Wallpaper groups

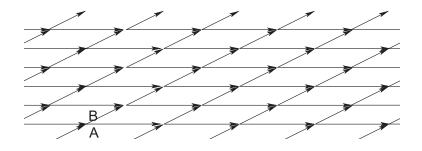
A subgroup of \mathcal{I} is a wallpaper group if its translations are

$$G \cap \mathcal{T} = \langle \tau_1, \tau_2 \rangle,$$

where τ_1 and τ_2 are non-parallel translations.

Translations commute with each other, so the translations of G are exactly $\tau_1^i \tau_2^j$ for $i, j \in \mathbb{Z}$.

If A and B are the vectors of translations τ_1 and τ_2 then the vectors of translations $\tau_1^i \tau_2^j$ are iA + jB, which form a lattice



Lemma. A wallpaper group G has a shortest non-trivial translation. More generally, any non-empty subset s of translations of G contains a shortest non-trivial translation.

An important restriction on possible rotations in wallpaper groups:

Theorem [Crystallographic restriction]. A wallpaper group G can only contain rotations by multiples of 60° and 90° . Hence all centers of rotations are centers of n-fold rotations for n = 2, 3, 4 or 6.

Moreover, a 4-fold rotation cannot co-exist with 3- or 6-fold rotations.

A subgroup G of \mathcal{I} is **discrete** if $\exists \varepsilon > 0$ such that

$$0 < |A| < \varepsilon \implies \tau_A \notin G$$
, and $0 < \Theta < \varepsilon \implies \rho_{C,\Theta} \notin G$.

(|A| is the length of the translation vector A.)

In other words: a discrete group G does not contain arbitrarily short translations and does not contain arbitrarily small rotations.

Lemma. Let G be a discrete subgroup of $\mathcal I$ that contains translations in non-parallel directions. Let

- τ_A be a shortest non-zero translation in G, and
- let $\tau_B \in G$ be a shortest translation not generated by τ_A .

Then τ_A and τ_B generate all translations of G.

Theorem. Discrete subgroups of \mathcal{I} are exactly the rosette groups, frieze groups and wallpaper groups.