
Tilings and Patterns

Fall 2025

by Jarkko Kari, University of Turku



Contents

1 Introduction 1

2 Symmetries 1
2.1 Isometries of the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Symmetries of a set of points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Products of two reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Odd isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Rosette groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Conjugacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Frieze groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10 Wallpaper groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11 Final remarks on discrete symmetry groups . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Tilings 37
3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Tilings by regular polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Wang tiles 48
4.1 Periodic tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Compactness principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Robinson’s aperiodic tile set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 An aperiodic set of 14 Wang tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Undecidable problems concerning tiles 61
5.1 Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 The tiling problem with a seed tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Finite systems of forbidden patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 The periodic tiling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 The tiling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 The completion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7 Beyond aperiodicity: arecursive tile sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Compact topology on Wang tilings 84
6.1 Review of topology and metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Basic facts about the configuration space . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Subshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Orbits, transitivity and minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5 Periodicity and recurrence properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Equicontinuity and isolated points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 A brief revisit to tilings by polygons 99
7.1 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Amman’s aperiodic tile set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 The extension and the periodicity theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4 Hat: an aperiodic monotile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

1



1 Introduction

Informally, a tiling is a covering of the plane with tiles of various shapes in such a way that the tiles do
not overlap each other. Often the tiles have simple shapes (e.g. polygons), and typically only a small
number of different shapes are used in each tiling. Such tilings are everywhere around us: in pavements,
quilt patterns, fabrics, brick walls, carpets, etc. Interest to decorative tilings is very old: Moors are
an example of a culture that produced complex geometric patterns in tilings – famous examples can be
found in the Alhambra at Granada, Spain.

In this course we learn about mathematical concepts relevant to tilings and patterns. The mathemati-
cal tools we use include high-school level geometry, elementary group theory, some topology, combinatorics
and computation theory. After initial geometric considerations we work in detail on some computational
questions on tilings, including decidability aspects. The basics of computation theory and other required
material are provided during the course as needed, so that the course is made as self-contained as possible.
In some instances we may rely on theorems from other fields that are presented without proofs, and in
these instances an interested reader is directed to literature or other courses offered on these topics for
more details and precise proofs.

2 Symmetries

Let us begin by investigating the fundamental concepts of symmetry.

2.1 Isometries of the plane

A plane isometry is any function α : R2 −→ R2 that preserves distance:

∀(x1, y1), (x2, y2) ∈ R2 : d(α(x1, y1), α(x2, y2)) = d((x1, y1), (x2, y2))

where the distance d : R2 × R2 −→ R is the usual Euclidean distance defined by

d((x1, y1), (x2, y2)) =
√︁

(x1 − x2)2 + (y1 − y2)2.

In other words, α moves the points of the plane in a ”rigid” motion that does not change any distances.
In these notes we’ll denote points of the plane by capital letters, so the isometry property will be

written as
∀P,Q ∈ R2 : d(α(P ), α(Q)) = d(P,Q).

Our first theorem states that an isometry is necessarily a bijection (that is, both one-to-one and onto).
This implies that it has an inverse function. This inverse function is also an isometry.

Theorem 2.1 An isometry is a bijection. Its inverse function is an isometry.

Proof. Let α be an isometry. It is trivial that α is one-to-one (also the term ”injective” is used). Namely,
if α(P ) = α(Q) then

d(P,Q) = d(α(P ), α(Q)) = 0,

which means that P = Q.

The proof that α is onto (also the term ”surjective” is used) is more difficult, and is therefore left as a
homework problem ;-)

Let P,Q ∈ R2 be arbitrary and denote P ′ = α−1(P ) and Q′ = α−1(Q). Then P = α(P ′) and Q = α(Q′)
so d(P ′, Q′) = d(P,Q), which proves that the inverse function α−1 preserves distance.
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Our next observation states that isometries preserve shapes. More precisely, let us show that an
isometry maps every line into a line, every triangle into a triangle (we say that it preserves lines and
triangles), and the angle between two lines remains the same. Also betweenness and midpoints are
preserved.

Theorem 2.2 An isometry preserves lines, triangles, betweenness, midpoints, sizes of angles, and per-
pendicularity and parallelism of lines.

Proof. Let α be an isometry. Let us prove the preservation of

� betweenness and midpoints: If three points P,Q and R are collinear, with point R between points
P and Q, then d(P,R) + d(R,Q) = d(P,Q). But then we have also

d(P ′, R′) + d(R′, Q′) = d(P ′, Q′)

where P ′ = α(P ), Q′ = α(Q) and R′ = α(R). This means that points P ′, Q′ and R′ are also
collinear, with R′ between points P ′ and Q′. So betweenness is preserved.

Since the inverse α−1 is also an isometry, the preservation works also in the inverse direction. In
other words, R is between P and Q if and only if α(R) is between α(P ) and α(Q).

In the special case that R is the midpoint between P and Q we have that d(P,R) = d(R,Q), so
also d(P ′, R′) = d(R′, Q′), which means that R′ is the midpoint between P ′ and Q′.

� triangles: Let △ABC be a triangle and, as usual, let us denote A′ = α(A), B′ = α(B) and
C ′ = α(C). The triangle consists of those points P that are between A and B, between A and C,
or between B and C. This is equivalent to P ′ = α(P ) being between A′ and B′, between A′ and
C ′, or between B′ and C ′. Hence the image of triangle △ABC is the triangle △A′B′C ′.

� lines: Let m be a line, and let A and B be two points on the line. Then the line consists exactly of
those points P such that (i) P is between A and B, (ii) A is between B and P , or (iii) B is between
A and P . This is equivalent to P ′ = α(P ) being such that (i) P ′ is between A′ and B′, (ii) A′ is
between B′ and P ′, or (iii) B′ is between A′ and P ′, where A′ = α(A) and B′ = α(B), which is
equivalent to P ′ being on the line through points A′ and B′.

� parallelism and perpendicularity of lines, as well as angles between lines: Take two different lines
l and m. If they are parallel then they have no common points. Because α is one-to-one, their
images α(l) and α(m) do not have any common points either, so they are parallel lines. Assume
then that l and m are not parallel, in which case they intersect in one point P at some angle Θ.
Let A and B be points of the lines l and m such that angle APB is of size Θ. Then the triangle
△APB is congruent with its image △A′P ′B′ as the two triangles have same sides (SSS). Therefore
the angle A′P ′B′ is the same as the angle APB. In particular, l and m are perpendicular if and
only if the angle is 90◦, so also perpendicularity is preserved.

The trivial isometry is the identity function ι that does not move any points: ι(P ) = P for all P ∈ R2.
Let us look into some non-trivial examples of isometries.

Example 1. Let A = (a, b) ∈ R2. A translation by vector A = (a, b) shifts every point (x, y) into
position (x+ a, y + b). We denote a translation by vector A as τA.
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P’

P

(a,b)

Every translation is clearly an isometry. Trivial translation τ(0,0) is the trivial isometry ι.

Example 2. Let C ∈ R2 be a point, and Θ ∈ R an angle. The rotation ρC,Θ by the (directed) angle Θ
about C is the isometry that fixes point C, and otherwise takes point P ̸= C into the point P ′ where
d(C,P ) = d(C,P ′) and Θ is the directed angle from CP to CP ′:

C
P

P’

Θ

In terms of analytic geometry we say that point (x, y) is mapped to point (x′, y′) where(︃
x′

y′

)︃
=

(︃
cosΘ − sinΘ
sinΘ cosΘ

)︃(︃
x− cx
y − cy

)︃
+

(︃
cx
cy

)︃
where C = (cx, cy). Point C is called the center of the rotation. The trivial rotation ρC,0 by the angle 0◦

is the trivial isometry ι.
If Θ = 180◦ we get a special case of the rotation called the halfturn about point C, or the reflection

in point C. Every point P is mapped to the point P ′ such that the center C is the midpoint between P
and P ′:

P

C

P’

Because halfturn about point C is an important particular case, we sometimes denote it by the special
symbol σC .

Example 3. Let m be a line. The reflection σm in line m is the mapping that does not move the points
of line m, but any point P outside line m is moved to the point P ′ such that line m is the perpendicular
bisector of segment PP ′.
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P’

m

It follows immediately from the definition that σ−1
m = σm, that is, the reflection σm is its own inverse.

Isometries that are their own inverses are called involutions.

Example 4. A Glide reflection is a composition of a translation and a reflection in line m that is parallel
with the direction of the translation. Let A = (a, b) ∈ R2 a vector of translation, and let m be a line
parallel to A, that is,

m = {(c, d) + t(a, b) | t ∈ R}
where (c, d) is some point of the line. The glide reflection γm,(a,b) they specify reflects the points in line
m and then translates them by vector A. In this particular case it does not matter in which order the
two operations are performed: we may as well translate first and reflect later.

P’

m

P

(a,b)

Line m is called the axis of the glide reflection. Notice that glide reflections with trivial translation
vectors A = (0, 0) are exactly the reflections.

Later we’ll see that our four examples exhaust all possibilities: translations, rotations, reflections and
glide reflections are the only isometries of the plane. (In fact, since reflection is a special type of glide
reflection we can say that all isometries are translations, rotations or glide reflections.)

The composition α ◦ β of two functions α and β is the function that first applies β to a point, and
then applies α to the result, that is,

(α ◦ β)(x) = α(β(x)).

If α and β are isometries then also their composition α ◦ β is an isometry. Indeed, for any two points P
and Q we have

d((α ◦ β)(P ), (α ◦ β)(Q)) = d(α(β(P )), α(β(Q))) = d(β(P ), β(Q)) = d(P,Q).
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Function composition ◦ is an associative operation, and since the identity function ι and the inverses of
all isometries are also isometries, we have the following theorem:

Theorem 2.3 The set of plane isometries forms a group I under the operation of composition.

We frequently drop the group operation sign ”◦” and simply write αβ for α ◦ β. We then say that αβ is
the product of operations α and β. We also do not need to use parentheses in products as, because of
the associativity, α(βγ) = (αβ)γ. We simply write this as αβγ. However, remember that the group of
isometries is not commutative (=abelian) as in most cases αβ ̸= βα.

An element α ∈ I is called an involution if α2 = ι. Examples of involutions include all reflections in
lines, as well as all halfturns. In fact, no other involutions exist. Review the following terms of group
theory:

� generator set (=set of group elements such that every element of the group is a product of generators
and their inverses),

� cyclic group (=a group that is generated by one element)

� order of a group (=number of elements. If the group contains an infinite number of elements then
the group is called infinite, otherwise it is finite.)

� subgroup (=a subset of the group that is closed under the group operation and the operation of
taking the inverse element. A subgroup itself is a group under the same group operation)

� cancellation laws (αβ = αγ implies β = γ, and βα = γα implies β = γ.)

In the rest of this chapter we try to understand the structure of the group I. We want to show that
our examples exhaust all possibilities, and to find out how the group operation combines these isometries.

2.2 Fixed points

The two main results of this section are the following:

1. To verify that two given isometries α and β are the same, it is sufficient to verify that they agree
on some three points that are not collinear (Corollary 2.6).

2. Every isometry is a product of at most three reflections (Corollary 2.7).

We say that P is a fixed point of isometry α if α(P ) = P . We also say that α fixes point P .

Lemma 2.4 If an isometry α fixes two distinct points P and Q, then it fixes every point of the line m
that contains P and Q.

Proof. Assume that α fixes points P and Q of line m, and let R be any point of the line m. Because
α preserves lines, α(R) is on the same line with α(P ) = P and α(Q) = Q, that is, α(R) is on line m.
Because d(α(R), P ) = d(R,P ) and d(α(R), Q) = d(R,Q), we must have α(R) = R. (There are two
points at distance d(R,P ) from P , and these two points have different distances from point Q. So only
one of these two points can have distance d(R,Q) from Q, namely point R.)

Consider three points P,Q and R that are not collinear, i.e. are not on the same line. As a corollary
of the next theorem we get that their images α(P ), α(Q) and α(R) uniquely determines the isometry α.
We also prove that every isometry is a product of at most three reflections.
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Theorem 2.5 Let α be an isometry.

1. If α fixes three non-collinear points, then α = ι.

2. If α fixes two points then α = ι or α is a reflection.

3. If α fixes exactly one point then α is a product of two reflections.

Proof. 1. Assume that α fixes three non-collinear points P,Q and R. Let m and l be the lines that
contain P and Q, and P and R, respectively. According to Lemma 2.4, α fixes all points that belong to
lines m or l. Let X be an arbitrary point outside lines m and l. There exists a line k that goes through
X and intersects m and l at distinct points A and B.

m

l

k

P

A

X

B

Q

R

Because α fixes A and B then, according to Lemma 2.4, it also fixes all points of line k, which means
that it also fixes point X. As X was an arbitrary point, we conclude that α fixes all points of the plane,
so α = ι.

2. Assume then that α fixes two distinct points P and Q, and suppose that α ̸= ι. Then there exists
some point R such that α(R) ̸= R. Notice that P,Q and R cannot be collinear (Lemma 2.4). Denote
R′ = α(R), and let m be the perpendicular bisector of the segment RR′. Then R′ = σm(R) where σm
is the reflection in line m. Because d(R′, P ) = d(R,P ) and d(R′, Q) = d(R,Q), points P and Q are on
the perpendicular bisector m. We have σm(P ) = P and σm(Q) = Q. The isometry σ−1

m α hence fixes
three non-collinear points P,Q and R so, according to case 1 of the theorem, σ−1

m α = ι. This proves that
α = σm is a reflection.

3. Assume that isometry α fixes exactly one point P . Let Q a different point, so Q′ = α(Q) is different
from Q. Let l be the perpendicular bisector of the segment QQ′. Triangle △QPQ′ is isosceles, so the
point P is on the line l. Then σ−1

l α fixes two points P and Q, so according to case 2 either σ−1
l α = ι or

σ−1
l α = σm for some line m. The first alternative α = σl is not possible because then α fixes more than

one point – it fixes all points of line l. So we must have the second alternative α = σlσm.

Corollary 2.6 If α and β are two isometries such that α(P ) = β(P ), α(Q) = β(Q) and α(R) = β(R),
and points P,Q and R are not collinear, then α = β.
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Proof. Isometry α−1β fixes non-collinear points P,Q and R, so α−1β = ι. This implies α = β.

Corollary 2.7 Every isometry is a product of at most three reflections.

Proof. If α fixes at least one point then, according to the theorem, α is a product of at most two
reflections. Assume then that α does not fix any points. Let P be an arbitrary point, and let m be the
perpendicular bisector of the segment Pα(P ). Then σ−1

m α fixes point P , so σ−1
m α is a product of at most

two reflections and, therefore, α is a product of at most three reflections.

The proofs provide a simple method of finding the reflections when we know the images P0 =
α(P ), Q0 = α(Q) and R0 = α(R) of three given non-collinear points P,Q and R. We simply find
reflections that match the points one-by-one:

1. If P ̸= P0 then we first reflect in line m that is the perpendicular bisector of the segment PP0.
This maps P to its correct position P0. Let Q′ and R′ be the images of Q and R under the first
reflection.

2. If Q′ ̸= Q0 then we reflect in line l that is the perpendicular bisector of the segment Q′Q0. Notice
that point P0 is on this bisector because d(P0, Q0) = d(P,Q) = d(P0, Q

′). After the second
reflection, points P and Q have been mapped to their correct positions P0 and Q0. Let R′′ be
the image of R after the first two reflections.

3. If R′′ ̸= R0 then we finally reflect in line k that is the perpendicular bisector of R′′ and R0. It is
easy to see that P0 and Q0 are on this bisector:

d(P0, R0) = d(P,R) = d(P0, R
′′) and d(Q0, R0) = d(Q,R) = d(Q0, R

′′).

After steps 1–3, points P,Q and R have been mapped in their correct positions P0, Q0 and R0

2.3 Symmetries of a set of points

Let s ⊆ R2 be a set of points. We say that isometry α is a symmetry of set s iff α(s) = s.

Theorem 2.8 Let s ⊆ R2 be arbitrary. The symmetries of s form a subgroup of I, the group of isome-
tries.

Proof. Every set has at least one symmetry, namely the trivial isometry ι. If α(s) = s then α−1(s) =
α−1(α(s)) = s, so the inverse of each symmetry of s is also a symmetry of s. Let α and β be two
symmetries of s. Then αβ(s) = α(s) = s so the product αβ is also a symmetry of s.

The set of symmetries of s is called the symmetry group of s. Notice that I itself is the symmetry
group of s = R2.

Example 5. Let s be a rectangle ABCD that is not a square. Let us position s in such a way that its
center is at the origin (0, 0), and its sides are parallel to the x- and y-axes.

7



A

CD

B

y

x
O

Any symmetry of s must permute the corners of the rectangle. Corner A may be mapped into any of
the four corners A,B,C and D, after which the images of the other corners B,C and D are uniquely
determined. We proved in the previous section that three non-collinear points A,B and C determine the
entire isometry (Corollary 2.6), so the symmetry group s contains exactly four symmetries. These are
ι, two reflections σh and σv in the x- and y-axes, and the halfturn σO about the origin O. These form
Klein’s Vierergruppe V4.

Example 6. If s is a square ABCD then its symmetry group contains eight elements, so a square is
”more” symmetric than a non-square rectangle. In the square we may map the corner A into any of
the four corners, after which corner B has still two possible images. Then the images of C and D are
uniquely determined.

2.4 Products of two reflections

We know that every isometry is a product of at most three reflections. In order to characterize all
isometries we need to investigate the products of two or three reflections. Let us start by products of two
reflections.

Theorem 2.9 The product of two reflections in parallel lines m and l is a translation in the direction
perpendicular to l and m by a distance that is twice the distance from l to m. Conversely, every translation
is a product of two reflections in parallel lines, both perpendicular to the direction of the translation. One
of the lines can be chosen freely (as long as it is perpendicular to to the translation).

Proof. Let m and l be two parallel lines. If m = l then σmσl = ι = τ(0,0). Assume then that m ̸= l. Let
A be the vector from l to m that is perpendicular to m and l. To prove that σmσl = τ2A it is enough to
show that σmσl(P ) = τ2A(P ) for every point P of line l, and that σmσl(X) = τ2A(X) for some point X
outside of line l. Then the result follows from Corollary 2.6.

8
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Q

P

A

X

P’

Referring to the figure above, we have that for every P ∈ l

σmσl(P ) = σm(P ) = P ′ = τ2A(P ).

Analogously, by reversing the roles of lines m and l, we have that for an arbitrary Q ∈ m

σlσm(Q) = τ−2A(Q).

Let X = σlσm(Q) = τ−2A(Q). Then X is not on line l, and

σmσl(X) = σmσlσlσm(Q) = Q = τ2Aτ−2A(Q) = τ2A(X).

The second part of the theorem follows directly from the first part: Let τ be a non-trivial translation,
and let P be an arbitrary point and P ′ = τ(P ). Let l and m be the lines perpendicular to the segment
PP ′ through P and the midpoint of PP ′, respectively. Then, according to the first part, σmσl = τ .

Corollary 2.10 The product of three reflections in three parallel lines is a reflection in a parallel line.

Proof. Let l,m and n be any three parallel lines. Let p be a fourth parallel line whose distance from
line n is the same as the distance of line l from line m. Then σlσm and σpσn are the same translation.
Multiplying by σn from the right gives σlσmσn = σp.

Consider then two reflections in lines that are not parallel:

Theorem 2.11 The product of two reflections in intersecting lines is a rotation about the point of in-
tersection, and the angle of the rotation is twice the angle between the lines. Conversely, every rotation
about point C is a product of two reflections in lines through point C. One of these lines can be chosen
freely.

Proof. Let l and m be lines that intersect at point C. Let Θ be the directed angle between them measured
from l to m. Let us prove that σmσl = ρC,2Θ by showing that σmσl and ρC,2Θ agree on three non-collinear
points: all points of line l, and one point X that is outside of line l.

First, as all the isometries σm, σl and ρC,2Θ fix point C, we have σmσl(C) = C = ρC,2Θ(C). Let
P ̸= C be a point on line l, and let P ′ = ρC,2Θ(P ). Line m is the perpendicular bisector of PP ′, so
P ′ = σm(P ) = σmσl(P ).
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P’

l

m

Θ

Θ

So far we have proved that σmσl(P ) = ρC,2Θ(P ) for all P ∈ l. Analogously, by reversing the roles of
lines m and l, we have that σlσm(Q) = ρC,−2Θ(Q) for an arbitrary point Q ̸= C of line m. Denote
X = σlσm(Q) = ρC,−2Θ(Q). Then X is not on line l and

σmσl(X) = σmσlσlσm(Q) = Q = ρC,2ΘρC,−2Θ(Q) = ρC,2Θ(X).

To prove the second part of the theorem, consider an arbitrary rotation ρC,Θ. Let l be an arbitrary line
through the center C of the rotation, and let m be the line through point C that meets line l in the
directed angle Θ/2. According to the first part of the theorem we have σmσl = ρC,Θ.

Corollary 2.12 Halfturn σC is the product of two reflections in any two perpendicular lines through C.
In particular, reflections in perpendicular lines commute.

Corollary 2.13 The product of three reflections in lines through the common point C is a reflection in
a line through point C.

Proof. As in the proof of Corollary 2.10, let l,m and n be any three lines through point C. Let p be a
fourth line through C that forms with line n the same angle as line l forms with line m. Then σlσm and
σpσn are the same rotation about point C. Multiplying by σn from the right gives σlσmσn = σp.

2.5 Parity

As we proved previously, all isometries are products of some reflections, in fact, of at most three reflections.
The representation of an isometry as a product of reflections is, however, not unique. For example, we
can always add σmσm to the end of any sequence of reflections, thus increasing the number of reflections
in the sequence by two. However, it turns out that the parity of the number of reflections is always the
same. We call isometry α even if it is a product of an even number of reflections, and odd if it is a
product of an odd number of reflections. Next we want to show that no isometry can be both even and
odd at the same time, that is, even and odd products of reflections can never be equal.

First we can make the following easy observation: A product of two reflections is not a reflection.
Indeed, we know from the results of the previous section that a product of two reflections is either a
translation or a rotation. Translations have no fixed points, rotations have exactly one fixed point, and
the trivial isometry ι fixes all points. In contrast, the fixed points of a reflection form a line. So σmσl ̸= σk
for all lines m, l and k.

The following theorem provides a method of reducing by two the number of terms in any long product
of reflections:

10



Theorem 2.14 A product of four reflections is a product of two reflections.

Proof. We use the following lemma twice:

Lemma 2.15 If m and l are two lines and P is a point, then there are lines p and q such that σmσl =
σpσq, and line q contains point P .

Proof of the lemma. If m and l are parallel, then we choose as q the line that is parallel to m and l and
goes through point P . By corollary 2.10 we have σmσlσq = σp for some line p, so σmσl = σpσq.

If m and l intersect at some point Q, then we choose as q a line through points P and Q. By
corollary 2.13 we have σmσlσq = σp for some line p, so σmσl = σpσq.

Consider a product σmσlσkσn of four reflections. Let P be an arbitrary point on line n. According to
the lemma, σlσk = σpσq where line q contains point P . Then we apply the lemma again: σmσp = σrσs
where s contains point P . We have

σmσlσkσn = σmσpσqσn = σrσsσqσn,

and lines n, q and s go through point P . Then, by Corollary 2.13 the product σsσqσn = σt for some line
t. Hence

σmσlσkσn = σrσt.

Corollary 2.16 A product of three reflections cannot equal a product of two reflections.

Proof. Assume that
σmσlσk = σnσr.

Multiplying from left by σn gives
σnσmσlσk = σr.

According to the theorem there exist lines p and q such that

σnσmσlσk = σpσq,

so σpσq = σr, a contradiction.

Corollary 2.17 A product of an even number of reflections cannot equal a product of an odd number of
reflections.

Proof. By using the theorem we can reduce by two the number of reflections in any product of at least
four reflections. In this way, any even length sequence can be reduced into a product of two reflections,
and any odd length sequence reduces into a length one or a length three sequence. As a product of two
reflections cannot equal a product of one or three reflections, we have the desired result.

Now we know that every isometry is either even or odd, but not both. Notice that odd isometries
correspond to ”flipping” the plane over, turning all shapes into their mirror images. As every even
isometry is a product of two reflections, we have

11



Theorem 2.18 Even isometries are exactly the translations and the rotations.

Notice also that even isometries form a subgroup of I. Indeed, the inverse of the even isometry σmσl
is the even isometry σlσm, and the product of two even isometries σmσl and σnσp is the even isometry
σmσlσnσp. Let us denote the group of even isometries by E .

2.6 Odd isometries

Let’s turn our attention to odd isometries. The goal of this section is to prove that every odd isometry is
a glide reflection (where we understand that a plain reflection is also a glide reflection with a zero glide.)
Recall that we use the notation σP for the halfturn about point P .

Lemma 2.19 Isometry α is a glide reflection if and only if α = σPσl for some point P and line l. This
is also equivalent to α = σkσQ for some line k and point Q.

Proof. Let α be a glide reflection. By definition, α = σmτA where the translation τA is in the direction of
line m. By Theorem 2.9 τA = σkσl where lines k and l are perpendicular to line m. We have α = σmσkσl.
Corollary 2.12 states that the product σmσk of two reflections in perpendicular lines is the halfturn σP
about the intersection point P of lines m and k. We have

α = σmσkσl = σPσl

as desired. We also have σP = σkσm, so

α = σPσl = σkσmσl = σkσQ

where Q is the point where perpendicular lines m and l intersect.
For the converse claim, assume that α is the isometry σPσl for some point P and line l. Let k be the

line through point P that is parallel to line l, and let m be the line through point P that is perpendicular
to lines k and l. Then, by Corollary 2.12, σP = σmσk.

P

m

k

l

We have
α = σPσl = σmσkσl = σmτA

where τA is in the direction of line m. Hence α is a glide reflection.
Analogously, if α = σkσQ, and lines m and l go through point Q, and l is parallel and m perpendicular

to k, then
α = σkσQ = σkσmσl = σmσkσl = σmτA

where A is in the direction of line m.

Now we are able to prove the main result on odd isometries:
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Theorem 2.20 Every odd isometry is a glide reflection.

Proof. Let α be an odd isometry. Then it is either a reflection (which is a special type of a glide reflection)
or a product of three reflections. Let α = σmσlσk. Let P be an arbitrary point on line k. By Lemma 2.15
there exist lines p and q such that σmσl = σpσq and line q goes through point P . We have

α = σmσlσk = σpσqσk,

and P ∈ k, q. Let n be the line through point P that is perpendicular to line p. As lines n, q and k all go
through point P , the product σnσqσk is some reflection σr, see Corollary 2.13. Then σqσk = σnσr, and

α = σpσnσr.

Lines n and p are perpendicular, so the product σpσn is a halfturn σQ, where Q is the point where n and
p intersect. We have

α = σQσr,

and it now follows from Lemma 2.19 that α is a glide reflection.

Now we have classified all isometries of the plane. Even isometries are translations and rotations, and
odd isometries are glide reflections (including reflections without glides).

2.7 Rosette groups

Rosette groups are the finite subgroups of I. In this section we prove that the rosette groups are the
cyclic groups Cn and the dihedral groups Dn, for n ≥ 1, defined as follows:

The cyclic group Cn consists of n rotations about the same center P . It is generated by the single
rotation ρ = ρ

P, 360
◦

n
, so the elements of Cn are ρ, ρ2, . . . , ρn = ι. Notice that strictly speaking there

are infinitely many groups Cn as the center P can be any point of the plane, but they are all obviously
isomorphic with each other.

The dihedral group Dn includes Cn, and in addition it contains reflections in n lines that meet at
P (the center of the rotations) at angles that are multiples of 360◦

2n . Notice that the composition of two
such reflections is a rotation that belongs to Cn. There are 2n elements in Dn: namely n rotations
ρ, ρ2, . . . , ρn = ι, and n reflections that can be expressed as ρσ, ρ2σ, . . . , ρnσ = σ, where σ is any one of
the reflections.

Here are the cases with small n = 1 and 2:

� C1 = {ι} and D1 = {ι, σm},

� C2 = {ι, σP } and D2 = {ι, σP , σm, σl}, where m and l are perpendicular lines through point P .

Example 7. The symmetry group of a polygon with n edges and vertices (called n-gon) can contain
at most 2n elements. Indeed, any symmetry α must map vertices into vertices, and neighboring vertices
into neighboring vertices. Fixed vertex A has at most n possible images. Adjacent vertex B then has at
most two alternatives as it must be mapped into one of the two vertices next to α(A). After this, the
symmetry is uniquely determined.

Let us show that the regular n-gon has exactly 2n symmetries, and the symmetry group is the
dihedral group Dn. Let P be the center of the regular n-gon. It is clear that the rotation ρ = ρ

P, 360
◦

n
is a

symmetry of the n-gon. If m is line through P and one of the vertices then also σ = σm is a symmetry.
As the symmetries form a group, all products of σ and ρ are symmetries. These include the n rotations
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ρ, ρ2, . . . , ρn = ι generated by ρ, and n distinct odd isometries ρσ, ρ2σ, . . . , ρnσ = σ. (These are distinct
as ρiσ = ρjσ =⇒ ρi = ρj .) These are exactly the elements of Dn. There can be no other isometries as
no n-gon can have more than 2n symmetries.

Example 8. Cyclic group Cn is the symmetry group of a polygon that is obtained from a regular n-gon
by replacing each edge with a ”directed edge”, for example as follows:

Before proving that no other finite subgroups of I exists, let us first figure out multiplication rules of
even isometries.

Theorem 2.21 1. The product of two translations is a translation.

2. A rotation by angle Θ followed by a rotation by angle Φ is a rotation by angle Θ+Φ, unless Θ+Φ
is a multiple of 360◦, in which case the product is a translation.

3. A translation followed by a non-trivial rotation by Θ is a rotation by Θ. Also, a non-trivial rotation
by Θ followed by a translation is a rotation by Θ.

Proof.

1. Trivial: it follows from the definition of translations that τAτB = τA+B.

2. If the two rotations are about the same center P then the claim is trivial: ρP,ΘρP,Φ = ρP,Θ+Φ.
Assume then that the two rotations are about different points A and B. Let m be the line through
points A and B. According to Theorem 2.11 there exist lines l and n through points A and B,
respectively, such that

ρA,Θ = σmσl and ρB,Φ = σnσm,

so
ρB,ΦρA,Θ = σnσmσmσl = σnσl.

Moreover, the directed angle from l to m is Θ/2 and the directed angle from m to n is Φ/2, so the
directed angle from l to n is (Θ + Φ)/2. If this angle is a multiple of 180◦ then lines l and n are
parallel, that is, if Θ+Φ is a multiple of 360◦ then ρB,ΦρA,Θ is a translation. Otherwise lines l and
n are not parallel, so ρB,ΦρA,Θ is a rotation by angle Θ + Φ.
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3. Let τ be a translation and ρ a non-trivial rotation by angle Θ. Then τ = σlσm for parallel lines
l and m, and ρ = σnσk where the angle from line k to line n is Θ/2. By Theorem 2.11 We can
choose k to be parallel to l and m. Then ρτ = σnσkσlσm. Because k, l and m are parallel lines,
by Corollary 2.10 the product σkσlσm is a reflection σp where p is also parallel to k, l and m. The
angle from line p to line n is Θ/2, so ρτ = σnσp is a rotation by angle Θ.

Analogously, we could have chosen k and n so that n is parallel to l and m, in which case σlσmσn =
σq for a line q in the same direction. Then

τρ = σlσmσnσk = σqσk

is a rotation by angle Θ.

By iterating the theorem we easily get a rule for composing an arbitrary number of rotations:

ρC1,Θ1 ◦ ρC2,Θ2 ◦ · · · ◦ ρCn,Θn

is a rotation by angle Θ = Θ1 +Θ2 + · · ·+Θn, unless Θ is a multiple of 360◦, in which case the product
is a translation.

Corollary 2.22 If a subgroup of I contains two non-trivial rotations about different centers then it also
contains a non-trivial translation

Proof. Let ρA,Θ and ρB,Φ be two non-trivial rotations and A ̸= B. According to our theorem

ρ−1
B,Φρ

−1
A,ΘρB,ΦρA,Θ = ρB,−ΦρA,−ΘρB,ΦρA,Θ

is a translation. If it were the trivial translation ι then

ρA,ΘρB,Φ = ρB,ΦρA,Θ

but this is not possible as it was proved in a homework problem that non-trivial rotations about different
centers do not commute.

Now we are ready to prove the result mentioned in the beginning of this section:

Theorem 2.23 (Leonardo da Vinci’s Theorem) A finite subgroup of I is either a cyclic group Cn

or a dihedral group Dn.

Proof. Let H be a finite subgroup of I. Every non-trivial translation generates an infinite subgroup,
so H cannot contain non-trivial translations. If γ is a glide reflection with glide vector A then γ2 is
a translation by vector 2A, so H cannot contain any glide reflections except plain reflections. So only
rotations and reflections are possible.

By the previous lemma, all rotations in H must have the same center P . Let ρ = ρP,Θ be the rotation
having the smallest positive angle Θ among all rotations in H. It exists as H is finite. Let ρP,Φ ∈ H.
For every real number Φ there exists an integer k such that 0 ≤ Φ − kΘ < Θ. Because the rotation by
Φ − kΘ is in H, and because Θ is the smallest positive angle, we must have Φ − kΘ = 0. This means
that ρP,Φ = ρk. We have proved that ρ generates the rotations of H. This means that the set of even
isometries in H is {ρ, ρ2, . . . , ρn} = Cn for some n.
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If there are no reflections in H then H = Cn. Assume then that there is at least one reflection σ in
H. Then there are at least n distinct odd isometries σρ, σρ2, . . . , σρn in H. On the other hand, if α ∈ H
is odd then σα is even, so σα = ρk for some k = 1, 2, . . . , n. This means that α = σρk, and we have
proved that H = Dn.

Corollary 2.24 The symmetry group of every polygon is a cyclic group or a dihedral group.

Proof. In the example at the beginning of the section we concluded that the symmetry group of an n-gon
contains at most 2n elements, so it is finite.

2.8 Conjugacy

Two elements x and y of a group G are called conjugate if there exists an element α ∈ G such that
x = αyα−1. It is easy to see that conjugacy is an equivalence relation. Its equivalence classes are called
the conjugacy classes of the group.

It turns out that in the group I conjugate isometries are of the same type (both translations, both
rotations, both reflections or both glide reflections):

Theorem 2.25 Let α ∈ I be an arbitrary isometry.

1. Let σ = σm be the reflection in line m. Then ασα−1 is the reflection σα(m) in line α(m).

2. Let τ = τB−A be the translation that moves point A to point B = τ(A). Then ατα−1 is the
translation τα(B)−α(A) that moves point α(A) to point α(B).

3. Let ρ = ρP,Θ be a rotation about point P . Then αρα−1 is the rotation ρα(P ),±Θ about point α(P ),
where the angle is +Θ if α is even, and −Θ if α is odd.

4. Let γ = γm,B−A be a glide reflection. Then αγα−1 is the glide reflection γα(m),α(B)−α(A).

Proof.

1. Isometry ασmα−1 is an odd isometry that fixes every point α(P ) of line α(m). The only odd
isometry with this property is the reflection in line α(m).

2. Let τ = τB−A be the translation that moves A to B. Then τ = σmσl for two parallel lines m and
l. According to case 1 above, ασmα−1 = σα(m) and ασlα

−1 = σα(l). We get

ατα−1 = ασmσlα
−1 = ασmα−1ασlα

−1 = σα(m)σα(l).

Isometries preserve parallelism of lines, so α(m) and α(l) are parallel lines, which means that ατα−1

is a translation. It moves point α(A) into ατα−1α(A) = α(B) so it is the translation τα(B)−α(A).

3. Let ρ = ρP,Θ where Θ ̸= 0. (The case ρ = ι is trivial.) Clearly αρα−1 is an even isometry with
fixed point α(P ), so αρα−1 must be some rotation about point α(P ), say αρα−1 = ρα(P ),Φ. All we
need to prove is that Φ = ±Θ where the sign depends on the parity of α.

Assume first that α = σk for some line k. Let m and l be lines through point P such that the
directed angle from l to m is Θ/2, so ρ = σmσl. We are free to choose lines m and l in such a way
that neither is parallel to k. Let Θ1 and Θ2 be the directed angles from m to k and from k to l,
respectively. Notice that Θ1 +Θ2 is then the directed angle from m to l, that is, Θ1 +Θ2 = −Θ/2,
at least modulo 180◦.
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We have
ρα(P ),Φ = αρα−1 = σkσmσlσk.

This is the product of two rotations σkσm and σlσk of angles 2Θ1 and 2Θ2, respectively. According
to Theorem 2.21 the product is a rotation by 2Θ1 + 2Θ2 = −Θ, that is, Φ = −Θ as required.

Assume then a general α. We know that all isometries are products of (at most three) reflections,
so α = σ1σ2 . . . σn for some reflections σ1, σ2, . . . , σn. Number n is even iff isometry α is even. As

αρα−1 = σ1σ2 . . . σnρσnσn−1 . . . σ1

we can apply the single reflection case n times. In each application the sign of the rotation angle
changes, so in the end we have that αρα−1 is a rotation by the angle (−1)nΘ.

4. Let γ = γm,B−A, where A ̸= B. (If A = B then γ is a reflection, and that was already taken care
of.) Then αγα−1 is an odd isometry, so it is a glide reflection, say γ′. Because γ′(α(m)) = α(m),
line α(m) must be the axis of γ′. To find the glide vector of γ′ we can make the calculation

γ′γ′ = αγα−1αγα−1 = αγ2α−1 = ατB−AτB−Aα
−1 = ατB−Aα

−1ατB−Aα
−1 = τα(B)−α(A)τα(B)−α(A),

which shows that α(B)− α(A) is the glide vector of γ′.

Let s ⊆ R2. The following terminologies are widely used: If σm is a symmetry of s then m is called
a line of symmetry for s. If σP is a symmetry of s then P is a point of symmetry for s. If ρC,Θ is a

symmetry of s then C is a center of symmetry and, more precisely, if Θ = 360◦

n then C is a center of
n-fold symmetry.

In analyzing symmetries we frequently apply the statements of the conjugacy theorem above in the
following forms. Let α be an arbitrary symmetry of set s. Then in s:

� If m is a line of symmetry then also α(m) is a line of symmetry.

� If P is a point of symmetry then also α(P ) is a point of symmetry.

� If C is a center of (n-fold) symmetry then also α(C) is a center of (n-fold) symmetry.
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2.9 Frieze groups

Let us denote the set of translations by T . It is easily seen to be a subgroup of I. The intersection of two
subgroups is also a subgroup, so for every subgroup G of I, the set G ∩ T that contains the translations
of G is a subgroup of G, called the translation group of G.

We say that G ⊆ I is a frieze group if its translation group is cyclic and non-trivial, that is, if the
translations are generated by a single translation τ ̸= ι. The name comes from the fact that frieze groups
are the symmetry groups of repetitive friezes (=ornamented bands on buildings) such as, for example

(where the pattern is repeated indefinitely in both directions). Notice that there must exists the shortest
translation that keeps the frieze invariant — otherwise its symmetry group is not a frieze group. For
example, the symmetry group of a horizontal line is not a frieze group as it contains all horizontal
translations. It turns out that there are only seven different frieze groups (when we ignore the position,
orientation and the size of the frieze) and each is the symmetry group of some s ⊆ R2.

In this section we make the following convention: The direction of the translations in the frieze group
is called the horizontal direction, and the perpendicular direction is then the vertical direction. We start
with the following key observation:

Lemma 2.26 Let G be a subgroup of I such that all translations in G are horizontal, and assume that
there is at least one non-trivial translation. (This includes all frieze groups, but also groups without a
shortest translation.) Then there exists a horizontal line m such that all elements of G are products of
reflections in vertical lines, possibly followed by the reflection σm in line m. These products are:

� horizontal translations,

� reflections in vertical lines,

� reflection σm in line m,

� halfturns about points of line m, and

� glide reflections with axis m.

Proof. Let τ ∈ G be a fixed non-trivial translation.
First, let us prove that all non-trivial rotations in G are halfturns. Let ρ = ρP,Θ ∈ G be arbitrary.

Let A = τ(P ), so A ̸= P , and let B = ρ(A). According to Theorem 2.25, ρτρ−1 is the translation that
moves point ρ(P ) = P to point ρ(A) = B. Translations τ and ρτρ−1 are horizontal, so points A, P and
B must be on the same line. This is possible only if ρ is the trivial rotation or the halfturn about P .

Next, let us prove that all reflections in G are in vertical and horizontal lines. Let σl ∈ G be arbitrary,
P a point of line l, A = τ(P ), and B = σl(A). According to Theorem 2.25, σlτσ

−1
l is the translation

that moves point σl(P ) = P to point σl(A) = B. Again, translations τ and σlτσ
−1
l are horizontal, so

points A, P and B must be on the same horizontal line. Either A = B, in which case A is on line l so l
is horizontal, or A ̸= B, in which case l is the perpendicular bisector of AB so l is vertical.

Finally, let us show that glide reflections of G are horizontal. Indeed, if γ ∈ G is a glide reflection with
a non-zero glide A, then γ2 is the translation with the translation vector 2A. Vector 2A is horizontal, so
also the glide A is horizontal.
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In the three paragraphs above we have shown that every element of G is a product of reflections
in vertical and horizontal lines. As products of reflections in perpendicular directions commute (Corol-
lary 2.12), every element of G is a product

σ1σ2 . . . σvσ
(1)σ(2) . . . σ(h)

where each σi is a reflection in a vertical line, and each σ(j) is a reflection in a horizontal line. Moreover,
as the product of three reflections in parallel lines is a reflection in a parallel line, we can reduce the
number of reflections so that v, h ≤ 2.

Next we prove that, in fact, h ≤ 1. Assume the contrary: some

α = σ1σ2 . . . σvσ
(1)σ(2) ∈ G

where the reflections σ(1) and σ(2) are in two different horizontal lines. If v = 1 then α is a glide reflection
with a non-zero vertical glide, and if v = 0 or v = 2 then α is a translation in a direction that is not
horizontal. These isometries do not exist in G, so we must have h ≤ 1.

Moreover, the possible reflection σ(1) in a horizontal line must be in the same horizontal line m for
all isometries of G. Namely, if G would contain two isometries α = α′σ(1) and β = β′σ(2) where α′ and
β′ are products of reflections in vertical lines and σ(1) and σ(2) are reflections in two different horizontal
lines then the product

αβ = α′σ(1)β′σ(2) = α′β′σ(1)σ(2)

would contradict the previous paragraph.
So we conclude that every element of G is a product of 0,1 or 2 reflections in vertical lines, or a

product of 0,1 or 2 reflections in vertical lines followed by σm, the reflection in the horizontal axis m of
the group. This leaves the following non-trivial possibilities:

� σm: the reflection in the axis m,

� σ1σm: a halfturn about a point of line m,

� σ1σ2σm: a glide reflection with axis m,

� σ1: a reflection in a vertical line, and

� σ1σ2: a horizontal translation

Now we are ready to classify all frieze groups. Let G be a frieze group whose translations are generated
by the shortest translation τA, and let m be the horizontal line from the previous lemma, called the axis
of the frieze group. Let 2d be the length of vector A, so that τA is a product of two reflections in vertical
lines at distance d. The translations in G are then exactly the products of two reflections in any two
vertical lines whose distance is a multiple of d.

1) Assume first that σm ∈ G. Let l and k be arbitrary vertical lines. Then

σlσm ∈ G ⇐⇒ σl ∈ G, and
σlσkσm ∈ G ⇐⇒ σlσk ∈ G,

so glide reflections of G are uniquely determined by the translations, and the reflections in vertical lines
are uniquely determined by the halfturns. If there are no halfturns in G then G is generated by τA and
σm, and it is the symmetry group of the infinite strip
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Let us call it the group F1001. The four indices 1001 are interpreted as follows: the group contains the
reflection σm in the axis m, does not contain any reflection σl in vertical lines, does not contain any
halfturns, and contains glide reflections. This information uniquely specifies the group (for given A and
m).

Assume then that there is some halfturn σP in G. We know that point P is on line m. Because
σPσQ = τ2(P−Q) is a translation, the other halfturns are now uniquely determined: they are at points of
line m whose distance from P is a multiple of d. These then also uniquely determine the reflections σl in
vertical lines. Group G = F1111 is the symmetry group of

Groups F1001 and F1111 are the only groups containing the reflection σm.

2) Consider then groups that do not contain σm. One alternative is that there are no isometries except
the translations: We have the symmetry group F0000 of the strip

Let us assume then that there are other symmetries. The product of a reflection in a vertical line and a
halfturn is a glide reflection, the product of a glide reflection and a halfturn is a reflection in a vertical
line, and the product of a glide reflection and a reflection in a vertical line is a halfturn. Conclusion: G
either contains all three types of isometries, or at most one of the types. There are four alternatives,
resulting in groups F0100, F0010, F0001 and F0111, as discussed below.

If G contains a halfturn σP = σlσm then the other halfturns are uniquely determined: they are the
products of σP and the translations in G. The distances between the centers of the halfturns are then
exactly the multiples of d. This means that group F0010 is uniquely determined, and it is the symmetry
group of the following strip:

Analogously, if G contains a reflection σl in a vertical line l then the other reflections are determined
as they must be the products of σl and the translations in G. The lines of the reflections are at distances
that are multiples of d. So we have the group F0100 which is the symmetry group of

Consider then a glide reflection γ = σlσkσm ∈ G with axis m. Let 2g be the length of its glide vector,
that is, g is the distance between lines l and k. Then g must be a multiple of d/2 as γ2 is a translation of
length 4g. On the other hand, g cannot be a multiple of d because then there would exist a translation
in G that would cancel the glide, leaving σm, and we assumed that σm is not in G. We conclude that
g must be an odd multiple of d/2, or equivalently, the length 2g of the glide is an odd multiple of d.
All such glide reflections are obtained from γ by multiplying it with translations, so we have completely
characterized the glide reflections. Group F0001 is the symmetry group of
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The last open possibility is that G contains halfturns, reflections in vertical lines and glide reflections.
As discussed above, the glide reflections are uniquely determined (the glides are by odd multiples of d),
and after we fix one center P of a halfturn, also the halfturns are uniquely determined. This also fixes the
reflections as they are the products of the glide reflections and the halfturns. The lines of the reflections
bisect the consecutive points of reflections. We have the group F0111, which is the symmetry group of
the following strip:

We have fully classified the frieze groups, and we found seven different types. In each case, a ”frieze” with
the given symmetries was given, to prove that the seven types of frieze groups are the symmetry groups
of some sets s ⊆ R2. Notice that each of the seven groups has infinitely many ”geometric realizations”,
as the axis m can be any line, the shortest translation τ can be any non-trivial translation parallel to m,
and in those groups that involve halfturns or reflections in vertical line, one center P of a halfturn or one
line l of a reflection can be selected. But modulo these parameters, the groups are unique. It is clear that
all realizations of each group are isomorphic, and even more than that, isomorphic by isomorphisms that
preserve the type of isometry (translations correspond to translations, reflections to reflections, rotations
to rotations,. . . ).

We have proved the following theorem:

Theorem 2.27 Let G be a frieze group whose translations are generated by τ . Then there exists a line
m parallel to τ , and if G contains a halfturn there exists a point P ∈ m, otherwise a line l perpendicular
to m, such that G is one of the following seven groups:

F0000 = ⟨τ⟩ F1001 = ⟨τ, σm⟩ F1111 = ⟨τ, σm, σP ⟩
F0100 = ⟨τ, σl⟩ F0010 = ⟨τ, σP ⟩
F0001 = ⟨γ⟩ F0111 = ⟨γ, σP ⟩

where γ is the glide reflection with axis m such that γ2 = τ .

2.10 Wallpaper groups

A wallpaper group G is a subgroup of I whose translations are generated by two non-parallel translations
τ1 and τ2. Translations commute with each other, so the translations of G are exactly the isometries
τ i1τ

j
2 for all integers i and j. If A and B are the vectors of translations τ1 and τ2 then the vectors of

translations τ i1τ
j
2 are iA+ jB, which form a lattice
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Let us first show that there exists a shortest translation in G.

Lemma 2.28 Wallpaper group G has a shortest non-trivial translation. More generally, any non-empty
subset s of translations of G contains a shortest non-trivial translation.

Proof. Let A and B be the translation vectors of the generating translations τ1 and τ2. Let

B = rA+B′ and A = qB +A′

be the decompositions of vectors A and B into a sum of orthogonal vectors, where r, q ∈ R and B′ ⊥ A
and A′ ⊥ B. As A and B are not parallel, vectors A′ and B′ are non-zero. Let a > 0 and b > 0 be the
lengths of vectors A′ and B′, respectively.

Consider an arbitrary translation vector Aij = iA + jB in G. Using the orthogonal decompositions
above we have

Aij = (i+ jr)A+ jB′ and Aij = (j + iq)B + iA′.

These are sums of two orthogonal vectors, so the length of Aij is at least |j|b, the length of jB′, and at
least |i|a, the length of iA′. Let c be the length of some vector X in the set s of translations we consider.
Then any vector Aij with |j| > c/b or |i| > c/a is longer than vector X. Therefore there are only a
finite number of vectors that can potentially be shorter than X. The shortest among them is the shortest
translation vector in set s.

Rosette groups, frieze groups and wallpaper groups are exactly the discrete symmetry groups: We call
a subgroup G of I discrete if it does not contain arbitrarily short translations and does not contain
arbitrarily small rotations. More precisely, G is discrete if there exists ε > 0 such that

0 < |A| < ε =⇒ τA ̸∈ G, and
0 < Θ < ε =⇒ ρC,Θ ̸∈ G.

(|A| is the length of the translation vector A.)

Theorem 2.29 Discrete subgroups of I are exactly the rosette groups, frieze groups and wallpaper groups.

Proof. (⇐=) Rosette groups are finite and hence discrete. In frieze groups, the translation that generates
all translations is the shortest one, and halfturns are the only possible rotations, so frieze groups are
discrete. Let G be a wallpaper group. By Lemma 2.28, it contains a shortest translation τ . For every
rotation ρ ∈ G, the isometry τ ′ = ρτρ−1 is the translation that maps the center C of ρ to ρτ(C).
Consequently, translation τ ′τ−1 takes point τ(C) into ρτ(C). This translation is arbitrarily short for
arbitrarily small rotation angles, so G cannot contain arbitrarily small rotations. Hence G is discrete.

(=⇒) Let G be a discrete subgroup of I.

(1) If G contains no non-trivial translations then it does not contain any glide reflections with non-zero
glide vector. There are only rotations and reflections in G. Rotations can only have a finite number of
different rotation angles as otherwise there would be arbitrarily small rotations in G. Two rotations by
the same angles but with different centers generate a translation, so the rotations of G have the same
center C. Reflection lines must contain C, and there are only a finite number of possible angles between
the lines of reflections. We conclude that the group is finite, and hence it is a rosette group.

(2) Suppose then that G contains a non-trivial translation τA. Due to discreteness there can be only
a finite number of different translations by vectors shorter than A, so a shortest non-trivial translation
exists. We may assume τA is a shortest translation.
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(2a) If all translations in G are generated by τA then G is a frieze group.

(2b) Suppose then that there exists a translation τB in G that is not generated by τA. Again, by
discreteness, a shortest such translation exists, so we may assume that B has minimum length. To
complete the proof of Theorem 2.29, we use the following lemma that states that τA and τB generate all
translations in G, implying that G is a wallpaper group.

Lemma 2.30 Let G be a discrete subgroup of I, let τA be a shortest non-zero translation in G, and let
τB ∈ G be a shortest translation not generated by τA. Then τA and τB generate all translations of G.

Proof. It is clear that vectors A and B are not in parallel directions (otherwise A would not be the
shortest translation vector), so every vector of R2 is a linear combination of A and B. Assume that group
G contains a translation τC such that τC ̸∈ ⟨τA, τB⟩. Let C = xA + yB be the representation of C as
a linear combination of vectors A and B, where x, y ∈ R. By subtracting integer multiples of vectors A
and B from vector C, we can reduce x and y so that −1

2 ≤ x, y ≤ 1
2 . But then, using the triangular

inequality, we obtain

|C| = |xA+ yB| ≤ |x||A|+ |y||B| ≤ (|A|+ |B|)/2 ≤ |B|.

The first inequality can be an equality only if x = 0 or y = 0, but in these cases the second inequality is
proper. So in each case: |C| < |B|, which contradicts the minimality of vector B.

Let us start analyzing the possibilities for the wallpaper groups. It turns out that there are 17 different
types of groups. Deriving them is a lengthy case analysis. The rest of this chapter provides a complete
derivation. (See also the slide presentation from the course web page.)

Our first observation is an important restriction on possible rotations in wallpaper groups:

Theorem 2.31 (Crystallographic restriction) A wallpaper group G can only contain rotations by
multiples of 60◦ and 90◦. Hence all centers of rotations are centers of n-fold rotations for n = 2, 3, 4 or
6. Moreover, a 4-fold rotation cannot co-exist with 3- or 6-fold rotations.

Proof. Let τ = τA be the shortest translation in G, and let d be the length of its translation vector A.
Let ρ = ρP,Θ ∈ G be a non-trivial rotation, and let Q = τ(P ) and R = ρ(Q). Then G contains also

the translation τ ′ = ρτρ−1 that moves point ρ(P ) = P to point ρ(Q) = R. Translation τ ′τ−1 then moves
point Q to point R.

��������

Θ

QP

d

τ

τ’

R

If 0◦ < Θ < 60◦ then the distance between points Q and R is less than d, which contradicts the fact that
τ is the shortest translation in G. We conclude that every non-trivial rotation is by an angle that is at
least 60◦. This also means that G can contain at most 6 different rotations about point P , because if we
would have rotations by angles Θ1,Θ2, . . . ,Θ7 where

0◦ ≤ Θ1 < Θ2 < · · · < Θ7 < 360◦
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then necessarily 0◦ < Θi+1 −Θi < 60◦ for some i = 1, 2, . . . 6, a contradiction.
Let Θ be the smallest positive rotation angle about point P , and let Φ be any other rotation angle

about P . There exists an integer k such that 0 ≤ Φ− kΘ < Θ. This implies that Φ = kΘ. Therefore the
rotations about point P are generated by ρP,Θ, and Θ = 360◦

n for some n ≤ 6.
We still have to show that the case n = 5 of five-fold rotations is not possible. The rotation angle of

a five-fold rotation is Θ = 72◦. Consider points P,Q and R as in the beginning of the proof. Point Q is
the center of rotation τρτ−1 by the same angle Θ, and therefore G contains the rotation of −Θ about Q.
Let S = ρ′(P ).

QP

d

R S

Θ

τ

−Θ

It is easily seen that the distance between points R and S is positive but less than d for angles in the
interval 60◦ < Θ < 90◦. In particular, this includes the case Θ = 72◦ of five-fold rotations. Since G must
contain the translation that moves R to S, this contradicts the minimality of distance d.

Finally we easily observe that if G contains a rotation ρ of 90◦ then it cannot contain any rotation ρ′

of 60◦ or 120◦ because ρ−1ρ′ would be a rotation whose angle is ±30◦.

Let us start analyzing different wallpaper groups case-by-case depending on the largest order of
rotation that G contains.

1) Assume that G contains a 6-fold rotation ρ = ρP,60◦ . Let τ be the shortest translation in G, let
d be its length, and let P0 = τ(P ). Rotating point P0 about point P defines points Pi = ρi(P0) for
i = 1, 2, . . . 5 such that all translations τPi−P are in G. Then each Pi is a center of a 6-fold rotation in G.
These isometries are all generated by ρ and τ through conjugacies. We can repeat the reasoning on all
Pi, and then again on the six centers of rotation around them and so on. We conclude that G contains
6-fold rotations about centers that are the vertices of a lattice of equilateral triangles, and G contains all
translations between vertices of the lattice. Let us denote by s6 the set of the lattice points, indicated
by black circles in the following figure:

P

P
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Let us show that the even isometries in G are exactly the even symmetries of s6. First, there can be
no translation that moves a lattice point into a non-lattice point: The distance from every point of the
plane to the closest lattice point is less than d, so if τ ′ is a translation that moves lattice point P into
a non-lattice point Q = τ ′(P ) then the translation that moves Q to its closest lattice point is in G and
it is shorter than τ , which contradicts the minimality of τ . So the translations of G are exactly that
translations that keep s6 invariant.

Consider then an arbitrary rotation ρ′ ∈ G. The crystallographic restriction states that ρ′ is a 2-, 3-
or 6-fold rotation. This means that ρ′ρi is a translation for some integer i. Since translations in G are
symmetries of s6, and since ρ is a symmetry of s6 we conclude that ρ′ is also a symmetry of s6.

Conversely, if ρ′ is any rotation in the symmetry group of s6 then it must be a 2-, 3- or 6-fold rotation
(as the symmetry group of s6 is a wallpaper group that contains 6-fold rotations) so ρ′ρi is a translation
for some integer i. As ρ is a symmetry of s6 this translation is also a symmetry of s6. All such translations
are in G, so ρ′ ∈ G as well.

We have proved that the even elements of G are exactly the even symmetries of s6. If there are no odd
isometries in G we have our first wallpaper group W6 = ⟨τ, ρP,60◦⟩ that consists of the even symmetries
of s6. In addition to the translations and 6-fold rotation about lattice points this group also contains
3-fold rotations about the centers of the equilateral triangles, and 2-fold rotations about the midpoints
between adjacent lattice points. Notice that the lattice points are the only centers of 6-fold rotations,
because if ρ′ is a 60◦ rotation then ρ′ρ−1 = τ ′ is a translation and, since τ ′ρρτ ′(P ) = ρτ ′(P ), the lattice
point ρτ ′(P ) is the fixed point of ρ′ = τ ′ρ.

’
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τ
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Group W6 is the symmetry group of the following pattern where odd isometries are prevented by ”di-
recting” the lattice points counter-clockwise:

Assume then that G also contains some odd isometry α. This isometry has to take 6-fold rotation centers
of G into 6-fold rotation centers of G, that is, α is a symmetry of s6. If β is any other odd symmetry of
s6 then αβ ∈ G as αβ is an even symmetry of s6, so also β ∈ G. Conclusion: G is the symmetry group of
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s6. Note that s6 has odd symmetries (e.g. a reflection σ in any line through two closest lattice points),
so we have a new wallpaper group W 1

6 = ⟨τ, ρP,60◦ , σ⟩. Set s6 is an example of a pattern whose symmetry
group is W 1

6 . Here is another one:

2) Assume that G contains a 3-fold rotation ρ = ρP,120◦ but no 6-fold rotations. We start in the same
way as with the 6-fold rotations: Let τ be the shortest translation in G, let d be its length, and let
P0, P1, . . . , P5 be the points where P is taken by the translations τ , ρ−1τ−1ρ, ρτρ−1, τ−1, ρ−1τρ and
ρτ−1ρ−1, respectively. Points P0, P1, . . . , P5 are the vertices of the regular hexagon with center P , and
they are all centers of 3-fold rotations in G. We can repeat the reasoning on each Pi instead of P , so we
obtaining again a lattice of equilateral triangles such that the vertices of the lattice are centers of 3-fold
rotations, and the translations that move lattice points to lattice points are in G.
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As before, let s6 be the set of vertices of this lattice. Next we show that the even isometries of G are
exactly those symmetries of s6 that are translations or 3-fold rotations. First, exactly as in the case of
W6, we see that no other translation is possible: a translation that moves a lattice point into a non-lattice
point contradicts the minimality of translation τ . So the translations of G are exactly the translations
that keep s6 invariant. Consider then a rotation in G. We assumed that there are no 6-fold rotations,
and therefore there can be no 2-fold rotations either (together with a 3-fold rotation any 2-fold rotation
generates a 6-fold rotation). All other rotations would contradict the crystallographic restriction, so all
rotations in G are 3-fold. Conversely, every 3-fold rotation ρ′ that keeps s6 invariant must be in G because
ρ′ρ−1 is a translation that keeps s6 invariant, and all such translations are in G.

If there are no odd isometries in G we have our third wallpaper group W3 = ⟨τ, ρP,120◦⟩. In addition to
the translations and 3-fold rotations about lattice points, group W3 also contains 3-fold rotations about
the centers of the equilateral triangles of the lattice. Group W3 is the symmetry group of the following
pattern:
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Assume then that G also contains odd isometries. If G contains a glide reflection γ then it also contains
a reflection because γργρ−1γ is a reflection for every glide reflection γ and 3-fold rotation ρ (homework).
Every line p of reflection must contain a center of 3-fold rotation because also ρ(p) is a line of reflection,
lines p and ρ(p) are not parallel so they intersect, and the product σpσρ(p) is a rotation about the point of
intersection. In the beginning of case 3 the first center P of the 3-fold rotation ρ was chosen arbitrarily,
so we may assume that P is on line p. Consequently P is a fixed point of a reflection in G.

It follows then that every odd isometry in G is a symmetry of s6. Assume the contrary: there is an
odd α ∈ G and a lattice point Q such that α(Q) is not a lattice point. Then ατQ−Pσp ∈ G is an even
isometry that moves point P into the non-lattice point α(Q), and this contradicts the fact that all even
isometries in G are symmetries of s6.

Let m be a line through two adjacent lattice points P and P0, and let l be the line through P such
that the angle from m to l is 30◦.
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Both σm and σl are symmetries of s6, but since σlσm is a rotation by 60◦ they cannot both be in group G.
Let us prove that G must contain one of them. Assume the contrary: neither σm nor σl is in G, and let α
be some odd isometry in G. Then ασm and σlα

−1 are even symmetries of s6 that do not belong to G, so
they have to be rotations by an angle that is an odd multiple of 60◦ (=by 60, 180 or -60 degrees). Their
product σlα

−1ασm = σlσm would then be a translation or a rotation by an even multiple of 60◦, but we
know that σlσm is a rotation by 60◦, a contradiction. We conclude that exactly one of the reflections σm
and σl is in G.

Once we know one odd element of G, all other odd elements are uniquely determined by the even
elements of G. We have two new wallpaper groups: W 1

3 = ⟨τ, ρP,120◦ , σl⟩, which is the symmetry group
of
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and W 2
3 = ⟨τ, ρP,120◦ , σm⟩, which is the symmetry group of

A difference between these groups is that W 1
3 contains a line of reflection through every center of 3-fold

rotation, while in W 2
3 there are lines of symmetry only through some of the rotation centers, namely

those that are the lattice points.

3) Let us assume now that G contains a 4-fold rotation ρP,90◦ . Then it cannot contain 3- or 6-fold
rotations. As in the previous cases: let τ be the shortest translation in G, let d be its length, and let Pi

be the point where P is taken by the translation ρiτρ−i, for i = 0, 1, 2 and 3. Points P0, P1, P2 and P3

are all centers of 4-fold rotations in G, so we can repeat the reasoning on each Pi. We obtain an infinite
lattice of centers of 4-fold rotations, but this time the lattice is a square lattice instead of a triangular
one. (See the next figure.) All translations between lattice points are in group G.

If G would contain any other translations, then it would contain a translation that moves a non-lattice
point into the closest lattice point. This is not possible as the distance of every point of the plane from
the lattice is less than d, the length of the shortest translation. We conclude that the translations in G
are exactly the translations that keep the lattice invariant. Let us denote the points of the square lattice
by s4.
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Analogously to the case of 60◦ rotations, we can prove that the even isometries in G are exactly the even
symmetries of s4. We already know this for translations. Consider then an arbitrary rotation ρ′ ∈ G. The
crystallographic restriction states that ρ′ is a 2- or 4-fold rotation. This means that ρ′ρi is a translation
for some integer i. Since translations in G are symmetries of s4, and since ρ is a symmetry of s4 we
conclude that ρ′ is also a symmetry of s4.

Conversely, if ρ′ is any rotation in the symmetry group of s4 then it must be a 2- or 4-fold rotation.
This follows from the crystallographic restriction and the fact that the symmetry group of s4 is a wallpaper
group that contains 4-fold rotations. So ρ′ρi is a translation for some integer i and, as ρ is a symmetry
of s4, this translation is also a symmetry of s4. All such translations are in G, so ρ′ ∈ G as well.

If G contains no odd isometries then G is the group of even symmetries of s4. This is a new wallpaper
group W4 = ⟨τ, ρP,90◦⟩. In addition to the translations and 4-fold rotations about lattice points this
group also contains 4-fold rotations about the centers of the lattice squares, and 2-fold rotations about
the midpoints between adjacent lattice points. Let us prove that no other rotations exist in G. Consider
a center Q of a halfturn. Lattice point P is also a center of a halfturn. The product of the two halfturns
is the translation by vector 2(Q− P ). Translations are between lattice points, so Q must be a midpoint
between lattice points. The only such points are the centers of the lattice squares (which are easily seen
to be also centers of 4-fold rotations), and the midpoints between adjacent lattice points (which are easily
seen not to be centers of 4-fold rotations). No other rotations are possible.

Group W4 is the symmetry group of the following pattern:

Assume then that G also contains odd isometries. Let m be a line through some adjacent lattice points,
and let l be a line that intersects m at 45◦ in some midpoint M between adjacent lattice points:
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Reflection σm is a symmetry of s4 whereas reflection σl is not. Instead, σl exchanges lattice points and
the centers of the lattice squares. Group G cannot contain both σm and σl because then it would also
contain a 4-fold rotation about point M . Let us prove that G must contain either σm or σl. If there is an
odd isometry α ∈ G that takes some lattice point into a lattice point then every odd isometry of G must
be a symmetry of s4. (Otherwise there would be an even element in G that is not a symmetry of s4.) As
G contains all even symmetries of s4 then all odd symmetries of s4 are in G as well, and this includes σm.
If, on the other hand, G contains an odd isometry α that takes all lattice points into non-lattice points
then these non-lattice points must be the centers of the lattice squares, so σlα is an even symmetry of
s4. Therefore σlα ∈ G, and also σl ∈ G.

We have two new wallpaper groups W 1
4 = ⟨τ, ρP,90◦ , σm⟩, which is the symmetry group of

and W 2
4 = ⟨τ, ρP,90◦ , σl⟩, which is the symmetry group of
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4) Assume that G contains halfturn σP , and that all non-trivial rotations in G are halfturns. Let τ1 and
τ2 be two translations that generate all translations of G. Let the lattice points be the points τ i1τ

j
2 (P )

for all integers i, j. They are all centers of halfturns. Also the products of σP and the translations
τ i1τ

j
2 are halfturns about points that are midpoints between lattice points, that is, centers of the lattice

parallelograms as well as the midpoints of their sides. No other halfturns are possible as otherwise we
would get translations that are not invariants of the lattice. We conclude that we have found all even
isometries in G. If G contains no odd isometries then we have the wallpaper group W2 = ⟨τ1, τ2, σP ⟩. It
is the symmetry group of
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Assume then that G contains also some odd isometries. As in the previous cases, a single odd isometry
α ∈ G uniquely determines all odd isometries because they are obtained by multiplying α with the even
elements of G. The purpose of the following lemma is to limit the possible odd isometries that any
wallpaper group can contain. It turns out that if G contains odd isometries then the translation lattice
is rhombic or rectangular:

Lemma 2.32 Let G be a wallpaper group that contains an odd isometry with axis m. Then there exist
translations τ1, τ2 ∈ G that generate all translations of G and either

(1) τ1 is parallel to m and τ2 is perpendicular to m, or

(2) τ1 and τ2 are of equal length and m is parallel to τ1τ2.

Moreover, in case (2), group G contains a reflection.

In case (1) the translation lattice is rectangular, and m is parallel to a side of the rectangles, and in case
(2) the translation lattice is rhombic, and m is parallel to a diagonal of the rhombi:
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Case (1) Case (2)

Proof. Let τA be the shortest translation in G, and let τB ∈ G be the shortest translation not generated
by τA. According to Lemma 2.30, τA and τB generate all translations of G. Let α ∈ G be an odd isometry
with axis m, that is, α is a glide reflection with axis m. Notice that for every translation τ

ατα−1 = σmτσm.

This follows from the facts that α = σmτ ′ where τ ′ is a translation, and that translations commute.
Consider the translation τC = ατAα

−1 = σmτAσm. It has the same length as the shortest translation
τA. If τC is not generated by τA then it is the shortest translation not generated by τA, and according to
Lemma 2.30 translations τA and τC generate all translations of G. If we choose τ1 = τA and τ2 = τC we
have generating translations that satisfy the condition (2) of the lemma.

Assume then that τC is generated by τA. Then either C = A, in which case m is parallel to A, or
C = −A, in which case m is perpendicular to A. Consider the conjugate τD = ατBα

−1 (if m is parallel to
A) or τD = ατ−Bα

−1 (if m is perpendicular to A). In either case, B+D is parallel to A. If |B+D| > |A|
then B − A or B + A is shorter than B, which contradicts the minimality of vector B. We must have
B + D = 0 or B + D = ±A. If B + D = 0 then B is perpendicular to A and we can choose τ1 = τA,
τ2 = τB and condition (1) of the lemma is satisfied. And if B+D = ±A then we choose τ1 = τB, τ2 = τD
(if m is parallel to A) or τ1 = τ−B, τ2 = τD (if m is perpendicular to A). In either case, condition (2) of
the lemma is satisfied. Notice that τB and τD generate all translations because they generate τA.

Finally, to prove the last claim, assume that case (2) applies. Because α2 is a translation that is
parallel to τ1τ2, we must have that α2 = (τ1τ2)

i = τ i2τ
i
1 for some integer i. Since translations τ1 and τ2

are conjugate by τ2 = ατ1α
−1, we also have that τ i2 = ατ i1α

−1. This means that α2 = ατ i1α
−1τ i1. Divide

both sides by α2 from the left, and we have the result that α−1τ i1 is an odd involution, that is, a reflection.

Our lemma limits the number of possible odd isometries of wallpaper groups sufficiently so that we
can proceed with the analysis of the wallpaper groups G with halfturns and some odd isometries.

(a) First, assume that G contains a reflection σm such that the condition (2) of the previous lemma is
satisfied. The lattice determined by the two generating translations from the lemma is rhombic. Let us
prove that line m must contain a center of a halfturn. Consider a rhombus that is intersected by m, whose
corners are centers of halfturns and whose interior does not contain any such centers. We know that m is
parallel to a diagonal of the rhombus. If m is not the diagonal then one of the corners is mapped inside
the rhombus by reflection σm, which contradicts the fact that there are no rotation centers inside the
rhombus. We conclude that m bisects the rhombus along its diagonal, and therefore m contains a center
of rotation. As the first halfturn σP was chosen arbitrarily, we can choose it in such a way that P ∈ m.
We see that line m is then uniquely determined by τ1, τ2 and P . All other odd elements of G are then
the products of σm and even isometries. This gives the wallpaper group W 1

2 = ⟨τ1, τ2, σP , σm⟩ where τ1
and τ2 are of equal length, and m is the line through P and τ1τ2(P ). This group is the symmetry group
of
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(b) Assume then that G contains a reflection σm that satisfies the condition (1) of the lemma. Let us
call the direction of τ1 and m the horizontal direction. We have two possibilities: (i) that m contains
a center of a halfturn, and (ii) that m does not contain a center of a halfturn. In the second case the
line m must run in the middle between two horizontal rows of rotation centers. As before, all other
odd isometries are uniquely determined by σm and the even isometries. We get two wallpaper groups
W 2

2 = ⟨τ1, τ2, σP , σm⟩ where m is the line through P and τ1(P ), and W 3
2 = ⟨τ1, τ2, σP , σm⟩ where m is

the perpendicular bisector between points P and the center of halfturn τ2σP . In both cases, τ1 and τ2
are perpendicular. Group W 2

2 is the symmetry group of

and group W 3
2 is the symmetry group of

(c) Finally, assume that G does not contain any reflections. Let γ ∈ G be a glide reflection with axis
m. According to the last claim of Lemma 2.32, case (1) of the lemma must apply. Let τ1 and τ2 be two
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perpendicular translations, as indicated by the case (1) of the lemma. If the axis m contains the center
P of some halfturn σP ∈ G then G contains the reflection γσP . We conclude that m must run in the
middle between two horizontal rows of rotation centers. Let integer i be such that γ2 = τ i1. If i would
be even then γ and τ1 would generate a reflection, so i must be odd. By multiplying γ with a suitable
power of τ1 we obtain a glide reflection whose square is exactly τ1. This is uniquely determined, so the
group G is also determined. It is W 4

2 = ⟨τ2, σP , γ⟩ where γ is a glide reflection such that τ1 = γ2 and τ2
are perpendicular. This is the symmetry group of

5) As our final case, assume that there are no non-trivial rotations in group G. The even isometries are
then all translations generated by τ1 and τ2. If there are no odd isometries then the group is W1 = ⟨τ1, τ2⟩.
This group is the symmetry group of
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Let us assume then that G also contains odd isometries. If G contains a reflection σm then according
to Lemma 2.32 either G has perpendicular generating translations τ1 and τ2 and m is parallel to τ1, or
G has generating translations τ1 and τ2 of equal length and m is parallel to τ1τ2. In the second case we
obtain group W 1

1 = ⟨τ1, τ2, σm⟩ that is the symmetry group of
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and in the first case we obtain the symmetry group W 2
1 = ⟨τ1, τ2, σm⟩ of

Assume then that G does not contain any reflections but contains a glide reflection with axis m. Case
(1) of Lemma 2.32 must apply. Then we can choose the glide reflection γ in such a way that τ1 = γ2.
This gives the last wallpaper group W 3

1 = ⟨γ, τ2⟩. A pattern with this symmetry group is for example

We have exhausted all possibilities of wallpaper groups. We found 17 groups: Two with 6-fold rotations,
three with 4-fold rotations, three with 3-fold (but no 6-fold) rotations, five with halfturns (but no higher
order rotations) and four without non-trivial rotations.

Theorem 2.33 Let G be a wallpaper group. Then G is among the 17 groups discussed above.
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2.11 Final remarks on discrete symmetry groups

The rosette groups, frieze groups and the wallpaper groups have standard names given by crystallog-
raphers, and standardized by the International Union of Crystallography. Another naming system was
developed by Fejes Tóth. The following table summarizes these notations:

Our notation Fejes Tóth Crystallographic

Cn Cn n

Dn Dn nm, if m is odd,
nmm, if m is even

F1001 F 1
1 p1m1

F1111 F 1
2 pmm2

F0000 F1 p111

F0100 F 2
1 pm11

F0010 F2 p112

F0001 F 3
1 p1a1

F0111 F 2
2 pma2

W6 W6 p6

W 1
6 W 1

6 p6m

W3 W3 p3

W 1
3 W 1

3 p3m1

W 2
3 W 2

3 p31m

W4 W4 p4

W 1
4 W 1

4 p4m

W 2
4 W 2

4 p4g

W2 W2 p2

W 1
2 W 1

2 cmm

W 2
2 W 2

2 pmm

W 3
2 W 3

2 pmg

W 4
2 W 4

2 pgg

W1 W1 p1

W 1
1 W 1

1 cm

W 2
1 W 2

1 pm

W 3
1 W 3

1 pg

Observe that each rosette, frieze or wallpaper group type is actually a family of subgroups of I. For
example, for each P ∈ R2, the halfturn around point P generates the cyclic group C2, but of course each
choice of P provides a distinct subgroup of I. In fact, each group type represents a family of affinely
conjugate subgroups, as explained briefly below:

� An affine transformation of the plane is a transformation that preserves parallelism of lines. It is
the composition of a linear transformation and a translation, that is, a mapping

f :

(︃
x
y

)︃
↦→ M

(︃
x
y

)︃
+

(︃
a
b

)︃
where M is a 2 × 2 matrix. The transformation is one-to-one if and only if M is invertible, i.e.,
det(M) ̸= 0. Isometries are exactly the distance preserving affine maps. Distance preservation
is equivalent to M being an orthogonal matrix, i.e., equivalent to MMT = I where MT is the
transpose of M and I is the 2×2 identity matrix. Even and odd isometries correspond to orthogonal
matrices M whose determinant is +1 and -1, respectively.
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� Two subgroups G1 and G2 of I are said to be equal up to affine conjugacy if there exists a one-to-one
affine transformation f such that G1 = fG2f

−1, that is, elements of G1 are exactly the functions
fαf−1 for α ∈ G2. (In particular, this requires that fαf−1 are isometries for all α ∈ G2, which is
not the case for all affine f and all isometries α ∈ I.)

� If G1 and G2 are wallpaper groups, frieze groups or rosette groups then equality up to affine
conjugacy exactly means that they are of the same wallpaper, frieze or rosette group type.

� Affine conjugacy preserves isometry types: If α and fαf−1 are both isometries then they are of
the same type: both translations, both rotations, both reflections or both glide reflections. (To see
this, note that the parity of the isometry is preserved by affine conjugacy, and that P is a fixed
point of α if and only if f(P ) is a fixed point of fαf−1.) But as mentioned above, fαf−1 may also
not be an isometry.

� As groups, C2 and D1 are isomorphic. But they are not equal up to affine conjugacy. Likewise,
frieze groups F0000 and F0001 are isomorphic (both are infinite cyclic groups, one is generated by
a translation the other one by a glide reflection) but we consider them different as they are not
affinely conjugate.

3 Tilings

Intuitively, a tiling is a covering of the plane without overlaps using some tiles. We start by giving more
precise definitions. You may want to review some basic concepts of topology (especially the standard
Euclidean topology of R2) such as

� open and closed sets,

� neighborhood of a point (=any open set containing the point),

� interior of a set (=largest open set contained in the set),

� closure of a set (=smallest closed set containing the set),

� boundary of a set (=intersection of the closures of the set and its complement),

� compactness,

� continuity of functions (inverse images of open sets are open),

� homeomorphism (=continuous bijection whose inverse is also continuous).

� connectedness (a set is connected iff it is not the union of two disjoint open sets),

Recall that since the Euclidean topology of R2 is metric, it is Hausdorff, and compactness is equivalent
to being closed and bounded. Also, in R2 an open set is connected if and only if it is path-connected,
that is, each pair of its points can be joined by a path (=homeomorphic image of the unit interval) inside
the set. Let us denote by

Br(P ) = {X ∈ R2 | d(X,P ) < r}

the open disk of radius r centered at P , and if P is the origin O, we simply denote Br = Br(O). The
closure of an open disk is a closed disk

Br(P ) = {X ∈ R2 | d(X,P ) ≤ r},

and Br = Br(O).
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3.1 Basic definitions

A tile is a subset of R2 that is a topological disk. This means that it is the image of the closed disk
B1 under some homeomorphism. Homeomorphisms preserve topological properties, so tile t immediately
inherits topological properties from the disk B1:

� t is compact (=closed and bounded),

� the interior of t is connected, and the complement of t is connected,

� the boundary of t is the boundary of its interior,

� the boundary of t is a simple closed curve, that is, homeomorphic to the unit circle

{X ∈ R2 | d(X,O) = 1}.

This definition of a tile is very general. Later, additional restrictions will be added as needed. For
example, we may restrict our attention to tiles that are polygons. Here are some examples of tiles:

but these are not tiles:

(They are with non-connected interior, non-connected complement, boundary that is not the boundary
of the interior, and unbounded, in this order.)

A tiling T is a family of tiles that covers the plane

(1) without gaps (every P ∈ R2 belongs at least one tile), and

(2) without overlaps (the interiors of the tiles are pairwise disjoint).

Notice that the boundaries of the tiles do not need to be disjoint. But it follows that every point that
belongs to more than one tile cannot belong to the interior of any tile. Notice also that the number
of tiles in any tiling must be infinite (union of a finite number of bounded sets would be bounded) but
countable (the interior of each tile contains a point with rational coordinates).

This definition of tilings is very general. It does not restrict the number of different shapes used in
any way, so one tiling can, for example, contain arbitrarily small tiles. The left picture below represents
a part of a tiling, while the rightmost picture is not a tiling since the horizontal line in the center is not
covered by any tile.
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Let T = {t1, t2, . . . } be a tiling. Its symmetry group G consists of those isometries α that take every
tile of T onto a tile of T , that is, for every i = 1, 2, . . . there exists j such that α(ti) = tj . It is easy to
see that symmetry groups of tilings (even under our very general definition of tiles) are discrete: the only
possibilities are our familiar rosette, frieze and wallpaper groups.

Theorem 3.1 The symmetry group of a tiling is discrete.

Proof. Let G be the symmetry group of tiling T = {t1, t2, . . . }. Then there must exist a positive number
ε such that the length of every non-trivial translation in G is at least ε. Indeed, the interior of tile t1
contains a disk Bε(P ) for some ε > 0, so any translation τ that is shorter than ε takes P into the interior
of t1. This means that τ(t1) = t1, which is possible only if τ = ι.

Consider then rotations. Suppose first there is a non-trivial translation τ in G. If there are arbitrarily
small rotations in G then there are arbitrarily small translations among τ−1ρτρ−1, which contradicts the
conclusion in the previous paragraph.

Suppose than that G contains only the trivial translation. Then all rotations have the same center P
of rotation (Corollary 2.22). Suppose there would be arbitrarily small rotations around P .

Let t ∈ T be a tile that contains point P . We have t ⊆ Bk(P ) for a sufficiently large number k. Let
Q be a point whose distance from P is at least k such that Q belongs to the interior of some tile t′ ∈ T .
(Just choose any point Q sufficiently far away from P . If Q is not in the interior of any tile then Q is on
the boundary of some t′. There are interior points of t′ close to Q. We can choose any one of them.)

The circle c = {X ∈ R2 | d(P,X) = d(P,Q)} does not intersect t, but it contains an interior point Q
of t′. Let us prove that c ⊆ t′. Assume the contrary: there exists a point R ∈ c such that R ̸∈ t′. The
complement of t′ is open so, for all sufficiently small angles Θ, we have ρP,Θ(R) ̸∈ t′.

Let ε > 0 be a small number so that ρP,Θ(Q) is an interior point of t′ and ρP,Θ(R) ̸∈ t′ for all angles Θ
with |Θ| < ε. Choose one positive angle Θ < ε such that ρ = ρP,Θ ∈ G. Because ρ is a symmetry of the
tiling such that ρ(Q) is an interior point of t′, we must have that ρ(t′) = t′. This means that ρi(Q) ∈ t′

for all integers i. Choose number i such that |iΘ− Φ| < ε where Φ is the angle such that ρP,Φ(Q) = R.
Then ρi(Q) ∈ t′ but, on the other hand,

ρi(Q) = ρP,iΘ(Q) = ρP,iΘ−ΦρP,Φ(Q) = ρP,iΘ−Φ(R) ̸∈ t′,

a contradiction.
We have proved that c ⊆ t′. Then the complement of t′ is not connected: Interior points of t are in

the disk Bk(P ) so they are separated by t′ from the points outside the circle c. This contradicts the fact
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that t′ should be a topological disk. Conclusion: there can only be a finite number of rotations in G, so
G is a finite subgroup of I, and therefore a rosette group.

Note that it is essential in the proof that the tiles are topological disks, and hence do not contain
holes. If we would allow tiles that are topological rings then we would have, for example, the following
”tiling” whose symmetry group is not discrete.

Each rosette group, frieze group and wallpaper group is the symmetry group of some tiling. We see
some examples in the homeworks. As another example, below is a piece of a tiling whose symmetry
group is D5. This can be easily generalized to obtain a tiling whose symmetry group is Dn or Cn, for
any n ≥ 5.

Our main interest is in tilings using only a finite number of different shapes. More precisely, tiles
{p1, p2, . . . , pk} are prototiles of a tiling T = {t1, t2, . . . } if every tile ti ∈ T is congruent to some pj .
By congruent we mean that there is an isometry (even or odd!) that takes ti onto pj . We say that
the prototiles {p1, p2, . . . , pk} admit the tiling T . Tiling T is called k-hedral, where k is the number
of prototiles pj . In the special cases of k = 1 and k = 2 the tiling is called monohedral and dihedral,
respectively. Note that some tiles may be ”flipped over” copies of the prototiles, that is, the isometry
that takes the prototile on a tile may be odd. In some cases we may be interested in those k-hedral
tilings where the tiles are congruent to prototiles by even isometries, but in these cases this will be stated
explicitly. Here is an example of a monohedral and a dihedral tiling:
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Let T = {t1, t2, t3, . . . } be a tiling. If h : R2 −→ R2 is a homeomorphism then also h(T ) = {h(t1), h(t2), h(t3), . . . }
is a tiling. We say that tilings T and h(T ) are topologically equivalent. This is easily seen to be an equiv-
alence relation among tilings.

Every isometry is a homeomorphism, so if α is an isometry then α(T ) = {α(t1), α(t2), α(t3), . . . } is a
tiling. We say that that α(T ) is congruent to tiling T . Also congruence is an equivalence relation among
tilings.

Finally, a similarity s : R2 −→ R2 is a composition of an isometry and a stretch (that is, a function that
maps (x, y) ↦→ (kx, ky) for some k > 0). In other words, a similarity s by factor k > 0 is a function such
that for any two points P,Q ∈ R2 we have d(s(P ), s(Q)) = k ·d(P,Q). Similarities are homeomorphisms,
so s(T ) = {s(t1), s(t2), s(t3), . . . } is a tiling. We say that tilings T and s(T ) are similar. Intuitively,
similarity of two tiling means that they look the same when one of them is watched under a suitable
magnifying class. Usually (unless otherwise noted) we consider similar tilings to be the same tiling.

The following figure contains four topologically equivalent monohedral tilings. First two are congruent
with each other, and they are similar to the third one:

Two tiles t1 and t2 of tiling T are called equivalent in T if there exists a symmetry of T that takes
t1 onto t2. This is clearly an equivalence relation among tiles ti. Equivalence classes are called the
transitivity classes of T . If tiling T has only one transitivity class then the tiling is called isohedral
(or tile-transitive). More generally, if there are k transitivity classes then the tiling is called k-isohedral.
Notice that any isohedral tiling is monohedral as equivalent tiles are congruent. But there are monohedral
tilings that are not isohedral. Analogously, a k-isohedral tiling is always k-hedral (but it can also be n-
hedral for some n < k). Here are examples of an isohedral tiling and a monohedral tiling that is not
isohedral, or even k-isohedral for any finite k.
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It is easy to see (in the homeworks!) that the symmetry group of a k-hedral tiling is a wallpaper
group if and only if the tiling is n-isohedral for some n. (But there are also tilings that are not k-hedral
for any k and whose symmetry group is a wallpaper group.)

3.2 Tilings by regular polygons

We restrict the study in this section to tilings that are by regular polygons, and that are edge-to-edge,
that is, the intersection of two tiles is either empty, single vertex of the polygons, or the entire edge of
the two neighboring polygons. Two tiles are called edge neighbors (vertex neighbors) if their intersection
is an edge (edge or vertex, respectively) of the polygons. Corners of the polygons are called the vertices
of the tiling.

Consider a vertex P where r regular polygons of orders n1, n2, n3, . . . , nr meet, in this order (counted
clockwise or counterclockwise). Then we say that the vertex is of type n1 · n2 · · · · · nr. For example,
vertices of types 3 · 3 · 6 · 6, 3 · 4 · 4 · 6 and 3 · 4 · 6 · 4 look like

Notice that types 3 ·4 ·4 ·6 and 4 ·6 ·3 ·4 and 4 ·3 ·6 ·4 are all identical, as they are obtained by changing the
starting point and/or the direction of reading the polygons. We also adapt the usual shorthand notations
for repetitions, so that 3 · 3 · 6 · 6 may be abbreviated as 32 · 62.

The interior angle of a regular n-gon is 180◦(1− 2
n). Consequently, if P is a vertex of type n1 ·n2 ·· · ··nr

then
r∑︂

i=1

(︃
1− 2

ni

)︃
= 2. (1)
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This follows from the fact that the interior angles of the polygons that meet at P must sum up to 360◦.
Assume first that the tiling is monohedral, with all tiles regular n-gons. Then (1) becomes

r(1− 2

n
) = 2,

which implies n = 2r
r−2 . Because n is positive, we must have r ≥ 3, and because n ≥ 3 we must have

r ≤ 6. With r = 3, 4, 5 and 6 we get n = 6, 4, 103 and 3. Number n is an integer so we only have three
solutions. These are the familiar regular tilings

Theorem 3.2 The only edge-to-edge monohedral tilings by regular polygons are the three regular tilings
above.

Consider then the case when the tiling is not necessarily monohedral. Possible types of vertices are
limited by (1). We only have the following numerical solutions to (1), and the corresponding possibilities
for the vertex types:

type archimedean

3 · 3 · 3 · 3 · 3 · 3 A

3 · 3 · 3 · 3 · 6 A

3 · 3 · 3 · 4 · 4 A

3 · 3 · 4 · 3 · 4 A

3 · 3 · 4 · 12
3 · 3 · 6 · 6
3 · 4 · 3 · 12
3 · 4 · 4 · 6
3 · 4 · 6 · 4 A

3 · 6 · 3 · 6 A

3 · 7 · 42
3 · 8 · 24
3 · 9 · 18
3 · 10 · 15
3 · 12 · 12 A

4 · 4 · 4 · 4 A

4 · 5 · 20
4 · 6 · 12 A

4 · 8 · 8 A

5 · 5 · 10
6 · 6 · 6 A
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The last column indicates whether the vertex type appears in some archimedean tiling: An edge-to-edge
tiling by regular polygons is termed archimedean if all vertices of the tiling are of the same type. The
three regular tilings are all archimedean, corresponding to vertex types 63, 44 and 36. In addition, it
turns out that there are only eight other examples of archimedean tilings, corresponding to the vertex
types marked by ”A” in the table above.

Theorem 3.3 (Kepler 1619) There are exactly eleven different archimedean tilings, one of each type
indicated by ”A” in the table above.

Proof. The eight non-regular archimedean tilings are shown below. It is easy to very that they are indeed
archimedean, and one can easily verify that the types of their vertices match the types marked by ”A”.
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To prove that no other archimedean tilings exist we have to show that (i) the vertex types without
”A” in the table are not possible in archimedean tilings, and (ii) each type with ”A” leads to a unique
tiling. Let us use the following terminology: a polygon is incident to its vertices and edges, and an edge
is incident to its endpoints. Two vertices are adjacent if they are the two endpoints of an edge.

(i) Vertex type x · y · z where x is odd and y ̸= z is not possible in any archimedean tiling: The edge
neighbors of an x-gon across two consecutive edges are a y-gon and a z-gon. (Note: This is true even if
x = y or x = z.) So y-gons and z-gons alternate as the edge neighbors of an x-gon when we go around
its edges clockwise. But since x is odd this is not possible: we necessarily end up with two consecutive
neighbors of the same type.

y

z

y

z

y

z

z

x

This reasoning rules out six vertex types 3 · 7 · 42, 3 · 8 · 24, 3 · 9 · 18, 3 · 10 · 15, 4 · 5 · 20 and 5 · 5 · 10.
By a similar argument, vertex type x · y · u · z is not possible when x is odd, y ̸= z, and no three of

the numbers are equal. Clearly x ̸= y or x ̸= z. The two situations are symmetric, so we may assume
that x ̸= z. Then two consecutive edge neighbors of an x-gon are an y-gon and a z-gon, or — if x = y
— possibly a y-gon and a u-gon. In either case, every other edge neighbor is a y-gon, and every other
neighbor is not a y-gon, which is not possible as x is odd.

y

yy

x

u or zu or z

u or zu or z

This rules out the remaining four vertex types 3 · 3 · 4 · 12, 3 · 3 · 6 · 6, 3 · 4 · 3 · 12 and 3 · 4 · 4 · 6.

(ii) Let us prove that any archimedean tiling T is similar to one of the given eleven tilings, namely the
one with the same vertex type. We start by selecting one arbitrary vertex P of T and one arbitrary
vertex P ′ of the known archimedean tiling A of the correct vertex type. There clearly exists a similarity
function s that maps P onto P ′ in such a way that the polygons incident to P in T are mapped onto
the polygons incident to P ′ in A. Let us show that (with one exception in type 3 · 3 · 3 · 3 · 6) similarity
s maps the entire tiling T onto tiling A.

It is enough to consider the vertices that are adjacent to P , and to show that all tiles incident to
those vertices are mapped by s onto similar tiles on tiling A. Namely then we can repeat the reasoning
on the adjacent vertices to conclude that all vertices adjacent to them are mapped correctly, and so on,
by mathematical induction, that all tiles at any distance from P are mapped onto tiles of A.
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Consider first tilings of vertex types 3 ·12 ·12, 4 ·6 ·12, 4 ·8 ·8, and 6 ·6 ·6, that is, the cases x ·y ·z where
three polygons meet at the vertices. Let Q be any of the three vertices adjacent to P . Two polygons
incident to Q are also incident to P so they are known. This means that also the third polygon incident
to Q is known and it must be mapped by s onto the corresponding tile in the archimedean tiling A.

z

P

x

����

y

y

z
x

As discussed above, this is enough to prove that the entire tiling T is mapped onto A.
Vertex types 4 · 4 · 4 · 4 and 3 · 3 · 3 · 3 · 3 · 3 are also trivial: the polygons are all congruent and they

must be correctly mapped onto the corresponding tiles in A.
Consider then the vertex types 3 ·4 ·6 ·4 and 3 ·6 ·3 ·6. Let Q be a vertex adjacent to P . Two polygons

that are edge neighbors and incident to Q are known. The other two are then also uniquely determined:
in the first case one of the known polygons is a square, and the polygon opposite to it at Q must be a
square as well, and in the case of 3 · 6 · 3 · 6 one of the known polygons is a triangle, and the polygon
opposite to it at Q is a triangle. In both cases the polygons incident to Q are uniquely determined, and
therefore mapped by s onto similar tiles in the tiling A.

There remain three vertex types to analyze, namely 3 · 3 · 3 · 3 · 6, 3 · 3 · 3 · 4 · 4 and 3 · 3 · 4 · 3 · 4.
Consider type 3 · 3 · 3 · 4 · 4 first: The following figure shows the order in which the vertices adjacent to
P can be processed to determine the polygons incident to them. One can easily verify that the polygons
are uniquely determined if the vertices are processed in the alphabetical order A,B,C,D, . . . . So the
tiles are all mapped correctly onto tiling A.

P

A

BC

DE

Analogously, if the vertex type is 3 · 3 · 4 · 3 · 4 the vertices should be processed in the order indicated in
this figure:
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Finally, consider the vertex type 3 · 3 · 3 · 3 · 6. In all previous cases, any similarity s that takes a vertex P
and the incident polygons of T onto a vertex P ′ and its incident polygons of A is necessarily a similarity
between entire tilings T and A. But in the case of vertices of the type 3 · 3 · 3 · 3 · 6 this is no longer
true. Instead, there exist two similarities from vertex P onto vertex P ′: one even and one odd similarity.
And exactly one of them is a similarity between tilings T and A. In the following figure, the polygons
incident to vertices A and B are uniquely determined. Then, the hexagon incident to vertex C must be
one of the two dotted hexagons in the illustration. (The third alternative would lead to two hexagons
that are vertex neighbors, and is therefore impossible.)

P

A

B

C

In either case, the similarity s can be chosen in such a way that the hexagon incident to C is mapped
correctly onto tiling A. The similarity is even or odd depending on the position of the hexagon. There-
after, the remaining polygons are uniquely determined. In this case we have to verify the uniqueness of
the polygons up to vertices of distance two from P . After this the uniqueness of the entire tiling follows
by mathematical induction:

P

A

B

C

D

E

Notice that the previous proof indicates that the 11 archimedean tilings are vertex transitive: for any
two vertices P1 and P2 of the tiling, there exists a symmetry of the tiling that takes P1 onto P2. With
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the exception of type 3 · 3 · 3 · 3 · 6, any isometry that takes vertex P1 and its incident polygons onto P2

and its incident polygons is a symmetry of the tiling. The archimedean tiling of type 3 · 3 · 3 · 3 · 6 comes
in two enantiomorphic forms that are congruent with each other only by odd isometries.

Archimedean tilings are also called uniform, which refers to the fact that they are vertex transitive:
the entire tiling looks exactly the same from each vertex. This is a stronger property than the property
we started with: that the tiling looks locally the same at each vertex, as each vertex is of the same type.

4 Wang tiles

Wang tiles are unit square tiles with colored edges. Hence each tile can be represented as a 4-tuple
(N,E, S,W ) where N,E, S and W are the colors of the north, east, south and west sides of the square.
Tilings with a finite number of prototiles are only considered. In Wang tilings copies of the prototiles
are placed at integer lattice points, without rotating or flipping the tiles, so that all tiles are congruent
to the given prototiles by translations only. A tiling can then be represented as a function f : Z2 → P
where P is the set of prototiles and f(i, j) gives the tile at position (i, j) ∈ Z2. The tiling rule is that in
a valid tiling the shared edge between any two tiles that are edge neighbors must have the same color.

For example, set P = {(Green, Green, Red, Red), (Red, Red, Green, Green)} consists of two pro-
totiles

sGreen GreenRed Redt

Green

Red Green

Red

that admit the checkerboard-tiling

t

t

t

t

t

t

ts

s s

s

s
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Wang tiles provide a discrete abstraction of tilings that allows us to study tilings using tools of discrete
mathematics rather than geometry. This is especially useful when investigating computational properties
and problems related to tilings. At first, Wang tiles may seem very restricted as the tilings are on a square
lattice only. Nevertheless, the computational problems on Wang tiles are as hard as on more general
types of tiles. By using Wang tiles we avoid problems related to representations of tiles (e.g. irrational
coordinates of vertices) on computers, and we transform geometric problems into more manageable
symbolic problems.

Our first observation is that Wang tiles fit our original definition of tiles as topological disks. We
can namely represent Wang tiles as polygons as follows: The basic shape is a unit square. The middle
of the north and east sides of each tile contain triangular ”bumps” and the south and west sides have
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”dents” that exactly fit the bumps. The bump/dent pairs are different in the horizontal and the vertical
directions, and they are asymmetric so that flipped and non-flipped tiles do not match:

It should be clear that these tiles can only tile the plane in such a way that all tiles are aligned, and
rotations and flips are not possible. To simulate the colors, we introduce an additional bump/dent pair
on the sides of the tiles. Each color has its own bump/dent shape that does not fit with any other color.
For example, our sample protoset of two tiles could look like this:

It should be obvious from this construction that any tiling by such polygons is congruent to a tiling
where the tiles are positions at integer lattice points, without rotations and flips. Such tilings are clearly
”isomorphic” to Wang tilings.

In the following we consider all tilings that given prototiles admit. In particular, we are interested to
know when do given prototiles admit at least some tiling and when do they admit a periodic tiling. As
it turns out that even among Wang tiles these questions can not be algorithmically answered (they are
undecidable), so it follows that the questions are undecidable also among tiles that are polygons.

In the following two subsections we prove two preliminary results that will be needed in the algorithmic
considerations that follow: First we show that if a finite set of Wang prototiles admits a tiling whose
symmetry is a frieze group then it automatically admits also a tiling with a wallpaper symmetry. Then
we prove that if one can tile arbitrarily large squares then one can also tile the entire infinite plane.

4.1 Periodic tilings

A tiling is called non-periodic if its symmetry group is finite, that is, if there is no translation that keeps
the tiling invariant. A tiling is two-way periodic, or simply periodic, if its symmetry group is a wallpaper
group, that is, if there are translations in non-parallel directions that keep the tiling invariant. A tiling
whose symmetry group contains some non-trivial translation will be called called one-way periodic.

Vector (a, b) ̸= (0, 0) is called a period of a tiling, if τ(a,b) is a symmetry of the tiling. In the case of a
Wang tiling f : Z2 −→ P this means that f(x, y) = f(x+ a, y + b) for all (x, y) ∈ Z2.

Notice that any two-way periodic tiling with Wang tiles has horizontal and vertical periods of equal
lengths. Namely, if f : Z2 −→ P is periodic with non-parallel periods (a, b) and (c, d) then it is also
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periodic with the horizontal period d(a, b)−b(c, d) = (ad−bc, 0) and the vertical period a(c, d)−c(a, b) =
(0, ad− bc). Note that ad− bc ̸= 0 as vectors (a, b) and (c, d) are not parallel. In other words, a two-way
periodic Wang tiling consists of a periodic repetition of a square pattern.

The next theorem states that a set of Wang tiles that admits a one-way periodic tiling also admits a
periodic tiling:

Theorem 4.1 Let P be a finite set of Wang prototiles that admits a tiling f : Z2 −→ P that is one-way
periodic. Then there exists also a two-way periodic tiling g : Z2 −→ P.

Proof. Let (a, b) ̸= (0, 0) be a period of tiling f . Without loss of generality we may assume that b > 0.
Consider a horizontal strip of height b extracted from tiling f , e.g., the tiles f(x, y) for 1 ≤ y ≤ b. The
sequences of horizontal colors on the top and the bottom of this strip are identical, with the horizontal
offset a:

(a,b)

Within this strip, consider the rectangular |a| × b blocks

f(j,1) f(j+|a|-1,1)

f(j+|a|-1,2)

f(j+|a|-1,b)

f(j+1,1)

f(j+1,2)f(j,2)

f(j,b) f(j+1,b)

j j+1 j+|a|-1

1

2

b

of tiles extracted from f with the bottom-left corner in position (j, 1), for all j ∈ Z. (And if a = 0
consider just the sequences of vertical colors on the b rows.) Since there are only a finite number of tiles
in the protoset, there are only a finite number of such blocks. This means that for two different values
of j, say j1 and j2, the blocks are identical.

Now we can construct a valid periodic tiling of an infinite horizontal strip of height b by repeating
the pattern between positions j1 and j2. Note that the sequences of horizontal colors on the top and the
bottom of this strip are again identical, with the horizontal offset a:

j
2

j
1
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The tiling of the strip is valid and it has a horizontal period of length j2 − j1. A valid, two-way periodic
tiling of the plane can now be obtained by stacking copies of the strip on top of each other, with the
horizontal offset a:

4.2 Compactness principle

In later chapters we’ll introduce a metric on tilings that induces a compact topology. This will imply
several interesting results, but for the main algorithmic questions that follow next we just need to know
that if a Wang set admits tilings of arbitrarily large squares then it admits a tiling of the whole infinite
plane. This is a direct consequence of the compactness, but we state the result here without a direct
reference to topology.

Let P be a finite set of Wang prototiles. Let us call any function

c : Z2 → P

a configuration, and let us denote by
PZ2

= {c : Z2 → P}

the set of all configurations over the tile set P. Note that configurations are arbitrary assignments of tiles
on integer lattice points. i.e., the color constraints are not checked. Valid tilings are particular types of
configurations.

Consider an infinite sequence c1, c2, . . . of configurations, each ci ∈ PZ2
. We say that the sequence

converges and c ∈ PZ2
is its limit if for every (x, y) ∈ Z2 there exists some k ≥ 0 such that ci(x, y) = c(x, y)

for all i ≥ k. In other words: if we look at an arbitrary position and browse through a converging sequence
c1, c2, . . . then from some moment on we always see the same tile in that position. It is obvious that if a
limit exists it is unique, and we denote this limit by

lim
i→∞

ci.

A subsequence of c1, c2, . . . is another sequence ci1 , ci2 , . . . where i1 < i2 < . . . . A subsequence is hence
obtained by picking infinitely many elements of the sequence, preserving their relative order. Obviously
every subsequence of a converging sequence also converges and has the same limit.

The following theorem states the compactness of the configuration space:

Theorem 4.2 Every sequence of configurations has a converging subsequence.

Proof. Let c1, c2, . . . be an arbitrary sequence, ci ∈ PZ2
. Let r⃗1, r⃗2, . . . be some (arbitrary) enumeration

of elements of Z2. In the following we show that there is a subsequence ci1 , ci2 , . . . such that for every
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n ≥ 1, if j ≥ n then cij (r⃗n) = cin(r⃗n), i.e., the subsequence has a constant value in the n’th position r⃗n
starting from the n’th element of the subsequence. Then clearly the subsequence converges.

Let us choose indices i0 < i1 < i2 < i3 < . . . inductively as follows: i0 = 0 and i1 ≥ 1 is the smallest
positive index such that there are infinitely many elements in c1, c2, . . . that agree with ci1 in the first
position r⃗1. Such ci1 exists because there are only finitely many different tiles that can appear in position
r⃗1.

Suppose then that ik−1 has been chosen and we want to choose ik for k ≥ 2. We choose ik to be the
smallest integer that satisfies the following three conditions:

(Ak) ik > ik−1,

(Bk) cik(r⃗j) = cik−1
(r⃗j) for all j = 1, 2, . . . k − 1.

(Ck) There exist infinitely many indices i such that ci(r⃗j) = cik(r⃗j) for all j = 1, 2, . . . k.

Numbers ik that satisfy (Ak)–(Ck) always exist for the following reasons: Because condition (Ck−1) was
satisfied when ik−1 was chosen, we have infinitely many choices of ik that satisfy (Bk). Set Pk is finite
so there is a finite number of combinations of tiles that can appear in positions r⃗1, . . . , r⃗k. Consequently,
among the infinitely many indices ik that satisfy (Bk) there are infinitely many choices that also satisfy
(Ck). Some of them hence satisfy all requirements (Ak)–(Ck).

It follows from properties (Bk) that ci1 , ci2 , . . . converges: For an arbitrary r⃗n ∈ Z2 all cij for j ≥ n
have the same tile in position r⃗n.

Note: The proof is essentially the same as the proof of weak Kőnig’s lemma which states that an
infinite binary tree contains an infinite path. The proof did not require the axiom of choice. (The same
result could also be easily proved using Tychonoff’s theorem, but that is equivalent to the axiom of
choice.)

Let us say that a configuration c : Z2 → P tiles correctly at position (x, y) ∈ Z2 if c(x, y) matches
in color with its neighbors c(x, y − 1), c(x, y + 1), c(x − 1, y), c(x + 1, y). A configuration is then a valid
tiling iff it tiles correctly at each position.

The following corollary of the compactness principle states that if P can be used to properly tile
arbitrarily large squares then it admits a valid tiling of the plane:

Corollary 4.3 Let P be a finite set of Wang tiles. Suppose that for each finite set F ⊂ Z2 of positions
there is a configuration that tiles correctly at each (x, y) ∈ F . Then P admits a valid tiling.

Proof. Let r⃗1, r⃗2, . . . be an enumeration of elements of Z2, and for each n ≥ 1 denote

Fn = {r⃗1, r⃗2, . . . , r⃗n}.

By the hypotheses of the corollary there exists for each n a configuration cn that tiles correctly at positions
r⃗1, r⃗2, . . . , r⃗n. By Theorem 4.2 the sequence c1, c2, . . . has a converging subsequence. Let c ∈ PZ2

be its
limit. Then c tiles correctly at every position r⃗k because there are arbitrarily large indices i such that c
and ci assign the same tile to position r⃗k and its neighbors.

4.3 Robinson’s aperiodic tile set

It is easy to construct Wang tiles that admit non-periodic tilings. For a long time it was thought
that any finite set of prototiles that admits a non-periodic tiling must also admit a periodic one. This
conjecture was refuted by R.Berger in 1966 when he constructed a set of Wang prototiles that only admit
non-periodic tilings.

A finite set of prototiles is called aperiodic if
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(i) it admits valid tilings, and

(ii) it does not admit any periodic valid tilings.

As an example of an aperiodic tile set we next describe a set of 56 Wang tiles due to R.M.Robinson.
This set will be also useful later in our undecidability proofs. Instead of colors we use arrows to describe
the matching rules between tiles. In valid tilings arrow heads and tails in neighboring tiles must match.
This formalism can be easily converted into a color-based matching simply by assigning a different color
for each orientation and positioning of arrows.

Robinson’s tile set consists of tiles

called ”crosses” and tiles

called arms. All tiles may be rotated so each tile comes in four orientations. Hence the total number of
such tiles is 28.

The following terminology will be used:

� Every tile has central arrows at the centers of all four sides, and possibly some side arrows.

� A cross is said to face the directions of its side arrows.

� The arrow that runs through an arm is called the principal arrow of the arm, and the direction of
the principal arrow is called the direction of the arm.

All six arms above are drawn in the north-to-south orientation. An important fact about arms is that if
there are side arrows perpendicular to the principal arrow then these side arrows are towards the head of
the principal arrow. Otherwise, all combinations of side arrows are allowed, as shown in the figure above.

We want to enforce a cross in the intersections of every other row and column. This can be established
by forming the cartesian product (”sandwich tiles”) with the parity tiles
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and by forbidding arms from the first parity tile. Since the only way the parity tiles tile the plane is by
alternating the tiles on even and odd rows and columns, the first parity tile is forced at the intersections
of every other row and column, and hence a cross is forced to appear in those locations. By numbering
the rows and columns suitably we can assume from now on that all odd-odd positions of the plane contain
a cross.

Note that between two crosses can only appear an arm, and the orientation of the arm has just two
possible choices as it cannot point towards either cross. This means that the second parity tile only needs
to be paired with north-to-south or south-to-north oriented arms, and the third parity tile is only paired
with east-to-west or west-to-east oriented arms. The fourth parity tile is paired with any of the 28 tiles.
So the final set contains 4 + 12 + 12 + 28 = 56 different tiles.

Next we investigate valid tilings admitted by Robinson’s tiles, and we show that the tile set is aperi-
odic. Specific patterns called 1-, 3-, 7-, 15-, . . . , (2n − 1)-squares are defined recursively as follows:

(i) A 1-square is a cross at the odd-odd position,

(ii) A (2n+1 − 1)-square consists of a cross in the middle (in an even-even position), sequences of arms
radiating out of the center and four copies of (2n−1)-squares facing each other at the four quadrants:

(2  -1)-square
n

nn

n
(2  -1)-square

(2  -1)-square(2  -1)-square

Note that for every n there are actually four different (2n − 1)-squares as the cross at the center may be
in any of the four possible orientations. For example, the following figure illustrates the 3-square facing
north and east:
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and the following figure shows the 7-square facing north and east. (For clarity, only the central, principal
arrows of the arms are shown. The other arrows are uniquely determined by the orientations of the
crosses.)

Inductively one easily gets the following properties of (2n − 1)-squares: (1) The tiling is valid within the
square, (2) all edges on the border of the square have arrow heads pointing out of the square, so all edge
neighbors of (2n− 1)-squares are forced to be arms, and (3) the only side arrows on the border are in the
middle of the borders in the directions where the center cross of the square faces.

Consider an arbitrary valid tiling of the plane by Robinson’s tiles. Let us show, using mathematical
induction on n, that every cross in odd-odd position belongs to a unique (2n − 1)-square, for every
n = 1, 2, . . . . The case n = 1 is trivial, as by definition 1-squares are themselves the crosses at odd-odd
positions. Suppose then the claim is true for n and let C be an arbitrary cross in an odd-odd position.
By the inductive hypothesis C belongs to a unique (2n − 1)-square s. There are four possibilities for the
orientation of this square, but they are all symmetric. Let us assume without loss of generality that s
faces north and east. In the following discussion we refer to symbols indicating positions in the following
figure:

Y

Z

U

X

Y

Z

U

ss

ss

a

b
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First we prove that tile X, outside the north-east corner of square s, must be a cross. Suppose the
opposite: X is an arm. Then it has an incoming arrow on all but one side, so one of its edge neighbors
in regions a or b must be an arm directed towards X. By continuing this reasoning we see that all tiles
in one of the regions a or b must be arms directed towards X. But this means that the tile at the center
of region a or b is an arm with an incoming side arrow at the wrong end of the principal arrow: the side
arrows are only possible towards the head of the principal arrow. Hence the assumption that X is an
arm must be incorrect, and X must be a cross.

Consider then tile Y that is a cornerwise neighbor of X. It is in an odd-odd position and therefore
Y is a cross. According to the inductive hypothesis Y belongs to a (2n − 1)-square sY . This square
cannot overlap with square s because then the tiles in the overlap region would belong to two different
(2n − 1)-squares which contradicts the uniqueness property. Also the tile north of X cannot belong to
sY because X is a cross. Hence Y has to be at the south-east corner of sY . Analogously, tiles Z and
U are corners of disjoint (2n − 1)-squares sZ and sU , respectively. Tiles between these (2n − 1)-squares
are forced to be arms radiating out from X. The side arrows at the middle of a and b force the center
crosses of sY and sZ to face squares s and sU , so the squares of s, sY , sZ , sU and the tiles between them
form a (2n+1 − 1)-square that contains tile C.

We have proved the existence of a (2n+1 − 1)-square that contains C. The uniqueness is obvious as
the orientation of the (unique) (2n − 1)-square s that contains C determines the location of the center of
the (2n+1 − 1)-square that contains C.

We have proved that every 1-square belongs to a 3-square, which belongs to a 7-square, which belongs
to a 15-square and so on. Based on this observation we can state:

Lemma 4.4 Robinson’s tiles form an aperiodic protoset.

Proof. The (2n − 1)-squares are valid tilings of arbitrarily large squares, so a valid tiling of the plane
exists (Corollary 4.3).

The centers of the quadrants of any (2n − 1)-square are crosses separated by (2n−1 − 1) arms. As
every valid tiling contains (2n − 1)-squares for every n, the tiling contains horizontally aligned crosses
separated by arbitrarily long sequences of arms. So there can be no horizontal period, and a periodic
tiling is not possible.

4.4 An aperiodic set of 14 Wang tiles

We have learned the aperiodic set of 56 Wang tiles by Robinson. In this section we learn a very different
method of constructing aperiodic tile sets that yields a set with only 14 tiles, shown in the figure below.
But note that even smaller aperiodic sets exist: E. Jeandel and M. Rao have an aperiodic Wang tile set
that contains just 11 tiles, and they proved that 11 is the smallest possible size.

In our 14 tile set, the edges are labeled with rational numbers. Each number represents one color, so
in valid tilings neighboring tiles must match in the numbers at the abutting edges. Notice also the the
labels of the vertical edges of the first four tiles are underlined: This means that those numbers represent
a different color than the same numbers without a line underneath.

The set consists of two parts: the first four tiles form the set P2 and the set of the last ten tiles is
called P2/3. The aperiodic set P is the union of these two sets. As the vertical sides of the elements of
the two parts have different labels, it is clear that on any valid tiling of the plane by P, each horizontal
row is tiled by tiles that come from P2 or P2/3 only.
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The tiles perform arithmetic operations in the following sense: We say that tile

b

a

d

c

multiplies by q if qa+ b = c+ d. In other words, the tile multiplies the ”input” number a on its bottom
edge by q, adds the ”carry forward” b from the left edge, and splits the result between the ”output” c at
the top edge and the ”carry forward” d to the right. It is easy to verify that the tiles in P2 all multiply
by 2, and the tiles in P2/3 multiply by 2

3 .
Consider a horizontal segment of n tiles that all multiply by the same number q. Let ai, bi, ci and di

be the numbers on the i’th tile so that qai + bi = ci + di, for all i = 1, 2, . . . n. Summing up over all n
tiles we get

q

n∑︂
i=1

ai +

n∑︂
i=1

bi =

n∑︂
i=1

ci +

n∑︂
i=1

di.

If the tiling constraint is satisfied then we have di = bi+1 for all i = 1, 2, . . . , n − 1, and if the segment
also starts and ends with the same carry forward dn = b1 we have that

n∑︂
i=1

di =
n∑︂

i=1

bi.

This happens if the segment is extracted from a periodic tiling with horizontal period n. Then

q
n∑︂

i=1

ai =
n∑︂

i=1

ci.

Theorem 4.5 The set P of 14 Wang prototiles above is aperiodic.

Proof. We have two facts to prove: (i) no periodic tiling is possible, and (ii) some valid tiling exists.

(i) Suppose the opposite is true: there exists a periodic tiling f : Z2 −→ P. Then we know that such a
periodic tiling must have a horizontal period h and a vertical period v, for some h, v > 0. (In fact we
could choose these two numbers to be identical.)
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Let ai,j , bi,j , ci,j and di,j be the colors on the south, west, north and east edges of the tile f(i, j) in
position (i, j) ∈ Z2. It follows from the tiling rule that di,j = bi+1,j and that ci,j = ai,j+1. As discussed
above, we have

qj

h∑︂
i=1

ai,j =

h∑︂
i=1

ci,j =

h∑︂
i=1

ai,j+1,

where qj = 2 or 2
3 depending on whether the tiles on row j come from set P2 or P2/3. By combining

these equations for rows j = 1, 2, . . . , v we get the result that

q1q2q3 . . . qv

h∑︂
i=1

ai,1 =
h∑︂

i=1

ai,v+1 =
h∑︂

i=1

ai,1.

It is clear from the tiles that we cannot have a horizontal row of tiles such that the bottom edges all have
value 0, so we have

∑︁h
i=1 ai,1 > 0. Hence we can divide

∑︁h
i=1 ai,1 from the equation, which leaves

q1q2q3 . . . qv = 1.

But each qj is either 2 or 2
3 , and any product of these numbers is some power of 2 divided by a power of

3. Numbers 2 and 3 are relative primes, so no such product can equal 1, a contradiction.

(ii) It is enough to construct one valid tiling. The tiling will of course be non-periodic. We use the
following notations and concepts. For any real number x, the floor ⌊x⌋ of x is the largest integer not
greater than x, that is, ⌊x⌋ is the unique integer that satisfies x − 1 < ⌊x⌋ ≤ x. Analogously, the
ceiling ⌈x⌉ is the smallest integer that is not smaller than x. By the balanced representation B(x) of
real number x we mean the bi-infinite sequence . . . B(x)−1, B(x)0, B(x)1, B(x)2, . . . whose i’th term is
B(x)i = ⌊ix⌋ − ⌊(i− 1)x⌋. Notice that the elements of the sequence are integers, and

B(x)i = ⌊ix⌋ − ⌊(i− 1)x⌋ < ix− ((i− 1)x− 1) = x+ 1, and
B(x)i = ⌊ix⌋ − ⌊(i− 1)x⌋ > ix− 1− (i− 1)x = x− 1.

Hence each element of the sequence B(x) is either ⌊x⌋ or ⌈x⌉.
Consider an arbitrary real number x ∈

[︁
1
2 , 1

]︁
. We have that 0 ≤ x ≤ 1 and 1 ≤ 2x ≤ 2. The symbols

in the balanced sequences for x and 2x are 0’s and 1’s, and 1’s and 2’s, respectively. Let us show that
the prototiles of P2 admit a tiling of an bi-infinite horizontal strip whose bottom labels read the sequence
B(x) and the top labels read B(2x). Let

ai = B(x)i,
bi = 2⌊(i− 1)x⌋ − ⌊(i− 1)(2x)⌋,
ci = B(2x)i, and
di = 2⌊ix⌋ − ⌊i(2x)⌋

be the labels on the south, west, north and east edges of the tile in position i ∈ Z of the strip. It is clear
from this definition that bi = di−1 so the labels match on the tiling of the strip. Let us analyze values of
ai, bi, ci and di to prove that the tile with these labels is in our set P2.

From the properties of the balanced sequences we know that ai ∈ {0, 1} and ci ∈ {1, 2}. Clearly,

di − bi = 2⌊ix⌋ − ⌊i(2x)⌋ − (2⌊(i− 1)x⌋ − ⌊(i− 1)(2x)⌋)
= 2(⌊ix⌋ − ⌊(i− 1)x⌋)− (⌊i(2x)⌋ − ⌊(i− 1)(2x)⌋)
= 2ai − ci,

so the tiles of the strip multiply by number 2. We also have

di = 2⌊ix⌋ − ⌊i(2x)⌋ < 2ix− (2ix− 1) = 1,
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and
di = 2⌊ix⌋ − ⌊i(2x)⌋ > 2(ix− 1)− 2ix = −2.

Because di is an integer, the only possible values of di (and hence also bi) are −1 and 0. The following
possibilities remain:

ai = 0, ci = 2 =⇒ di − bi = 2ai − ci = −2, not possible,
ai = 0, ci = 1 =⇒ di − bi = 2ai − ci = −1 =⇒ di = −1, bi = 0,
ai = 1, ci = 2 =⇒ di − bi = 2ai − ci = 0 =⇒ di = bi = −1 or di = bi = 0,
ai = 1, ci = 1 =⇒ di − bi = 2ai − ci = 1 =⇒ di = 0, bi = −1.

Only four possibilities exist, and these are precisely the four tiles in P2.
Next we analyze P2/3 in a similar way. Let x ∈ [1, 2], so that 1 ≤ x ≤ 2 and 2

3 ≤ 2
3x ≤ 4

3 . The

balanced representations of x and 2
3x consist of 1’s and 2’s, and 0’s, 1’s and 2’s, respectively. Let us show

that there is a tiling by P2/3 of a bi-infinite strip such that the labels on the bottom and the top of the

strip read the balanced representations B(x) of x and B(23x) of 2
3x. For brevity, let us denote q = 2

3 .
The tile in position i of the strip has labels

ai = B(x)i,
bi = q⌊(i− 1)x⌋ − ⌊(i− 1)(qx)⌋,
ci = B(qx)i, and
di = q⌊ix⌋ − ⌊i(qx)⌋.

The consecutive tiles of the strip match as bi = di−1. We know that ai ∈ {1, 2} and ci ∈ {0, 1, 2}. As
above, we also have

di − bi = q⌊ix⌋ − ⌊i(qx)⌋ − (q⌊(i− 1)x⌋ − ⌊(i− 1)(qx)⌋)
= q(⌊ix⌋ − ⌊(i− 1)x⌋)− (⌊i(qx)⌋ − ⌊(i− 1)(qx)⌋)
= qai − ci.

We also have
di = q⌊ix⌋ − ⌊i(qx)⌋ < qix− (qix− 1) = 1,

and
di = q⌊ix⌋ − ⌊i(qx)⌋ > q(ix− 1)− qix = −q.

Because di is an integer multiple of 1
3 , the only possible values of di (and hence also bi) are −1

3 , 0,
1
3 and

2
3 . The following possibilities remain:

ai = 1, ci = 2 =⇒ di − bi = qai − ci = −4
3 ,

not possible,

ai = 1, ci = 1 =⇒ di − bi = qai − ci = −1
3

=⇒ di = −1
3 , bi = 0 or di = 0, bi =

1
3 or di =

1
3 , bi =

2
3 ,

ai = 1, ci = 0 =⇒ di − bi = qai − ci =
2
3

=⇒ di =
1
3 , bi = −1

3 or di =
2
3 , bi = 0,

ai = 2, ci = 2 =⇒ di − bi = qai − ci = −2
3

=⇒ di = −1
3 , bi =

1
3 or di = 0, bi =

2
3 ,

ai = 2, ci = 1 =⇒ di − bi = qai − ci =
1
3

=⇒ di = 0, bi = −1
3 or di =

1
3 , bi = 0 or di =

2
3 , bi =

1
3 ,

ai = 2, ci = 0 =⇒ di − bi = qai − ci =
4
3 ,

not possible.
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The ten possibilities are exactly the tiles of P2/3.

We have proved that for every x ∈
[︁
1
2 , 1

]︁
we can tile a strip whose bottom and top edges read the

sequences B(x) and B(2x), respectively, and for every x ∈ [1, 2] we can tile a strip whose bottom and
top edges read the sequences B(x) and B(23x). Define the following real function f :

(︁
2
3 , 2

]︁
−→

(︁
2
3 , 2

]︁
:

f(x) =

{︃
2x, if x ≤ 1, and
2
3x, if x > 1.

It is easy to see that the range of f is the half-open interval
(︁
2
3 , 2

]︁
, so function f is surjective. (In

fact, function f is a bijection, but this fact is not relevant to the reasoning below.) It follows from the
surjectivity of f that there exist bi-infinite sequences . . . x−1, x0, x1, x2, . . . of real numbers such that
xj+1 = f(xj) for all j ∈ Z. In fact, since one element x0 of the sequence can be chosen arbitrarily from
the half-open interval

(︁
2
3 , 2

]︁
, the number of such sequences is uncountably infinite.

As proved above, for each j ∈ Z we can tile an infinite strip whose edges read B(xj) and B(xj+1).
By stacking these strips on top of each other we obtain a tiling of the plane. In fact, we proved there
exist uncountably many different valid tilings.

The following diagram illustrates the tiles as a directed graph whose nodes are labeled by the vertical
colors, and the edges are labeled by pairs of ”input”/”output” symbols. Each edge corresponds to a
tile: the tile with labels a, b, c and d is the edge from node b to node d that is labeled by a/c. Any
bi-infinite path through the diagram that follows the edges gives a valid tiling of one bi-infinite strip.
Such a diagram is called a finite state transducer.

M2 : ���� ����
-1 0

~

1/1

}

0/1

�

1/2

�

1/2

M2/3 : ���� ���� ���� ����
-13 0 1

3
2
3

~

2/1

~

2/1

~

2/1

}
1/1

}
1/1

}
1/1

�

2/2

�

2/2

�

1/0

�

1/0

Analogously, it is easy to construct for any given rational number q a finite set of tiles that multiply
balanced sequences representing numbers of a given interval by q. The requested tiles have edge labels

a = B(x)i,
b = q⌊(i− 1)x⌋ − ⌊(i− 1)(qx)⌋,
c = B(qx)i, and
d = q⌊ix⌋ − ⌊i(qx)⌋.

where x is a number in the desired interval and i ∈ Z. A simple analysis shows that we always have
−q < b < 1 and −q < d < 1, so there only is a finite number of such tiles.
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The balanced sequences we used in the proof have many interesting properties. Balanced sequences
of rational numbers are periodic, but if x is irrational then B(x) is non-periodic, but only ”barely so”:
it is a so-called Sturmian sequence, which means that the number of different subsegments of length n
is n + 1, for every n. This is the smallest possible number of different subsegments of length n in any
non-periodic infinite sequence.

5 Undecidable problems concerning tiles

The following question (known as the domino problem or the tiling problem) arises naturally: How can
one determine if a given finite set of Wang prototiles admits a tiling ? Does there exist some simple
(or even complicated) properties that one can use to develop a computer program to determine if a
tiling is possible. The input to the program should be an arbitrary finite set of Wang tiles, and the
output should be ”yes” or ”no” depending on whether the input admits a tiling. In this section we show
that such a computer program does not exist. The non-existence is a mathematical fact that cannot be
overcome by building more powerful computers or by developing new programming languages or tools.
The undecidability will be deduced from Turing’s result on the undecidability of the halting problem of
Turing machines, using the reduction technique.

The tiling problem is an example of a decision problem. A decision problem is a problem that has
an input parameter, and the answer to the problem is always ”yes” or ”no”. When we fix the value
of the input parameter we get an instance of the problem. An instance is called a ”yes”-instance or a
”no”-instance depending on whether the answer to the decision problem is ”yes” or ”no”, respectively.
For example, the problem ”Does a given quadratic polynomial have a real root ?” is a decision prob-
lem. Quadratic polynomials are instances (we always use the keyword ”given” in the decision problem
statement to indicate the input). For example, x2 − 2x + 2 is a ”no”-instance, while x2 + 2x − 1 is a
”yes”-instance to this problem. In the tiling problem, instances are finite sets of Wang tiles, and an
instance is a ”yes”-instance iff the protoset admits a tiling of the plane. The complement of a decision
problem is the decision problem where the ”yes” and the ”no” answers have been switched: for example,
the complement of the tiling question asks whether the given protoset does not admit a tiling. ”Yes”
means now that no tiling is possible.

An algorithm can be formally defined in various ways. In order to keep the discussion simple, we are
going to leave it undefined. For our purposes it is sufficient to understand a (decision) algorithm to be a
computer program that takes some input and returns a ”yes” or a ”no” answer on each input. We say
that the algorithm solves a decision problem if the algorithm returns the correct yes/no -answer on every
instance of the problem. If such an algorithm exists then the decision problem is called decidable and if
no such algorithm exists then the problem is undecidable.

Strictly speaking, the input of a computer program is a string of bits (or a string over some other
alphabet) so the instance of a decision problem has to be encoded into such a string. For example, Wang
tiles could be encoded as sequences of four colors, each color represented as a unique binary string. There
are of course many ways to do such an encoding, but all encodings are equivalent in the sense that the
decidability status of the decision problem is not affected by the encoding. In our discussion encodings
of inputs will be irrelevant as we are not going to write any actual programs – rather algorithms will
be defined by describing in plain English the steps that the algorithm executes. The idea is that we all
are sufficiently familiar with computer programming so that such a description (when detailed enough)
will convince everyone that a computer program exists for solving the program. Notice also that when
describing an algorithm we do not need to worry about things related to computing resources such as
memory space etc. We are always supposed to have unlimited amounts of such resources.

For example, the following algorithm solves the question whether a given quadratic polynomial has
a real root: Let ax2 + bx + c be the input to the algorithm. The algorithm starts by computing the
discriminant D = b2 − 4ac. Then it checks whether D ≥ 0 or not. If D ≥ 0 then the algorithm returns
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