Isometries of R?

Let
d:R* x R* — [0, 00)

be the usual Euclidean distance defined by
d((x1, 1), (22, 42) = V(21 — 22)2 + (41 — 42)*.

A plane isometry is a function
a:R* — R?
that preserves distances:

V(z1, ), (T2, y2) € RZ o d(alzy, y1), alas, y2)) = d((z1,31), (2, 12)).

In other words, o defines a "rigid” motion that does not change any distances.



Remark. Isometries can be studied using analytic geometry. Isometries are
exactly the affine transformations

()= (ea) (0) (5
Y c d Y /
whose coefficient matrix :
a
=)

is orthogonal, meaning that
MM =1,

the 2 x 2 identity matrix.

Using this fact, all the results that we prove in the following can be proved alge-
braically with Cartesian coordinates. However, the geometric approach that we
use, although sometimes longer, has inner “mathematical beauty” and provides
insights hidden by the algebraic calculations.



Forgetting coordinates, we denote points of the plane by capital letters, so the
isometry property will be written as

VP,Q € R* : d(a(P),a(Q)) =d(P,Q).

Theorem. An isometry is a bijection. Its inverse function is an isometry:.

Proof.



The next observation states that isometries preserve shapes: they map every
line into a line, every triangle into a triangle, and the angle between two lines
remains the same. Also betweenness and midpoints are preserved.

Theorem. An isometry preserves lines, triangles, betweenness, midpoints,
sizes of angles, and perpendicularity and parallelism of lines.

Proof.



Example. The trivial isometry is the identity function ¢ that does not
move any points:

(P)=P
for all P € R2.



Example. Let A = (a,b) € R?. The translation by vector A = (a, b) shifts
every point (x,y) into position (x + a,y +b). We denote 74 for the translation
by vector A.

p’
(a,b)

P

Every translation is an isometry. The trivial translation 7(g¢) is the trivial
1sometry ¢.



Example. Let C' € R? be a point, and © € R an angle. The rotation pc g
by the (directed) angle © about C'is the isometry that

e fixes point C, and

e takes every point P # C into the point P' where d(C, P) = d(C, P") and
O is the directed angle from C'P to C'P":




In terms of analytic geometry, a point (x,y) is mapped to the point (z’;y')
given by the formula

'\ [ cos© —sin® T\, (¢
y' ]\ sin® cos© Y — ¢y cy

where C' = (¢, ¢).



The trivial rotation pco by the angle 0° is the trivial isometry ¢.

[f © = 180° we get a special rotation called the halfturn about point C', also
known as the reflection in point C'.

Every point P is mapped to the point P’ such that the center C' is the midpoint
between P and P’

P’

We introduce the special symbol oo for the halt turn about point C'. In other
words,

oC = PC,180°-



Example. Let m C R? be a line. The reflection o,, in line m does not move
the points of line m, but any point P outside line m is moved to the point P’
such that line m is the perpendicular bisector of segment PP":

Clearly a reflection o, is its own inverse:

Isometries that are their own inverses are called involutions.



Example. A Glide reflection is a composition of a translation and a re-
flection in line m that is parallel with the direction of the translation.

Let A = (a,b) € R? a vector of translation, and let m be a line parallel to A.
That is: if (a,b) # (0,0) then

m = {(c,d) +t(a,b) | t € R}

where (¢, d) is some point of the line, and if (a,b) = (0,0) then m can be any
line.



The glide reflection v, 4 reflects the points in line m and then translates them
by vector A. In this particular case it does not matter in which order the two
operations are performed; we may as well translate first and reflect later:

TmA —O0mOTA—TAOOpy.

Line m is called the axis of the glide reflection. Notice that glide reflections
with trivial translation vectors A = (0,0) are exactly the reflections.



Our four examples exhaust all possibilities (this will be proved later):
translations, rotations, reflections and glide reflections are the only isometries
of the plane.

And, since reflection is a special type of glide reflection, we can say that all
isometries are translations, rotations or glide reflections.



The composition
aof

of two functions « and [ is the function that first applies 5 to a point, and then
applies a to the result:

(o B)(z) = a(B(z)).

If o and [ are isometries then also their composition cvo 5 is an isometry.
Proof.

Function composition o is an associative operation, and since the identity func-
tion ¢ and the inverses of all isometries are also isometries, we have the following
theorem:

Theorem. The set of plane isometries is a group Z under the operation of
composition.



We frequently drop the group operation sign ”o” and simply write a8 for aco 5.
We then say that af is the product of o and 5.

We also do not need to use parentheses in products as

a(fy) = (aB)y.
We simply write this as a7.

However, the group of isometries is not commutative (=abelian) as in most

cases aff # [a.



An element o € 7 is called an involution if o = ..

Examples of involutions include all reflections in lines, all half turns and
the trivial isometry ¢. No other involutions exist.

Next we try to understand the structure of the group Z. We learn to form the
products of different isometries, show that reflections generate all isometries,
and prove that our examples exhaust all possibilities.



Review the following terms of group theory:

e generator set (=set of group elements such that every element of the
group is a product of generators and their inverses),

e cyclic group (=a group that is generated by one element)

e order of a group (=number of elements. If the group contains an infinite
number of elements then the group is called infinite, otherwise it is finite.)

e subgroup (=a subset of the group that is closed under the group operation
and the operation of taking the inverse element. A subgroup itself is a group
under the same group operation)

e cancellation laws:

af =ay = (=7,
fa=ya = [=1.



