
Symbolic dynamics

Recall: For a finite alphabet A and monoid M , the full shift (AM , σ) over
M is defined by

∀x ∈ AM : ∀m ∈ M : σm(x)k = xmk.

In the cases of additive monoids M = N and M = Z we usually denote σ1 by
σ and call it the left-shift.

In symbolic dynamics we are interested in subsystems of (AM , σ) (called sub-
shifts) and their endomorphisms (called cellular automata).

Recall: A subshift is a non-empty topologically closed subset S ⊆ AM

that is invariant: σm(S) ⊆ S for all m ∈ M .

For a subshift S over a group we have that σm(S) = S for all m ∈ M :



Subshifts

For S ⊆ AM define

LS = {w ∈ AD | D ⊆ M finite, [w] ∩ S ̸= ∅},

and call LS the language of S.

The language of a subshift thus consists of all finite patterns that appear in
some element of S. It uniquely identifies the subshift:

Proposition. For subshifts: S ̸= T =⇒ LS ̸= LT .

Proof.



We may describe subshifts using forbidden patterns.

Let P be a set of finite patterns. The set of configurations that do not contain
any of patterns in P is

XP = {x ∈ AM | ∀m ∈ M, ∀w ∈ P : σm(x) ̸∈ [w] }.

Proposition. Set S ⊆ AM is a subshift (or the empty set) if and only if
S = XP for a set P of finite patterns.

Proof.

From the proof:
Corollary. S = XP where P is the complement of LS.



Describing a subshift by its language vs. forbidden patterns:

- (a) Some sets of patterns are not a language of any subshift,

(b) every set of patterns defines a subshift (or ∅) as forbidden patterns.

- (a) The language of a subshift bijectively identifies it,

(b) different sets of forbidden patterns may define the same subshift.

We classify subshifts based on how simple sets of forbidden patterns can describe
it.



Subshift of finite type (SFT)

Subshift S is called a subshift of finite type (SFT) if S = XP for a finite
set P .

Note: If a subshift is defined by an infinite set of forbidden patterns, this does
not imply that the subshift would not be of finite type. (There may be another
finite set of forbidden patterns that defines the same subshift.)

Example (The Golden mean shift). Let M = Z and A = {0, 1}. The golden
mean shift Sgm is defined by forbidding word 11. All 1’s must be isolated in
the configurations. This is an SFT.

Example. Let M = Z and A = {0, 1}. Forbid all patterns that contain
both symbols 0 and 1. This only allows two configurations ∞0∞ and ∞1∞.
Although we forbid infinitely many patterns this subshift is of finite type: the
same subshift is defined by forbidding two patterns 01 and 10.



Example (The even shift).

Let M = Z and A = {0, 1}. The even shift Seven is defined by forbidding
words 102n+11 for all n ∈ N. There must be an even number of 0’s between
consecutive 1’s.

The even shift is not an SFT:

The even shift is an example of a sofic shift. The configurations are obtained
by reading the labels along bi-infinite paths in the labeled directed graph:
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In terms of formal languages, the set of subwords that appear in configurations
of the even shift are a regular language (recognized by a finite automaton).



Homomorphisms

Let S ⊆ AM be a subshift and B an alphabet. Let

� D ⊆ M be finite (a neighborhood),

� ϕ : (LS ∩AD) −→ B be a function (a local rule) that assigns symbols of
B to D-patterns of S.

These determine a block map f : S −→ BM by

∀x ∈ S : ∀m ∈ M : f (x)m = ϕ(σm(x)|D).

(Function f applies ϕ on the D-pattern around each cell; similar to cellular
automata on full shifts defined earlier.)

A block map f is a homomorphism (S, σ) −→ (BM , σ):

� Continuous:

� Commutes with the shift:



Also the converse holds: Block maps are precisely the homomorphisms between
subshifts.

Curtis-Hedlund-Lyndon -theorem. Let S ⊆ AM be a subshift. A
function f : S −→ BM is a homomorphism from (S, σ) to (BM , σ) if and only
if it is a block map.

Proof.



Corollary. The endomorphisms of a full shift are precisely its cellular au-
tomata, and its automorphisms are precisely the reversible cellular automata.
This holds over any monoid M .

More generally, the endomorphisms of a subshift S are called cellular au-
tomata on subshift S. They are all block maps.



Example. Let Sgm be the golden mean subshift (word 11 forbidden). Define
a block map f : Sgm −→ {0, 1}Z by

� neighborhood D = {0, 1} ⊆ Z,

� local rule ϕ : (LSgm ∩ {0, 1}D) −→ {0, 1} where

00 7→ 1,
01 7→ 0,
10 7→ 0.

Then f (Sgm) is the even shift Seven:

A pre-image of 10k1 must have form 00(10)n0, and then k = 2n. So f (Sgm) ⊆
Seven.

Every x ∈ Seven has a pre-image.

Thus f is a factor map from (Sgm, σ) to (Seven, σ).



Lemma.

(a) Let f : AM −→ AM be an endomorphism of a full shift. Its fixed point set
{x ∈ AM | f (x) = x} is an SFT (or empty).

(b) Let f : AM −→ BM be a homomorphism between full shifts, and let
S ⊆ BM be an SFT. Then f−1(S) is an SFT (or empty).

(c) A finite intersection of SFTs is an SFT (or empty).

Proof.



Proposition. Let S ⊆ AM and T ⊆ BM be conjugate subshifts. If S is of
finite type so is T .

Proof.



Sofic subshifts

Factors of SFTs are called sofic subshifts. An SFT S0 is called a SFT cover
of the sofic subshift S = h(S0).

Example. The even shift is a factor of the golden mean shift, and the golden
mean shift is an SFT. Thus the even shift is sofic.

Proposition. A factor of a sofic shift is sofic. In particular, a subshift that is
conjugate to a sofic shift is sofic.

Proof.



Edge shifts

Each (directed) graph G defines a subshift EG, the edge shift of G, as follows:
the set EG consists of all two-way infinite paths of edges in G. The alphabet is
thus the set E of the edges of the graph.

The edge shift is of finite type, and every subshift S ⊆ AZ of finite type is
conjugate to an edge shift of some graph (homework).



If we label the edges by letters of some alphabet A, we can also read the labels
along all two-way infinite paths in the graph. The set of such sequences is a
sofic subshift, because the labeling function gives a factor map from the edge
shift EG.
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Moreover, every sofic subshift S ⊆ AZ can be obtained in this manner.



Effective subshifts

Let M = ⟨G⟩ be finitely generated (G finite), with decidable word
problem (there is an algorithm that, when given two products of generators,
decides whether the products are the same element of M .)

• Elements of M are represented as products of generators, and there is thus
an algorithm that tells if two given elements are the same.

• A finite pattern p ∈ AD is represented as a finite set

{(m, a) | m ∈ D, a = p(m)}

of pairs (m, a) where m ∈ M (given as a product of generators) and a ∈ A.
The pattern assigns symbol a in cell m.

Decidable word problem guarantees that:

� there is an algorithm to check that a given pattern is consistent (does not
contain multiple pairs (m, a) and (m, b) with a ̸= b).

� there is an algorithm to test if two given patterns are identical.



A set P of finite patterns is called

� recursive if there is an algorithm to decide if a given pattern w is in P ,

� recursively enumerable if there is an enumeration algorithm that lists
elements of P one-by-one.

- Equivalently, P = {p1, p2, . . . } in some order and there is an algorithm
that produces for any given i the i’th pattern pi.

- Yet equivalently, there is a semi-algorithm to recognize elements of P .

Every recursive set is also recursively enumerable but the converse is not true.

However, subshifts XP defined by forbidding recursive sets P turn out to be
the same as subshifts defined by forbidding recursively enumerable sets P .



Proposition. Let M be a finitely generated monoid with decidable word
problem, and let S ⊆ AM be a subshift. The following are equivalent:

(a) S = XP for a recursively enumerable set P of finite patterns.

(b) S = XP for a recursive set P of finite patterns.

(c) The complement of LS is recursively enumerable.

A subshift satisfying any of the equivalent conditions (a)-(c) is called effective.



Examples. Let M be a finitely generated monoid with decidable word prob-
lem.

An SFT S ⊆ AM is trivially effective since a finite set P of patterns is recursive.

Let S ⊆ BM be a factor of an effective subshift S0 ⊆ AM , say S = h(S0)
for a block map hwith the neighborhoodN ⊆ M and local rule ϕ : AN −→ B.

Let us prove that S is effective. A pattern p ∈ BD is in the language LS

if and only if it has a “pre-image pattern” p0 ∈ ADN that is in the language
LS0. So p is in the complement of LS if and only if all its pre-image patterns
p0 ∈ ADN are in the complement of LS0. We can recursively enumerate the
complement of LS0, and if eventually all pre-images of p have been enumerated
we can announce that p is in the complement of LS.
=⇒ the complement of LS is recursively enumerable.

In particular, all sofic subshifts S ⊆ AM are effective.


