
Lemma. Let G be a wallpaper group that contains an odd isometry with axis
m. Then there exist translations τ1, τ2 ∈ G that generate all translations of G
and either

(1) τ1 is parallel to m and τ2 is perpendicular to m, or

(2) τ1 and τ2 are of equal length and m is parallel to τ1τ2.

Moreover, in case (2), group G contains a reflection.
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Case (1) Case (2)

In case (1) the translation lattice is rectangular, andm is parallel to a side of the
rectangles, and in case (2) the translation lattice is rhombic, and m is parallel
to a diagonal of the rhombi.



Remark. Each rosette, frieze or wallpaper group type is actually a fam-
ily of subgroups of I. Depending on the center of rotations, the generating
translations etc., we get different groups but they have the same type.

More precisely, each group type represents a family of affinely conjugate
subgroups.



An affine transformation of the plane is a transformation that preserves paral-
lelism of lines. It is the composition of a linear transformation and a translation:

f :

(
x
y

)
7→M

(
x
y

)
+

(
a
b

)
where M is a 2× 2 matrix.

The transformation is one-to-one if and only ifM is invertible, i.e., det(M) ̸=
0.



Isometries are exactly the distance preserving affine maps. Distance preser-
vation is equivalent to M being an orthogonal matrix, i.e., equivalent to

MMT = I

where MT is the transpose of M and I is the 2× 2 identity matrix.

Even and odd isometries correspond to orthogonal matrices M whose determi-
nant is +1 and -1, respectively.



Two subgroups G1 and G2 of I are said to be equal up to affine conjugacy
if there exists a one-to-one affine transformation f such that

G1 = fG2f
−1.

In particular, this requires that fαf−1 are isometries for all α ∈ G2 (which is
not the case for all affine f and all isometries α ∈ I).

If G1 and G2 are wallpaper groups, frieze groups or rosette groups then equality
up to affine conjugacy exactly means that they are of the same wallpaper, frieze
or rosette group type.



Affine conjugacy preserves isometry types: If α and fαf−1 are both
isometries then they are of the same type: both translations, both rotations,
both reflections or both glide reflections.

(To see this, note that the parity of the isometry is preserved by affine conjugacy,
and that P is a fixed point of α if and only if f (P ) is a fixed point of fαf−1.)



As groups, C2 and D1 are isomorphic. But they are not equal up to affine
conjugacy.

Likewise, frieze groups F0000 and F0001 are isomorphic (both are infinite cyclic
groups, one is generated by a translation the other one by a glide reflection) but
we consider them different as they are not affinely conjugate.



Recall basic topological concepts of R2

� open and closed sets,

� neighborhood of a point (=any open set containing the point),

� interior of a set (=largest open set contained in the set),

� closure of a set (=smallest closed set containing the set),

� boundary of a set (=intersection of the closures of the set and its comple-
ment),

� compactness (in R2 this means closed and bounded),



Recall basic topological concepts of R2

� continuity of functions (inverse images of open sets are open),

� homeomorphism (=continuous bijection whose inverse is also continu-
ous).

� connectedness (an open set is connected iff it is not the union of two
disjoint open sets),

In R2 an open set is connected if and only if it is path-connected: each pair of
its points can be joined by a path (=homeomorphic image of the unit interval)
inside the set.



We denote
Br(P ) = {X ∈ R2 | d(X,P ) < r}

for the open disk (or ball) of radius r centered at P .

We also denote Br = Br(0, 0).

The closure of an open disk is a closed disk:

Br(P ) = {X ∈ R2 | d(X,P ) ≤ r},

and Br = Br(O).



A tile is a subset of R2 that is a topological disk, that is, it is the image of
the closed disk B1 under some homeomorphism.

Homeomorphisms preserve topological properties, so tile t inherits topological
properties from the disk B1:

� t is compact (=closed and bounded),

� the interior of t is connected, and the complement of t is connected,

� the boundary of t is the boundary of its interior,

� the boundary of t is a simple closed curve, that is, homeomorphic to the
unit circle

{X ∈ R2 | d(X,O) = 1}.



Here are some examples of tiles:



These are not tiles:



A tiling T is a family of tiles that covers the plane

(1) without gaps (every P ∈ R2 belongs at least one tile), and

(2) without overlaps (the interiors of the tiles are pairwise disjoint).

The boundaries of the tiles do not need to be disjoint. But any interior point
of a tile cannot belong to any other tile.

Remark: The number of tiles in any tiling must be

� infinite (union of a finite number of bounded sets would be bounded), but

� countable (the interior of each tile contains a point with rational coordi-
nates).



This is (part of) a tiling:



But this (with one strip flipped) is not:



Let T = {t1, t2, . . . } be a tiling. Its symmetry group G consists of those
isometries α that take every tile of T onto a tile of T :

∀i : ∃j : α(ti) = tj.

Theorem. The symmetry group of a tiling is discrete.

Proof.



Example. This tiling has symmetry group D5:



Remark: This “tiling” has a non-discrete symmetry group. But it is not a
tiling!



Usually we want only finite number of different shapes in our tilings.

We call two tiles t, t′ congruent if t′ = α(t) for some isometry α.

Tiles {p1, p2, . . . , pk} are prototiles of a tiling T = {t1, t2, . . . } if every tile
ti ∈ T is congruent to some pj.

Tiling T is k-hedral where k is the number of prototiles pj. (And in in
the special cases of k = 1 and k = 2 the tiling is called monohedral and
dihedral.)

Remark: Tiles may be ”flipped over” copies of the prototiles since odd isome-
tries are allowed in the definition of congruence of tiles.



Example. a monohedral and a dihedral tiling:



Two tiles t1 and t2 of tiling T are transitive (or equivalent) in T if there
exists a symmetry of T that takes t1 onto t2. This is an equivalence relation
among tiles ti. Equivalence classes are called the transitivity classes of T .

If tiling T has only one transitivity class then the tiling is called isohedral (or
tile-transitive).

If there are k transitivity classes then the tiling is called k-isohedral.



Of course, any isohedral tiling is monohedral as transitive tiles are congruent.
But there are monohedral tilings that are not isohedral.

Analogously, a k-isohedral tiling is always k-hedral (but it can also be n-hedral
for some n < k).



Example. An isohedral tiling and a monohedral tiling that is not isohedral
(not even k-isohedral for any finite k).



The symmetry group of a k-hedral tiling is a wallpaper group if and only if the
tiling is n-isohedral for some n (homework).



Let
T = {t1, t2, t3, . . . }

be a tiling. If h : R2 −→ R2 is a homeomorphism then also

h(T ) = {h(t1), h(t2), h(t3), . . . }

is a tiling. We say that tilings T and h(T ) are topologically equivalent.
This is an equivalence relation among tilings.



Every isometry is a homeomorphism, so if α is an isometry then α(T ) =
{α(t1), α(t2), α(t3), . . . } is a tiling. We say that that α(T ) is congruent
to tiling T . Also congruence is an equivalence relation among tilings.



A similarity s : R2 −→ R2 is a composition of an isometry and a stretch
map

(x, y) 7→ (kx, ky)

for some k > 0. We say that tilings T and s(T ) are similar.

Similarity of two tiling means that they look the same when one of them is
watched under a suitable magnifying class. Usually we consider similar tilings
to be the same tiling.



Example. Four topologically equivalent monohedral tilings. First two are
congruent with each other, and they are similar to the third one:



Tilings by regular polygons

A tiling whose tiles are polygons is edge-to-edge if the intersection of two
tiles is either empty, a vertex of the polygons, or the entire edges of the two
neighboring polygons.

Two tiles are

� edge neighbors if their intersection is an edge of both polygons,

� vertex neighbors if their intersection is a vertex of both polygons.



Consider a vertex P where r regular polygons of orders

n1, n2, . . . , nr

meet, in this order (counted clockwise or counterclockwise). We say that the
vertex is of type

n1 · n2 · · · · · nr.

Example. Vertices of types 3 · 3 · 6 · 6, 3 · 4 · 4 · 6 and 3 · 4 · 6 · 4:



Remark: Types 3 · 4 · 4 · 6 and 4 · 6 · 3 · 4 and 4 · 3 · 6 · 4 are all identical, as they
are obtained by changing the starting point and/or the direction of reading the
polygons.

We also adapt a shorthand notations for repetitions:
3 · 3 · 6 · 6 may be abbreviated as 32 · 62.



The interior angle of a regular n-gon is

Consequently, if P is a vertex of type n1 · n2 · · · · · nr then
r∑

i=1

(
1− 2

ni

)
=

(The interior angles of the polygons that meet at P must sum up to 360◦.)

This limits the possible vertex types: only finitely many possibilities remain.



r∑
i=1

(
1− 2

ni

)
= 2

Suppose first a vertex type nr, where r copies of regular n-gons meet. We then
get the condition



n =
2r

r − 2
Because n is positive, we have r ≥ 3, and because n ≥ 3 we have r ≤ 6.

With r = 3, 4, 5 and 6 we get n = 6, 4, 103 and 3. Number n is an integer so we
only have three solutions. These vertex types appear in the familiar regular
tilings

Theorem. The only edge-to-edge monohedral tilings by regular polygons are
the three regular tilings above.



r∑
i=1

(
1− 2

ni

)
= 2

Theorem. There are only finitely many vertex types.



r∑
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)
= 2

Theorem. There are only finitely many vertex types.

Proof. It is enough to show that there are finitely many solutions that satisfy

n1 ≤ n2 ≤ · · · ≤ nr.

We have r ≥ 3 and ni ≥ 3, which implies that r ≤ 6.

Also nr−1 ≤ 12: If nr−1 > 12 then also nr > 12 so
r∑
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)
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)
a contradiction.

There are only finitely many tuples (n1, n2, . . . , nr−1) with r ≤ 6 and 3 ≤
n1 ≤ · · · ≤ nr−1 ≤ 12. The last number nr is uniquely determined by
n1, n2, . . . , nr−1 so there are finitely many vertex types.



The possible vertex types:

type archimedean
3 · 3 · 3 · 3 · 3 · 3 A
3 · 3 · 3 · 3 · 6 A
3 · 3 · 3 · 4 · 4 A
3 · 3 · 4 · 3 · 4 A
3 · 3 · 4 · 12
3 · 3 · 6 · 6
3 · 4 · 3 · 12
3 · 4 · 4 · 6
3 · 4 · 6 · 4 A
3 · 6 · 3 · 6 A
3 · 7 · 42
3 · 8 · 24
3 · 9 · 18
3 · 10 · 15
3 · 12 · 12 A
4 · 4 · 4 · 4 A
4 · 5 · 20
4 · 6 · 12 A
4 · 8 · 8 A
5 · 5 · 10
6 · 6 · 6 A



An edge-to-edge tiling by regular polygons is archimedean if all vertices of
the tiling are of the same type.

The three regular tilings are all archimedean, corresponding to vertex types 63,
44 and 36.

There are only eight non-regular archimedean tilings, corresponding to the ver-
tex types marked by ”A” in the table.


