
The grid of equilateral triangles is formed by equally spaced infinite lines in three directions, at 120◦

angles with each other. We number these directions 1, 2 and 3. For each direction i ∈ {1, 2, 3} we call
i-lines the infinite lines in direction i that together form the triangular lattice.

The grid of kites is in fact the dual of the 3 · 4 · 6 · 4 Archimedean tiling, obtained by joining the
centers of adjacent tiles of the Archimedean tiling. A kite in the grid is a quadrilateral with two short
edges (length 1) and two long edges (length

√
3). The long edges are along the i-lines, while the short

edges are on the boundaries of the regular hexagons. The hat tile inherits these edge lengths. Note that
when viewed as a polygon the hat has also one edge of length 2 (formed by two consecutive parallel short
edges of kites), but in the following we consider this segment to consist of two edges of length 1. Thus
the hat has 6 long edges and 8 short edges.

Let us read the edges as vectors, moving around the hat clockwise. We get 6 vectors of length
√
3,

in three pairs of opposite vectors, and 8 vectors of length 1. The sum of the vectors is the zero vector
(as the sum represents the vector leading from a vertex to itself). In fact, both the short and the long
vectors separately sum up to zero:

• (H1) The sum of the six long vectors on the boundary of the hat is the zero vector, as is the sum
of the eight short vectors.

Based on (H1) we can deform the hat tile as follows: keeping the orientations of the edges unchanged,
scale the lengths of all long edges by some constant a ≥ 0 and the lengths of all short edges by some
constant b ≥ 0, with a 6= 0 or b 6= 0. The scaled long edge vectors naturally still sum up to zero, and the
scaled short edge vectors sum up to zero as well. The scaled edges define a boundary of a deformed tile.
In our proof below we actually only need the scaling factors a = 1 and b = 0, i.e., we remove the short
edges. This results in the deformed tile that is the chevron

This is a hexagon with three pairs of equally long and parallel sides. It is also a union of four equilateral
triangles with sides

√
3. On the other hand, three kites tile an equilateral triangle with side 2

√
3. Thus

the area of the chevron is the same as the area of three kites. Because the hat consists of eight kites, we
see that

• (H2) the area of the hat is 8/3 times the area of the chevron.

Let us argue next that deforming the tiles as above in a valid hat tiling produces a corresponding
valid tiling by the deformed tiles. So let T be a valid monohedral tiling using the hat. Let V ⊆ R2 be
the set of vertices of T , and let us assume, without loss of generality, that 0⃗ ∈ V . Let us determine how
the tile deformation moves an arbitrary vertex v⃗ ∈ V .

A path p is a sequence v⃗0, v⃗1, . . . , v⃗n ∈ V of vertices such that for each i ∈ {1, 2, . . . n} some tile in
T has an edge from v⃗i−1 to v⃗i. The path thus tracks edges of the tiles. Denote a⃗i = v⃗i − v⃗i−1, and let
L ⊆ {1, 2, . . . n} be the set of indices such that a⃗i is long (of length

√
3, that is), and let S = {1, 2, . . . n}\L

be the index set of the short edges (of length 1). If v⃗n = v⃗0 then the path is a cycle. If, moreover, v⃗i 6= v⃗j
for all i 6= j except when {i, j} = {0, n} then the cycle is simple. For each cycle it is clear that

n∑
i=1

a⃗i = 0⃗,

but in fact we also have the property that∑
i∈L

a⃗i =
∑
i∈S

a⃗i = 0⃗. (2)
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To see this, it is enough to focus on simple cycles since every cycle breaks into a union of simple cycles.
Each simple cycle is the boundary of a topological disk that is a union of the tiles of a finite subset F ⊆ T ,
and without loss of generality we may assume that the cycle is oriented clockwise. We use induction on
the number k = |F| of enclosed tiles. The claim is trivial if k = 0. Assume then k > 1, and let t ∈ F
be an enclosed tile whose edge is on the path. Any edge of t that is tracked by the path is tracked
in the clockwise orientation. Let b⃗1, . . . , b⃗14 be the edge vectors of t in the opposite, counter clockwise
direction. By (H1), both the long vectors and the short vectors among b⃗j add up to zero. We merge the
collections of vectors a⃗i and b⃗j . For each edge of t that is on the path there is the opposite vector among
b⃗j . Cancelling such pairs, the remaining vectors can be grouped into simple cycles that enclose subsets
of F \ {t}. By the inductive hypotheses the sums of the long and the short vectors among them both
sum up to zero. So overall the sums of the long and the short vectors among a⃗i and b⃗j add up to zero,
which implies the claimed equality (2).

It now follows that scaling the long and the short edges of the hat by factors a ≥ 0 and b ≥ 0,
respectively, transforms the tiling T into a tiling T ′ by the transformed tiles: Any vertex v⃗ ∈ V is
reached from 0⃗ by a path p = v⃗0, v⃗1, . . . , v⃗n in T where v⃗0 = 0⃗ and v⃗n = v⃗. The corresponding vertex v⃗′

in T ′ is reached from 0⃗ by the path p′ obtained from p by scaling the long and short edges of the path
by factors a and b, respectively. This results in the same v⃗′ regardless of the choice of p: If q is another
path from 0⃗ to v⃗ then the path p followed by q reversed is a cycle, and as proved above, the long and
the short edges of the cycle sum up to zero. Thus the scaled long and short edges also sum up to zero,
and therefore the paths p′ and q′ obtained by scaling p and q lead from 0⃗ to the same point v⃗′. Thus the
deformed tiling is well-defined.

The following picture illustrates a piece of a hat tiling and the corresponding tiling by the chevrons.
The figure also shows four sample vertices of the hat tiling and the corresponding vertices in the chevron
tiling.

Skipping the detailed proof, we note that all valid hat tilings of R2 must be such that the copies of
the hat are aligned on the grid of kites. So in the following we only consider tilings where the hats are
aligned on a given fixed grid of kites. This means that there are 12 possible orientations of the hat: six
obtained by rotating the hat, and another six obtained by rotating the reflected hat:
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A notable property of the hat tile is that while the kites in the hat come in all 6 available orientations,
one opposite pair of kite orientations is used twice. (In the illustration above these excess kites are
indicated in darker color.) Contrasting this imbalance with the fact that the grid itself has kites in all six
orientations in equal proportions, we see that in valid tilings there are three groups of four orientations
of the hat (the columns of the illustration above) such that

• (H3) in a valid tiling, one third of the hats come oriented as in each of the three column in the
picture above.

Recall that the long edges of hats are along i-lines for i ∈ {1, 2, 3}. Observe that the pairs of parallel
long edges of the hat are always on consecutive i-lines. These lines are are at distance 3 from each other.
Denote D = 3

2 so that the i-lines repeat with distance 2D.
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Deforming the hat into a chevron preserves the orientations of the long edges. From the 12 possible
orientations of the hat we obtain only six different orientation of the chevron, due to the reflection
symmetry of the chevron:

The three columns in this picture correspond to the three columns in the picture of hat orientations
before. It follows that

• (H4) a chevron tiling that is obtained by deforming a hat tiling has one third of its chevrons from
each of the three columns above.

The chevrons are also aligned with a grid of equilateral triangles, formed by three families of parallel
lines in the same directions as the i-lines in the grid of kites. We also call these i-lines, for i ∈ {1, 2, 3}.
The sides of the triangles are of length

√
3, and so the consecutive i-lines of chevrons are at distance 3

2
from each other,i.e., the distance is D, half of the distance of i-lines of hats.

Consider, for example, the pair of vertical (i = 1) edges of a chevron: if oriented as in the first column
above, the edges are on consecutive 1-lines but the rightmost edge is higher (by

√
3/2) than the leftmost

edge. (See the grey vector in the picture above.) In the third column the rightmost edge is lower by
the same amount. In the middle column the vertical edges are on the same height but they are not on
consecutive 1-lines, but at double distance 2D. We have that, on the average, the vertical position of
the two vertical edges is the same, and the average horizontal distance between them is 4

3D. Due to
symmetry, edges in the other two directions behave similarly.

In the following we prove that the hat tile does not admit a two-periodic tiling. Assume the contrary:
suppose T is a two-periodic tiling using the hat. Let p⃗ and q⃗ be generators of the periods of T , meaning
that ip⃗ + jq⃗ are precisely its vectors of periodicity, for i, j ∈ Z. Denote P = Zp⃗ + Zq⃗ for the set of the
periods of T . Let V ⊆ R2 be the set of vertices of T , and assume that 0⃗ ∈ V . Note that

v⃗ ∈ V ⇐⇒ v⃗ + p⃗ ∈ V ⇐⇒ v⃗ + q⃗ ∈ V ,

which, together with 0⃗ ∈ V , implies that P ⊆ V .
We deform the hat and the periodic tiling T by scaling factors a = 1 and b = 0, as discussed above.

Let T ′ be the deformed tiling (by chevrons) and let V ′ be its vertex set. Let f : V −→ V ′ give for each
vertex the corresponding vertex in the deformed tiling, i.e., if p is a path in T from 0⃗ to v⃗ ∈ V then the
corresponding deformed path p′ leads in T ′ from 0⃗ to f(v⃗). (Note that f is not one-to-one: removing
short edges merges the vertices they connect.)

For any x⃗ ∈ V , choose a path px⃗ in T from 0⃗ to x⃗ and let p′x⃗ be the corresponding deformed path
in T ′ from 0⃗ to f(x⃗). Let v⃗ ∈ P ⊆ V be any period of T , and let x⃗ ∈ V be arbitrary. Since v⃗ ∈ P ,
there is a path q in T from v⃗ to v⃗ + x⃗ that is a translation by v⃗ of the path px⃗. The path pv⃗ followed by
the path q is a path from 0⃗ to v⃗ + x⃗ whose deformation leads in T ′ from 0⃗ to f(v⃗) + f(x⃗). We see that
f(v⃗ + x⃗) = f(v⃗) + f(x⃗). In particular, we have that f(v⃗) is a period of T ′ since for any vertex f(x⃗) ∈ V ′

also f(v⃗) + f(x⃗) is in V ′.
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Moreover, it follows that f(ip⃗ + jq⃗) = if(p⃗) + jf(q⃗) for all i, j ∈ Z where p⃗, q⃗ are the generating
periods of T . This means that f is linear among the periods. Let us denote by f̂ : R2 −→ R2 the
unique linear map that coincides with f on P, that is, the unique linear function that maps p⃗ 7→ f(p⃗)
and q⃗ 7→ f(q⃗). Note that f and f̂ do not need to coincide on V \ P . The linear function f̂ is one-to-one:
it has full rank since otherwise f(P) would be on a single line, which is clearly not the case. (If f(P) ⊆ ℓ
for some line ℓ, then for any two hats in T that are transitive under some translational symmetry of T
the corresponding deformed tiles in T ′ are on a common line parallel to ℓ. There are only finitely many
transitivity classes under translational symmetries in T but clearly there is an infinite set of chevrons in
T ′ that are pairwise not on such a common line, a contradiction.)

Our next goal is to prove that the linear function f̂ is a similarity, i.e., distances of points are scaled
by the same constant: we argue that there exists a constant c such that for any x⃗, y⃗ ∈ R2 it holds that
d(f̂(x⃗), f̂(y⃗)) = d(x⃗, y⃗)/c.

Consider any of the three directions i ∈ {1, 2, 3}. A de Bruijn segment on a hat tile in direction i is
a line drawn inside the tile connecting the centers of the two long edges of the hat that are parallel to
i-lines. Similarly we define de Bruijn segments of chevrons. There is one de Bruijn segment drawn in
each tile in each direction i. Here are examples in the vertical direction i = 1:

In the valid tiling T , the de Bruijn segments of two tiles sharing a long edge continue across that edge,
thus defining infinite de Bruijn lines in directions i across the entire tiling. Each tile is crossed by a
unique de Bruijn line in each direction i, and the lines in the same direction do not cross each other. Let
us call the set of tiles on the same de Bruijn line in direction i an i-strip. Similarly we define de Bruijn
lines and i-strips in tilings by chevrons. The following picture shows a patch of a tiling by hats, and two
de Bruijn lines across the patch in the vertical direction i = 1. Tiles of the i-strip of the lower line are
rendered dark. The lower patch is the same drawing in the corresponding tiling by chevrons.
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Note that any translational symmetry τ of T must map i-strips onto i-strips, preserving the order of tiles
on the strips: if t2 = τ(t1) then the tile following (preceding) t1 on its i-strip will be mapped on the tile
following (preceding, resp.) t2 on its i-strip.

Fix direction i and consider one i-strip. The strip contains infinitely many tiles. Because T is two-
periodic, there are only finitely many tiles that are not transitive under translational symmetries of T .
Thus the strip contains distinct tiles t1, t2 such that t2 = τ(t1) for some translational symmetry τ of T .
As noted above, this means that the strip is mapped by τ onto itself. As τ cannot change the order of
i-strips, it follows that every i-strip is mapped onto itself by τ .

A similar reasoning works with all directions i ∈ {1, 2, 3}. For each i, let u⃗i be a unit vector parallel
to i-lines, chosen so that u⃗1, u⃗2 and u⃗3 are at 120◦ angles to each other. For each i, let v⃗i be a vector of
length 2D, perpendicular to i-lines, again chosen so that v⃗1, v⃗2 and v⃗3 are at 120◦ angles to each other,
i.e., so that v⃗1 + v⃗2 + v⃗3 = 0⃗.
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As seen above, for each i ∈ {1, 2, 3} there is a translational symmetry of T that maps i-strips onto
themselves. Let such a translation in direction i ∈ {1, 2, 3} be by the vector p⃗i = xiv⃗i + yiu⃗i. Here xi is
a positive integer indicating how many tiles the translation moves forward on an i-strip. As multiples of
periodicity vectors are also periodicity vectors, we can choose the periods p⃗i so that x1 = x2 = x3 is the
same positive integer k.

Consider then the i-strips on the corresponding chevron tiling T ′. These are precisely the i-strips of
T after the deformation. The translation by vector f(p⃗i) = f̂(p⃗i) is a symmetry of T ′ that maps each
i-strip onto itself: it shifts by k the tiles within each i-strip. Averaging over all finitely many i-strips with
distinct translational transitivity classes we see – based on observation (H4) – that the vector f̂(p⃗i) must
be perpendicular to the i-lines, and its length is k · 43D. The length is independent of i, and the directions
for i ∈ {1, 2, 3} are at 120◦ angles to each other, implying that f̂(p⃗1) + f̂(p⃗2) + f̂(p⃗3) = 0⃗. Linearity of f̂
thus means that f̂(p⃗1 + p⃗2 + p⃗3) = 0⃗, and by the injectivity of f̂ then p⃗1 + p⃗2 + p⃗3 = 0.

On the other hand, as p⃗i = kv⃗i + yiu⃗i and v⃗1 + v⃗2 + v⃗3 = 0⃗, we have that y1u⃗1 + y2u⃗2 + y3u⃗3 = 0⃗.
Vectors u⃗i are unit vectors at angles 120◦ to each other, so that we must have y1 = y2 = y3. In conclusion,
vectors p⃗i have equal lengths and they are at 120◦ angles to each other, and their images f̂(p⃗i) under
f̂ have also equal lengths and they are at 120◦ angles to each other. This implies that f̂ is a similarity
map, i.e., an isometry followed by scaling by some constant 1/c.

Using the fact (H2) that the area of the hat tile is 8/3 times the area of the chevron, we can even
conclude the value of the similarity factor to be c =

√
8/3. Indeed, if there arem translational transitivity

classes of hats in tiling T , then the area of the parallelogram with sides p⃗ and q⃗ is m times the area of
the hat tile. Based on T ′ then the area of the parallelogram with sides f̂(p⃗) and f̂(q⃗) is m times the area
of the chevron tile. As f̂ is a similarity with scaling c, the ratio of the areas of the parallelograms is c2,
while the ratio of the area of a hat to the area of a chevron is 8/3. This gives c2 = 8/3.

Finally we show that scaling by c =
√
8/3 is not possible. Note that the periodicity vector p⃗ of T

is a vector between two vertices of the underlying triangle grid formed by i-lines (as the translational
symmetry is also a translational symmetry of the underlying grid of kites, so it maps sharp ends of kites
to sharp ends – and the sharp ends are located at the vertices of the triangle grid.) On the other hand,
the corresponding vector p⃗′ = f̂(p⃗) in T ′ is a vector between two vertices of the triangular grid of the
chevron tiling. The triangles in the first grid have sides twice as long as in the second grid, so they can
be subdivided into smaller triangles to get the second grid. Both vectors p⃗ and p⃗′ are thus connecting
vertices of the same grid of small triangles. Due to the similarity scaling, the lengths of the vectors are
related by |p⃗|/|p⃗′| =

√
8/3.

Let us prove that the length ratio
√

8/3 is not possible between two non-zero vectors connecting ver-
tices of the same triangular grid. For the simplicity of notations, consider the grid of equilateral triangles
containing vertices (0, 0) and (1, 0). The vertices of the grid have coordinates i(1, 0) + j(1/2,

√
3/2) for

i, j ∈ Z. If d is the distance of such a vertex from (0, 0) then d2 = (i+ j/2)2 + (j
√
3/2)2 = i2 + j2 + ij.

Thus the squares of the lengths of vectors between vertices come from the set S = {i2+ j2+ ij | i, j ∈ Z}.
Elements of S are integers. Let us show that for any non-zero s ∈ S one has 8/3s 6∈ S. If i is odd or j is
odd (or both are odd) then s = i2+ j2+ ij is odd. If i and j are both even then dividing both by 2 gives
that s/4 ∈ S. This means that any even s ∈ S is divisible by 4, and then s/4 ∈ S. Repeatedly dividing
any even s ∈ S by 4 one hence eventually reaches an odd number. In conclusion: The largest power of 2
that divides any non-zero s ∈ S is even, and therefore s ∈ S =⇒ 8/3s 6∈ S.

This shows that |p⃗|2 = 8/3|p⃗′|2 is not possible, and we have the following:

Theorem 7.6 The hat tile does not admit any two-periodic tiling.

By Theorem 7.5 (the periodicity theorem), the hat tile does not even admit a one-way periodic tiling.
We skip the details of the proof that the hat tile admits a tiling. One can generate a tiling as follows.

Define first patch P of two tiles by attaching the hat tile and the flipped over variant of the hat (upper left
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patch on the figure below). Let Q be a patch consisting of a single hat tile (lower left patch). Then define
a substitution on patches P and Q that replaces each P and Q by super-P and super-Q, respectively
(upper right and lower right in the figure):

Both supertiles contain one copy of P , shown in red/pink in the figure, and several patches Q. None of
the patches are flipped over, so the red tile inherited from Q is the only tile of the super patches that is
a flipped over variant of the hat.

This substitution can be iterated, thus obtaining as a limit a tiling of the plane by hats. The following
picture shows the creation of the second level super-P patch:
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Note that the tiles in dark red are the only flipped over hat tiles. The fact that the hat tile does not admit
a periodic tiling (Theorem 7.6) can also be proved analogously to our previous substitution examples:
any valid tiling can be uniquely decomposed into super-patches. There are several cases to consider and
we skip the proof.

Some final remarks: Deforming the hat with scaling factors a ≥ 0 and b ≥ 0 on long and short edges
produces “equivalent” tiles that are also aperiodic, except when (i) a = 0, or (ii) b = 0 or (iii) b/a =

√
3.

In cases (i) and (ii) the long and short edges vanish, respectively, and in case (iii) the long and short
edges become equally long. In all cases deforming a tiling by the hat becomes a tiling by the deformed
tile, so all deformed tiles admit monohedral tilings. Conversely, in all cases except (i), (ii) and (iii) a
valid tiling by the deformed tiles is necessarily edge-to-edge in such a manner that long edges meet long
edges and short edges meet short edges. In this situation the inverse deformation can be done back from
the deformed tile to the hat. If the deformed tile would admit a periodic tiling, the inverse deformation
of this tiling would produce a periodic tiling by the hat, which by Theorem 7.6 does not exist. So the
deformed tile does not admit a periodic tiling.

Note that in cases (i), (ii) and (iii) the inverse deformation is not well defined on tilings. In particular,
in case (iii) the tile admits a valid tiling where two neighboring tiles meet with their “long” and “short”
edges against each other. In the periodic tiling below the “long” edges are shown red, short edges are
shown as light blue.

Note that there are several instances where a red edge meets a blue edge. In this situation the inverse
deformation breaks the tiling. So this periodic tiling, of course, does not provide a periodic tiling by the
hat.

Note that in the periodic tiling above both even and odd (=flipped over) variants of the tile are used.
It turns out (proof skipped) that the tile also admits a tiling using only the even variants, and that all
tilings using only the even variants are non-periodic! Using a standard bumps and dents construction
on the edges we can prevent the even and the odd variants from appearing in the same tiling. In this
construction the new shape of the edge is symmetric under a half turn so that the even tiles still match
with each other along their edges:
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This tile is thus aperiodic monotile in the following strong sense: it admits a tiling, no tiling involves
both even and odd variants of the tile, and there is no valid periodic tiling. The tile is called spectre (as
is any of the analogous variants where differently curved edges are used to prevent even and odd tiles
next to each other).

One more interesting observation can be made: The original kite grid is bipartite in the sense that
we can color red and color blue those vertices where edges meet at angles that are multiples of 120◦ and
multiples of 90◦, respectively, and each edge then connects a red and a blue vertex:

Thus, if we color vertices of the hat tile alternatingly red and blue, in any valid tiling by the hat the
meeting vertices have the same color. The same is then true on the deformed hat. Consequently, the
bumps and dents construction above can be simplified so that the new shape of the edge does not need
to be symmetric under a half turn, but instead the edges of the tile are alternatingly the shape and its
half turned variant:
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This tile has the same spectre properties: it admits a tiling, no tiling involves both even and odd variants
of the tile, and there is no valid periodic tiling.

The following picture shows corresponding patches using the deformed hat (left, including coloring of
the vertices), spectre with half turn symmetric edge shapes (middle) and spectre with the simpler edge
shapes that are not symmetric but alternate in consecutive edges (right).

7.5 Open problems
The aperiodic monotile “hat” discussed above is a 13-gon. A natural follow-up problem is to try to reduce
the number of sides. Quadrilaterals tile the plane periodically, so the smallest possible number of sides
on a polygonal aperiodic monotile is at least 5.

Open problem What is the smallest n such that there exists an aperiodic n-gon ? Does there exist an
aperiodic pentagon ?

The construction from Wang tiles to polygons with bumps and dents is clearly effective, which means
that it can be executed mechanically by an algorithm. Consequently, the undecidability results proved for
Wang tiles hold for polygonal prototiles as well. In decision problems whose input consist of polygons we
must use a finite way of representing the polygons. A natural way is to assume that the input polygons
are such that the vertices of the polygons have rational coordinates, and the encoding then is a list of
consecutive vertices. The bumps and dents can be done with rational coordinates so we immediately get
the following undecidability results, corresponding to Theorems 5.7 and 5.8.

Theorem 7.7 The following decision problems are undecidable:

• ”Does a given protoset of polygons with rational coordinates admit a periodic tiling ?”,

• ”Does a given protoset of polygons with rational coordinates admit a tiling ?”.
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Proof. Suppose an algorithm A exists for one of the given problems. Then we can solve the analogous
problem on Wang tiles: For the given Wang protoset we use the bump/dent construction to form a
protoset of polygons, and we give this protoset as input to the hypothetical algorithm A. The answer from
algorithm A tells whether the Wang protoset admits a (periodic) tiling. This contradicts Theorem 5.7 or
5.8.

It is not known if there exists a decision algorithm to determine if a given single polygonal prototile
admits a valid (periodic) tiling. Note that with Wang tiles the question is trivial, as for every k there are
only a finite number of non-isomorphic protosets with k tiles, and consequently the decision problems are
decidable. But there are infinitely many different polygons, so there is no trivial reason why there would
exist an algorithm to tell even if a single tile admits a tiling. The aperiodic monotile “hat” provides the
necessary pre-condition for undecidability.

Open problem Is the following decision problem decidable ?

• ”Does given single polygon with rational coordinates admit a tiling ?”

What about the same question restricted to pentagons ?

It has been shown by N. Ollinger that the tiling problem is undecidable among protosets that contain
5 polyominoes. (A polyominoe is a tile obtained by edge-to-edge attachments of any number of unit
squares to each other.) In particular, this implies the undecidability of the tiling problem among sets
of 5 polygons. On the other hand, the tiling problem is known to be decidable for single polyominoes if
only translations are allowed, that is, the tiles must be placed in the given orientation.

As a related question, consider the following problem by H. Heesch. Given a prototile t that does
not admit a tiling of the plane, the Heesch number of t is the maximum number of times the tile can be
completely surrounded by copies of t. More precisely, for a topological disk d ⊆ R2, a corona of d is a
collection C of tiles, all congruent to t, such that

1. the interiors of the elements of C are pairwise disjoint, and disjoint from d, and

2. d ∪
∪
s∈C

s is a topological disk whose interior contains d.

In other words, tiles in the corona C surround set d completely. For example, the squares in the following
figure form a corona of the set d in the middle:

d

We can define a second corona of d as a corona of the set that is the union of d and its first corona.
Inductively, a k + 1’st corona is a corona of the topological disk formed by d and its first k coronas. In
the Heesch problem we start with a single copy of t and form its 1st, 2nd, 3rd, etc. coronas. If the k’th
corona exists for every k then by Theorem 7.4 the entire plane can be tiled. But if t does not admit a
plane tiling then there exists the largest k such that the first k coronas exist. This k is called the Heesch
number of tile t. The following figure illustrates two coronas of a tile:

119



A regular hexagon with incoming arrows on three sides and outgoing arrows on two sides admits three
coronas:

(In the picture, the arrows are represented by bumps and dents.) Due to the imbalance in the number of
incoming and outgoing arrows, it is easy to apply the argument used earlier in the homeworks to conclude
that the full plane cannot be tiled by this tile.

At the present time the largest known Heesch number is six. This is is a tile reaching that number:

Here’s a picture showing the maximum number of coronas :
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[Bašić, Bojan – Smaller version of https://en.wikipedia.org/wiki/Heesch]

Open problem Does there exist number k such that the Heesch number of every tile that does not
admit a tiling is at most k ? If such a k exists, what is the smallest such k ?

Note that if the Heesch numbers are bounded by some constant k then there is an algorithm (at least in
any reasonable set-up such as edge-to-edge tilings by polygons where one can try all possible coronas) to
determine if a given single tile admits a tiling: To test if a tiling exists, all we need to do is to try all
possible ways of building k + 1 coronas. A valid tiling exists if and only if k + 1 coronas exist.
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