
Rosette groups

A finite subgroup of I is called a Rosette group.

Two families of Rosette groups: For every n ≥ 1

� the cyclic group

Cn = ⟨ρ⟩ = {ρ1, ρ2, . . . ρn = ι}
where ρ is a rotation by angle θ = 360◦/n, and

� the dihedral group

Dn = {ρ1, ρ2, . . . ρn = ι} ∪ {ρ1σ, ρ2σ, . . . ρnσ = σ}
where ρ is as above and σ is a reflection on a line through the center of
rotation ρ.

Isometries ρkσ in Dn are reflections in lines that meet at the center of ρ at
angles that are multiples of

1

2
θ = 180◦/n.

Both Cn and Dn are indeed groups.



Remark: Strictly speaking there are infinitely many groups Cn as the center
P of ρ can be any point of the plane. Same for Dn: the center of ρ and the line
of σ can vary.



Example. Small n = 1 and 2:

� C1 = {ι} and D1 = {ι, σm},
� C2 = {ι, σP} and D2 = {ι, σP , σm, σl}, where m and l are perpendicular
lines through point P .



The symmetry group of a polygon is finite: A vertex must be mapped to a
vertex, and adjacent vertices to adjacent vertices. Thus an n-gon has at most
2n symmetries.

Example. Consider a regular n-gon. It has n rotational symmetries, and also
any reflection on a line through any vertex and the center of a polygon is a
symmetry. Thus the symmetry group is the dihedral group Dn.

Example. A polygon with symmetry group Cn, n ≥ 3:



Leonardo da Vinci’s theorem. A finite subgroup of I is either a cyclic
group Cn or a dihedral group Dn.

Proof.



Conjugacy

For any group G, elements x, y ∈ G are conjugate if

∃α ∈ G : x = αyα−1.

Conjugacy is an equivalence relation. Its equivalence classes are called the
conjugacy classes of the group.



In the group I conjugate isometries are of the same type (both translations,
both rotations, both reflections or both glide reflections).

Intuitively, αβα−1 is map β done on the plane that has been transformed
according to α.

Theorem. Let α ∈ I be any isometry.

1. Let σ = σm be the reflection in line m. Then ασα−1 is the reflection
σα(m) in line α(m).

2. Let τ = τB−A be the translation that moves point A to point B = τ (A).
Then ατα−1 is the translation τα(B)−α(A) that moves point α(A) to point
α(B).

3. Let ρ = ρP,Θ be a rotation about point P . Then αρα−1 is the rotation
ρα(P ),±Θ about point α(P ), where the angle is +Θ if α is even, and −Θ if
α is odd.

4. Let γ = γm,B−A be a glide reflection. Then αγα−1 is the glide reflection
γα(m),α(B)−α(A).

Proof
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The theorem is useful in figuring out symmetry groups: If α, β are in a symmetry
group so is the conjugate αβα−1.

We use the following terminology. Let G be the symemtry group os s ⊆ R2.

� If σm ∈ G then m is a line of symmetry of s.

� If σP ∈ G then P is a point of symmetry of s.

� If ρC,θ ∈ G then C is a center of symmetry and, more precisely, if
θ = 360◦

n then C is a center of n-fold symmetry of s.



Let α be an arbitrary symmetry of set s. Then in s, using the theorem,

� If m is a line of symmetry then also α(m) is a line of symmetry.

� If P is a point of symmetry then also α(P ) is a point of symmetry.

� If C is a center of (n-fold) symmetry then also α(C) is a center of (n-fold)
symmetry.



Frieze groups

The set T of translations is a subgroup of I. Thus for any group G of isometries
the translations in G form a subgroup

G ∩ T .

Group G is a frieze group if

G ∩ T = ⟨τ⟩

for some non-trivial translation τ . So for some non-zero vector A the transla-
tions in G are precisely by multiples of A.



Example. The symmetry group of the bi-infinite horizontally repeating pat-
tern

is a frieze group.



Example. The symmetry group of a horizontal line is not a frieze group
although all translations are in the horizontal direction. However, there is no
smallest positive translation.



There are seven different frieze groups (when we ignore the position, orientation
and the size of the frieze).

Convention: The direction of the translations in the frieze group is fixed to
be horizontal.


