pattern works as the period).

A concrete example of a non-periodic Toeplitz-sequence x ∈ {0, 1}N: x =
010001010100 . . .

xk is the parity of the largest n such that 2n divides k + 1.



Sensitivity to initial conditions

Small changes in the initial point of a trajectory may be amplified over time
(“butterfly effect”).

� Stable points where such effect does not happen are equicontinuity points.

� A system is equicontinuous if all points are equicontinuity points.

� In contrast, in sensitive systems there is a distance s > 0 such that
arbitrarily close to all points there are points whose trajectories diverge by
at least s.

� Expansivity is a very strong form of sensitivity where all trajectories
diverge from each other by at least s.



Equicontinuity

Recall the general term on metric spaces: a family S of functions X −→ Y
is called equicontinuous at x ∈ X if all f ∈ S are continuous at x using a
common parameter value:

∀ε > 0 : ∃δ > 0 : ∀f ∈ S : f (Bδ(x)) ⊆ Bε(f (x)).

Let (X, f ) be a dynamical system over monoid M . The system is equicon-
tinuous at x ∈ X if the family {fm | m ∈ M} is equicontinuous at x. In
this case we say that x is an equicontinuity point of the system.

∀ε > 0 : ∃δ > 0 : ∀m ∈ M : fm(Bδ(x)) ⊆ Bε(f
m(x)).

x

ε
δ

ε ε

y

ε

System (X, f ) is equicontinuous if all x ∈ X are equicontinuity points.

System (X, f ) is almost equicontinuous if the set of equicontinuity points
is a residual set.

Example. Any isometry is equicontinuous. Thus the circle rotation (T, ρa) is
equicontinuous.



Proposition. Let (X, f ) be a transitive dynamical system over a monoid M .
Every equicontinuity point is a transitive point.

Proof.



Example. In the circle rotation (T, ρa) all x ∈ T are equicontinuity points.

� If α is irrational then the system is transitive. All points are transitive.

� If α is rational then the system is not transitive. No point is transitive.



Sensitivity

Dynamical system (X, f ) over monoid M is called sensitive if there exists
ε > 0, the sensitivity constant, such that arbitrarily close to any point
there is another point and a time when the trajectories of the two points deviate
by at least ε:

∃ε > 0 : ∀x ∈ X : ∀δ > 0 : ∃m ∈ M : fm(Bδ(x)) ̸⊆ Bε(f
m(x)).
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Complementing gives that the system is not sensitive iff

∀ε > 0 : ∃x ∈ X : ∃δ > 0 : ∀m ∈ M : fm(Bδ(x)) ⊆ Bε(f
m(x)).

Thus a sensitive system has no equicontinuity points. On transitive system also
the converse holds (next proposition).



Proposition. Let M be a group or M = N. Let (X, f ) be a transitive
dynamical system over M and let E ⊆ X be the set of its equicontinuity
points. Then exactly one of the two following conditions holds:

(i) The system is sensitive and E = ∅.
(ii) The system is not sensitive and E is a residual set (and hence non-empty).

Proof.



Proposition. Let M be a group or M = N. Let (X, f ) be a transitive
dynamical system over M and let E ⊆ X be the set of its equicontinuity
points. Then exactly one of the two following conditions holds:

(i) The system is sensitive and E = ∅.
(ii) The system is not sensitive and E is a residual set (and hence non-empty).

Proof. We define for every ε > 0 the set

Eε = {x ∈ X | ∃δ > 0,∀m ∈ M : fm(Bδ(x)) ⊆ Bε(f
m(x))},

and conclude that

� E =
⋂

ε>0Eε,

� for ε1 < ε2 holds Eε1 ⊆ Eε2.

There are two possibilties:

1◦ Eε = ∅ for some ε > 0: then E = ∅ and (X, f ) is sensitive with sensitivity
constant ε.

2◦ Eε ̸= ∅ for all ε > 0. Then no ε > 0 works as the sensitivity constant so
the system is not sensitive. We just need to show that E is a residual set.



Eε = {x ∈ X | ∃δ > 0,∀m ∈ M : fm(Bδ(x)) ⊆ Bε(f
m(x))}

� E =
⋂

ε>0Eε.

� For ε1 < ε2 holds Eε1 ⊆ Eε2.

� Assume that Eε ̸= ∅ for all ε > 0. We want to prove that E is residual.

Consider an arbitrary ε > 0:

(a) We show backward invariance (need here that M is a group or N):

∀k ∈ M : f k(x) ∈ Eε =⇒ x ∈ Eε.

(b) Next we show that there is an open set Uε such that Eε ⊆ Uε ⊆ E2ε

(c) Finally we show that Uε found in (b) is dense.

It follows that E = U1 ∩ U1/2 ∩ U1/3 ∩ . . . is residual.



Expansivity

A very strong form of sensitivity to initial conditions is expansivity. It requires
that there exists ε > 0, the expansivity constant, such that the trajectories
of any distinct points eventually deviate by at least ε:

∃ε > 0 : ∀x, y ∈ X :
x ̸= y =⇒ (∃m ∈ M : d(fm(y), fm(x)) ≥ ε).

Remark: If there are no isolated points in X then

(X, f ) expansive =⇒ (X, f ) sensitive.

(If there is an isolated point in X then no system is sensitive!)

Example. The full shift (AM , σ) over a monoid M is expansive: If x, y ∈ AM

and x ̸= y then xm ̸= ym for some m ∈ M . Then σm(x) and σm(y) differ at
cell 1M .

A subsystem of an expansive system is also expansive. Thus all subshifts are
also expansive.



Chaos

We have studied three families of properties of dynamical systems

� Mixing properties (transitivity, mixingness, minimality, transitive points),

� Regularity properties (periodicity, quasi-periodicity, recurrence, uniform
recurrence),

� Stability vs. sensitivity properties (equicontinuity, sensitivity, equcon-
tinuity points, expansivity).

In a chaotic dynamical system there is regular and transitive behavior densely
everywhere in the phase space, with sensitivity so that small changes in the
initial state may change regular behavior into transitive behavior or vice versa.



System (X, f ) (classical sense, over monoid (N,+)) is Devaney chaotic if

(1) it is transitive,

(2) it is sensitive,

(3) periodic points are densely in X .

It turns out that property (2) follows from (1) and (3) in infinite systems (home-
work).


