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1 Introduction

Informally, a tiling is a covering of the plane with tiles of various shapes in such a way that the tiles do
not overlap each other. Often the tiles have simple shapes (e.g. polygons), and typically only a small
number of different shapes are used in each tiling. Such tilings are everywhere around us: in pavements,
quilt patterns, fabrics, brick walls, carpets, etc. Interest to decorative tilings is very old: Moors are
an example of a culture that produced complex geometric patterns in tilings – famous examples can be
found in the Alhambra at Granada, Spain.

In this course we learn about mathematical concepts relevant to tilings and patterns. The mathemati-
cal tools we use include high-school level geometry, elementary group theory, some topology, combinatorics
and computation theory. After initial geometric considerations we work in detail on some computational
questions on tilings, including decidability aspects. The basics of computation theory and other required
material are provided during the course as needed, so that the course is made as self-contained as possible.
In some instances we may rely on theorems from other fields that are presented without proofs, and in
these instances an interested reader is directed to literature or other courses offered on these topics for
more details and precise proofs.

2 Symmetries

Let us begin by investigating the fundamental concepts of symmetry.

2.1 Isometries of the plane

A plane isometry is any function α : R2 −→ R2 that preserves distance:

∀(x1, y1), (x2, y2) ∈ R2 : d(α(x1, y1), α(x2, y2)) = d((x1, y1), (x2, y2))

where the distance d : R2 × R2 −→ R is the usual Euclidean distance defined by

d((x1, y1), (x2, y2)) =
√︁

(x1 − x2)2 + (y1 − y2)2.

In other words, α moves the points of the plane in a ”rigid” motion that does not change any distances.
In these notes we’ll denote points of the plane by capital letters, so the isometry property will be

written as
∀P,Q ∈ R2 : d(α(P ), α(Q)) = d(P,Q).

Our first theorem states that an isometry is necessarily a bijection (that is, both one-to-one and onto).
This implies that it has an inverse function. This inverse function is also an isometry.

Theorem 2.1 An isometry is a bijection. Its inverse function is an isometry.

Proof. Let α be an isometry. It is trivial that α is one-to-one (also the term ”injective” is used). Namely,
if α(P ) = α(Q) then

d(P,Q) = d(α(P ), α(Q)) = 0,

which means that P = Q.

The proof that α is onto (also the term ”surjective” is used) is more difficult, and is therefore left as a
homework problem ;-)

Let P,Q ∈ R2 be arbitrary and denote P ′ = α−1(P ) and Q′ = α−1(Q). Then P = α(P ′) and Q = α(Q′)
so d(P ′, Q′) = d(P,Q), which proves that the inverse function α−1 preserves distance.
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Our next observation states that isometries preserve shapes. More precisely, let us show that an
isometry maps every line into a line, every triangle into a triangle (we say that it preserves lines and
triangles), and the angle between two lines remains the same. Also betweenness and midpoints are
preserved.

Theorem 2.2 An isometry preserves lines, triangles, betweenness, midpoints, sizes of angles, and per-
pendicularity and parallelism of lines.

Proof. Let α be an isometry. Let us prove the preservation of

� betweenness and midpoints: If three points P,Q and R are collinear, with point R between points
P and Q, then d(P,R) + d(R,Q) = d(P,Q). But then we have also

d(P ′, R′) + d(R′, Q′) = d(P ′, Q′)

where P ′ = α(P ), Q′ = α(Q) and R′ = α(R). This means that points P ′, Q′ and R′ are also
collinear, with R′ between points P ′ and Q′. So betweenness is preserved.

Since the inverse α−1 is also an isometry, the preservation works also in the inverse direction. In
other words, R is between P and Q if and only if α(R) is between α(P ) and α(Q).

In the special case that R is the midpoint between P and Q we have that d(P,R) = d(R,Q), so
also d(P ′, R′) = d(R′, Q′), which means that R′ is the midpoint between P ′ and Q′.

� triangles: Let △ABC be a triangle and, as usual, let us denote A′ = α(A), B′ = α(B) and
C ′ = α(C). The triangle consists of those points P that are between A and B, between A and C,
or between B and C. This is equivalent to P ′ = α(P ) being between A′ and B′, between A′ and
C ′, or between B′ and C ′. Hence the image of triangle △ABC is the triangle △A′B′C ′.

� lines: Let m be a line, and let A and B be two points on the line. Then the line consists exactly of
those points P such that (i) P is between A and B, (ii) A is between B and P , or (iii) B is between
A and P . This is equivalent to P ′ = α(P ) being such that (i) P ′ is between A′ and B′, (ii) A′ is
between B′ and P ′, or (iii) B′ is between A′ and P ′, where A′ = α(A) and B′ = α(B), which is
equivalent to P ′ being on the line through points A′ and B′.

� parallelism and perpendicularity of lines, as well as angles between lines: Take two different lines
l and m. If they are parallel then they have no common points. Because α is one-to-one, their
images α(l) and α(m) do not have any common points either, so they are parallel lines. Assume
then that l and m are not parallel, in which case they intersect in one point P at some angle Θ.
Let A and B be points of the lines l and m such that angle APB is of size Θ. Then the triangle
△APB is congruent with its image △A′P ′B′ as the two triangles have same sides (SSS). Therefore
the angle A′P ′B′ is the same as the angle APB. In particular, l and m are perpendicular if and
only if the angle is 90◦, so also perpendicularity is preserved.

The trivial isometry is the identity function ι that does not move any points: ι(P ) = P for all P ∈ R2.
Let us look into some non-trivial examples of isometries.

Example 1. Let A = (a, b) ∈ R2. A translation by vector A = (a, b) shifts every point (x, y) into
position (x+ a, y + b). We denote a translation by vector A as τA.
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P’

P

(a,b)

Every translation is clearly an isometry. Trivial translation τ(0,0) is the trivial isometry ι.

Example 2. Let C ∈ R2 be a point, and Θ ∈ R an angle. The rotation ρC,Θ by the (directed) angle Θ
about C is the isometry that fixes point C, and otherwise takes point P ̸= C into the point P ′ where
d(C,P ) = d(C,P ′) and Θ is the directed angle from CP to CP ′:

C
P

P’

Θ

In terms of analytic geometry we say that point (x, y) is mapped to point (x′, y′) where(︃
x′

y′

)︃
=

(︃
cosΘ − sinΘ
sinΘ cosΘ

)︃(︃
x− cx
y − cy

)︃
+

(︃
cx
cy

)︃
where C = (cx, cy). Point C is called the center of the rotation. The trivial rotation ρC,0 by the angle 0◦

is the trivial isometry ι.
If Θ = 180◦ we get a special case of the rotation called the halfturn about point C, or the reflection

in point C. Every point P is mapped to the point P ′ such that the center C is the midpoint between P
and P ′:

P

C

P’

Because halfturn about point C is an important particular case, we sometimes denote it by the special
symbol σC .

Example 3. Let m be a line. The reflection σm in line m is the mapping that does not move the points
of line m, but any point P outside line m is moved to the point P ′ such that line m is the perpendicular
bisector of segment PP ′.
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P’

m

It follows immediately from the definition that σ−1
m = σm, that is, the reflection σm is its own inverse.

Isometries that are their own inverses are called involutions.

Example 4. A Glide reflection is a composition of a translation and a reflection in line m that is parallel
with the direction of the translation. Let A = (a, b) ∈ R2 a vector of translation, and let m be a line
parallel to A, that is,

m = {(c, d) + t(a, b) | t ∈ R}
where (c, d) is some point of the line. The glide reflection γm,(a,b) they specify reflects the points in line
m and then translates them by vector A. In this particular case it does not matter in which order the
two operations are performed: we may as well translate first and reflect later.

P’

m

P

(a,b)

Line m is called the axis of the glide reflection. Notice that glide reflections with trivial translation
vectors A = (0, 0) are exactly the reflections.

Later we’ll see that our four examples exhaust all possibilities: translations, rotations, reflections and
glide reflections are the only isometries of the plane. (In fact, since reflection is a special type of glide
reflection we can say that all isometries are translations, rotations or glide reflections.)

The composition α ◦ β of two functions α and β is the function that first applies β to a point, and
then applies α to the result, that is,

(α ◦ β)(x) = α(β(x)).

If α and β are isometries then also their composition α ◦ β is an isometry. Indeed, for any two points P
and Q we have

d((α ◦ β)(P ), (α ◦ β)(Q)) = d(α(β(P )), α(β(Q))) = d(β(P ), β(Q)) = d(P,Q).
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Function composition ◦ is an associative operation, and since the identity function ι and the inverses of
all isometries are also isometries, we have the following theorem:

Theorem 2.3 The set of plane isometries forms a group I under the operation of composition.

We frequently drop the group operation sign ”◦” and simply write αβ for α ◦ β. We then say that αβ is
the product of operations α and β. We also do not need to use parentheses in products as, because of
the associativity, α(βγ) = (αβ)γ. We simply write this as αβγ. However, remember that the group of
isometries is not commutative (=abelian) as in most cases αβ ̸= βα.

An element α ∈ I is called an involution if α2 = ι. Examples of involutions include all reflections in
lines, as well as all halfturns. In fact, no other involutions exist. Review the following terms of group
theory:

� generator set (=set of group elements such that every element of the group is a product of generators
and their inverses),

� cyclic group (=a group that is generated by one element)

� order of a group (=number of elements. If the group contains an infinite number of elements then
the group is called infinite, otherwise it is finite.)

� subgroup (=a subset of the group that is closed under the group operation and the operation of
taking the inverse element. A subgroup itself is a group under the same group operation)

� cancellation laws (αβ = αγ implies β = γ, and βα = γα implies β = γ.)

In the rest of this chapter we try to understand the structure of the group I. We want to show that
our examples exhaust all possibilities, and to find out how the group operation combines these isometries.

2.2 Fixed points

The two main results of this section are the following:

1. To verify that two given isometries α and β are the same, it is sufficient to verify that they agree
on some three points that are not collinear (Corollary 2.6).

2. Every isometry is a product of at most three reflections (Corollary 2.7).

We say that P is a fixed point of isometry α if α(P ) = P . We also say that α fixes point P .

Lemma 2.4 If an isometry α fixes two distinct points P and Q, then it fixes every point of the line m
that contains P and Q.

Proof. Assume that α fixes points P and Q of line m, and let R be any point of the line m. Because
α preserves lines, α(R) is on the same line with α(P ) = P and α(Q) = Q, that is, α(R) is on line m.
Because d(α(R), P ) = d(R,P ) and d(α(R), Q) = d(R,Q), we must have α(R) = R. (There are two
points at distance d(R,P ) from P , and these two points have different distances from point Q. So only
one of these two points can have distance d(R,Q) from Q, namely point R.)

Consider three points P,Q and R that are not collinear, i.e. are not on the same line. As a corollary
of the next theorem we get that their images α(P ), α(Q) and α(R) uniquely determines the isometry α.
We also prove that every isometry is a product of at most three reflections.
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Theorem 2.5 Let α be an isometry.

1. If α fixes three non-collinear points, then α = ι.

2. If α fixes two points then α = ι or α is a reflection.

3. If α fixes exactly one point then α is a product of two reflections.

Proof. 1. Assume that α fixes three non-collinear points P,Q and R. Let m and l be the lines that
contain P and Q, and P and R, respectively. According to Lemma 2.4, α fixes all points that belong to
lines m or l. Let X be an arbitrary point outside lines m and l. There exists a line k that goes through
X and intersects m and l at distinct points A and B.

m

l

k

P

A

X

B

Q

R

Because α fixes A and B then, according to Lemma 2.4, it also fixes all points of line k, which means
that it also fixes point X. As X was an arbitrary point, we conclude that α fixes all points of the plane,
so α = ι.

2. Assume then that α fixes two distinct points P and Q, and suppose that α ̸= ι. Then there exists
some point R such that α(R) ̸= R. Notice that P,Q and R cannot be collinear (Lemma 2.4). Denote
R′ = α(R), and let m be the perpendicular bisector of the segment RR′. Then R′ = σm(R) where σm
is the reflection in line m. Because d(R′, P ) = d(R,P ) and d(R′, Q) = d(R,Q), points P and Q are on
the perpendicular bisector m. We have σm(P ) = P and σm(Q) = Q. The isometry σ−1

m α hence fixes
three non-collinear points P,Q and R so, according to case 1 of the theorem, σ−1

m α = ι. This proves that
α = σm is a reflection.

3. Assume that isometry α fixes exactly one point P . Let Q a different point, so Q′ = α(Q) is different
from Q. Let l be the perpendicular bisector of the segment QQ′. Triangle △QPQ′ is isosceles, so the
point P is on the line l. Then σ−1

l α fixes two points P and Q, so according to case 2 either σ−1
l α = ι or

σ−1
l α = σm for some line m. The first alternative α = σl is not possible because then α fixes more than

one point – it fixes all points of line l. So we must have the second alternative α = σlσm.

Corollary 2.6 If α and β are two isometries such that α(P ) = β(P ), α(Q) = β(Q) and α(R) = β(R),
and points P,Q and R are not collinear, then α = β.
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Proof. Isometry α−1β fixes non-collinear points P,Q and R, so α−1β = ι. This implies α = β.

Corollary 2.7 Every isometry is a product of at most three reflections.

Proof. If α fixes at least one point then, according to the theorem, α is a product of at most two
reflections. Assume then that α does not fix any points. Let P be an arbitrary point, and let m be the
perpendicular bisector of the segment Pα(P ). Then σ−1

m α fixes point P , so σ−1
m α is a product of at most

two reflections and, therefore, α is a product of at most three reflections.

The proofs provide a simple method of finding the reflections when we know the images P0 =
α(P ), Q0 = α(Q) and R0 = α(R) of three given non-collinear points P,Q and R. We simply find
reflections that match the points one-by-one:

1. If P ̸= P0 then we first reflect in line m that is the perpendicular bisector of the segment PP0.
This maps P to its correct position P0. Let Q′ and R′ be the images of Q and R under the first
reflection.

2. If Q′ ̸= Q0 then we reflect in line l that is the perpendicular bisector of the segment Q′Q0. Notice
that point P0 is on this bisector because d(P0, Q0) = d(P,Q) = d(P0, Q

′). After the second
reflection, points P and Q have been mapped to their correct positions P0 and Q0. Let R′′ be
the image of R after the first two reflections.

3. If R′′ ̸= R0 then we finally reflect in line k that is the perpendicular bisector of R′′ and R0. It is
easy to see that P0 and Q0 are on this bisector:

d(P0, R0) = d(P,R) = d(P0, R
′′) and d(Q0, R0) = d(Q,R) = d(Q0, R

′′).

After steps 1–3, points P,Q and R have been mapped in their correct positions P0, Q0 and R0

2.3 Symmetries of a set of points

Let s ⊆ R2 be a set of points. We say that isometry α is a symmetry of set s iff α(s) = s.

Theorem 2.8 Let s ⊆ R2 be arbitrary. The symmetries of s form a subgroup of I, the group of isome-
tries.

Proof. Every set has at least one symmetry, namely the trivial isometry ι. If α(s) = s then α−1(s) =
α−1(α(s)) = s, so the inverse of each symmetry of s is also a symmetry of s. Let α and β be two
symmetries of s. Then αβ(s) = α(s) = s so the product αβ is also a symmetry of s.

The set of symmetries of s is called the symmetry group of s. Notice that I itself is the symmetry
group of s = R2.

Example 5. Let s be a rectangle ABCD that is not a square. Let us position s in such a way that its
center is at the origin (0, 0), and its sides are parallel to the x- and y-axes.

7



A

CD

B

y

x
O

Any symmetry of s must permute the corners of the rectangle. Corner A may be mapped into any of
the four corners A,B,C and D, after which the images of the other corners B,C and D are uniquely
determined. We proved in the previous section that three non-collinear points A,B and C determine the
entire isometry (Corollary 2.6), so the symmetry group s contains exactly four symmetries. These are
ι, two reflections σh and σv in the x- and y-axes, and the halfturn σO about the origin O. These form
Klein’s Vierergruppe V4.

Example 6. If s is a square ABCD then its symmetry group contains eight elements, so a square is
”more” symmetric than a non-square rectangle. In the square we may map the corner A into any of
the four corners, after which corner B has still two possible images. Then the images of C and D are
uniquely determined.

2.4 Products of two reflections

We know that every isometry is a product of at most three reflections. In order to characterize all
isometries we need to investigate the products of two or three reflections. Let us start by products of two
reflections.

Theorem 2.9 The product of two reflections in parallel lines m and l is a translation in the direction
perpendicular to l and m by a distance that is twice the distance from l to m. Conversely, every translation
is a product of two reflections in parallel lines, both perpendicular to the direction of the translation. One
of the lines can be chosen freely (as long as it is perpendicular to to the translation).

Proof. Let m and l be two parallel lines. If m = l then σmσl = ι = τ(0,0). Assume then that m ̸= l. Let
A be the vector from l to m that is perpendicular to m and l. To prove that σmσl = τ2A it is enough to
show that σmσl(P ) = τ2A(P ) for every point P of line l, and that σmσl(X) = τ2A(X) for some point X
outside of line l. Then the result follows from Corollary 2.6.

8
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Q

P

A

X

P’

Referring to the figure above, we have that for every P ∈ l

σmσl(P ) = σm(P ) = P ′ = τ2A(P ).

Analogously, by reversing the roles of lines m and l, we have that for an arbitrary Q ∈ m

σlσm(Q) = τ−2A(Q).

Let X = σlσm(Q) = τ−2A(Q). Then X is not on line l, and

σmσl(X) = σmσlσlσm(Q) = Q = τ2Aτ−2A(Q) = τ2A(X).

The second part of the theorem follows directly from the first part: Let τ be a non-trivial translation,
and let P be an arbitrary point and P ′ = τ(P ). Let l and m be the lines perpendicular to the segment
PP ′ through P and the midpoint of PP ′, respectively. Then, according to the first part, σmσl = τ .

Corollary 2.10 The product of three reflections in three parallel lines is a reflection in a parallel line.

Proof. Let l,m and n be any three parallel lines. Let p be a fourth parallel line whose distance from
line n is the same as the distance of line l from line m. Then σlσm and σpσn are the same translation.
Multiplying by σn from the right gives σlσmσn = σp.

Consider then two reflections in lines that are not parallel:

Theorem 2.11 The product of two reflections in intersecting lines is a rotation about the point of in-
tersection, and the angle of the rotation is twice the angle between the lines. Conversely, every rotation
about point C is a product of two reflections in lines through point C. One of these lines can be chosen
freely.

Proof. Let l and m be lines that intersect at point C. Let Θ be the directed angle between them measured
from l to m. Let us prove that σmσl = ρC,2Θ by showing that σmσl and ρC,2Θ agree on three non-collinear
points: all points of line l, and one point X that is outside of line l.

First, as all the isometries σm, σl and ρC,2Θ fix point C, we have σmσl(C) = C = ρC,2Θ(C). Let
P ̸= C be a point on line l, and let P ′ = ρC,2Θ(P ). Line m is the perpendicular bisector of PP ′, so
P ′ = σm(P ) = σmσl(P ).
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P’

l

m

Θ

Θ

So far we have proved that σmσl(P ) = ρC,2Θ(P ) for all P ∈ l. Analogously, by reversing the roles of
lines m and l, we have that σlσm(Q) = ρC,−2Θ(Q) for an arbitrary point Q ̸= C of line m. Denote
X = σlσm(Q) = ρC,−2Θ(Q). Then X is not on line l and

σmσl(X) = σmσlσlσm(Q) = Q = ρC,2ΘρC,−2Θ(Q) = ρC,2Θ(X).

To prove the second part of the theorem, consider an arbitrary rotation ρC,Θ. Let l be an arbitrary line
through the center C of the rotation, and let m be the line through point C that meets line l in the
directed angle Θ/2. According to the first part of the theorem we have σmσl = ρC,Θ.

Corollary 2.12 Halfturn σC is the product of two reflections in any two perpendicular lines through C.
In particular, reflections in perpendicular lines commute.

Corollary 2.13 The product of three reflections in lines through the common point C is a reflection in
a line through point C.

Proof. As in the proof of Corollary 2.10, let l,m and n be any three lines through point C. Let p be a
fourth line through C that forms with line n the same angle as line l forms with line m. Then σlσm and
σpσn are the same rotation about point C. Multiplying by σn from the right gives σlσmσn = σp.

2.5 Parity

As we proved previously, all isometries are products of some reflections, in fact, of at most three reflections.
The representation of an isometry as a product of reflections is, however, not unique. For example, we
can always add σmσm to the end of any sequence of reflections, thus increasing the number of reflections
in the sequence by two. However, it turns out that the parity of the number of reflections is always the
same. We call isometry α even if it is a product of an even number of reflections, and odd if it is a
product of an odd number of reflections. Next we want to show that no isometry can be both even and
odd at the same time, that is, even and odd products of reflections can never be equal.

First we can make the following easy observation: A product of two reflections is not a reflection.
Indeed, we know from the results of the previous section that a product of two reflections is either a
translation or a rotation. Translations have no fixed points, rotations have exactly one fixed point, and
the trivial isometry ι fixes all points. In contrast, the fixed points of a reflection form a line. So σmσl ̸= σk
for all lines m, l and k.

The following theorem provides a method of reducing by two the number of terms in any long product
of reflections:

10



Theorem 2.14 A product of four reflections is a product of two reflections.

Proof. We use the following lemma twice:

Lemma 2.15 If m and l are two lines and P is a point, then there are lines p and q such that σmσl =
σpσq, and line q contains point P .

Proof of the lemma. If m and l are parallel, then we choose as q the line that is parallel to m and l and
goes through point P . By corollary 2.10 we have σmσlσq = σp for some line p, so σmσl = σpσq.

If m and l intersect at some point Q, then we choose as q a line through points P and Q. By
corollary 2.13 we have σmσlσq = σp for some line p, so σmσl = σpσq.

Consider a product σmσlσkσn of four reflections. Let P be an arbitrary point on line n. According to
the lemma, σlσk = σpσq where line q contains point P . Then we apply the lemma again: σmσp = σrσs
where s contains point P . We have

σmσlσkσn = σmσpσqσn = σrσsσqσn,

and lines n, q and s go through point P . Then, by Corollary 2.13 the product σsσqσn = σt for some line
t. Hence

σmσlσkσn = σrσt.

Corollary 2.16 A product of three reflections cannot equal a product of two reflections.

Proof. Assume that
σmσlσk = σnσr.

Multiplying from left by σn gives
σnσmσlσk = σr.

According to the theorem there exist lines p and q such that

σnσmσlσk = σpσq,

so σpσq = σr, a contradiction.

Corollary 2.17 A product of an even number of reflections cannot equal a product of an odd number of
reflections.

Proof. By using the theorem we can reduce by two the number of reflections in any product of at least
four reflections. In this way, any even length sequence can be reduced into a product of two reflections,
and any odd length sequence reduces into a length one or a length three sequence. As a product of two
reflections cannot equal a product of one or three reflections, we have the desired result.

Now we know that every isometry is either even or odd, but not both. Notice that odd isometries
correspond to ”flipping” the plane over, turning all shapes into their mirror images. As every even
isometry is a product of two reflections, we have

11



Theorem 2.18 Even isometries are exactly the translations and the rotations.

Notice also that even isometries form a subgroup of I. Indeed, the inverse of the even isometry σmσl
is the even isometry σlσm, and the product of two even isometries σmσl and σnσp is the even isometry
σmσlσnσp. Let us denote the group of even isometries by E .

2.6 Odd isometries

Let’s turn our attention to odd isometries. The goal of this section is to prove that every odd isometry is
a glide reflection (where we understand that a plain reflection is also a glide reflection with a zero glide.)
Recall that we use the notation σP for the halfturn about point P .

Lemma 2.19 Isometry α is a glide reflection if and only if α = σPσl for some point P and line l. This
is also equivalent to α = σkσQ for some line k and point Q.

Proof. Let α be a glide reflection. By definition, α = σmτA where the translation τA is in the direction of
line m. By Theorem 2.9 τA = σkσl where lines k and l are perpendicular to line m. We have α = σmσkσl.
Corollary 2.12 states that the product σmσk of two reflections in perpendicular lines is the halfturn σP
about the intersection point P of lines m and k. We have

α = σmσkσl = σPσl

as desired. We also have σP = σkσm, so

α = σPσl = σkσmσl = σkσQ

where Q is the point where perpendicular lines m and l intersect.
For the converse claim, assume that α is the isometry σPσl for some point P and line l. Let k be the

line through point P that is parallel to line l, and let m be the line through point P that is perpendicular
to lines k and l. Then, by Corollary 2.12, σP = σmσk.

P

m

k

l

We have
α = σPσl = σmσkσl = σmτA

where τA is in the direction of line m. Hence α is a glide reflection.
Analogously, if α = σkσQ, and lines m and l go through point Q, and l is parallel and m perpendicular

to k, then
α = σkσQ = σkσmσl = σmσkσl = σmτA

where A is in the direction of line m.

Now we are able to prove the main result on odd isometries:
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Theorem 2.20 Every odd isometry is a glide reflection.

Proof. Let α be an odd isometry. Then it is either a reflection (which is a special type of a glide reflection)
or a product of three reflections. Let α = σmσlσk. Let P be an arbitrary point on line k. By Lemma 2.15
there exist lines p and q such that σmσl = σpσq and line q goes through point P . We have

α = σmσlσk = σpσqσk,

and P ∈ k, q. Let n be the line through point P that is perpendicular to line p. As lines n, q and k all go
through point P , the product σnσqσk is some reflection σr, see Corollary 2.13. Then σqσk = σnσr, and

α = σpσnσr.

Lines n and p are perpendicular, so the product σpσn is a halfturn σQ, where Q is the point where n and
p intersect. We have

α = σQσr,

and it now follows from Lemma 2.19 that α is a glide reflection.

Now we have classified all isometries of the plane. Even isometries are translations and rotations, and
odd isometries are glide reflections (including reflections without glides).

2.7 Rosette groups

Rosette groups are the finite subgroups of I. In this section we prove that the rosette groups are the
cyclic groups Cn and the dihedral groups Dn, for n ≥ 1, defined as follows:

The cyclic group Cn consists of n rotations about the same center P . It is generated by the single
rotation ρ = ρ

P, 360
◦

n
, so the elements of Cn are ρ, ρ2, . . . , ρn = ι. Notice that strictly speaking there

are infinitely many groups Cn as the center P can be any point of the plane, but they are all obviously
isomorphic with each other.

The dihedral group Dn includes Cn, and in addition it contains reflections in n lines that meet at
P (the center of the rotations) at angles that are multiples of 360◦

2n . Notice that the composition of two
such reflections is a rotation that belongs to Cn. There are 2n elements in Dn: namely n rotations
ρ, ρ2, . . . , ρn = ι, and n reflections that can be expressed as ρσ, ρ2σ, . . . , ρnσ = σ, where σ is any one of
the reflections.

Here are the cases with small n = 1 and 2:

� C1 = {ι} and D1 = {ι, σm},

� C2 = {ι, σP } and D2 = {ι, σP , σm, σl}, where m and l are perpendicular lines through point P .

Example 7. The symmetry group of a polygon with n edges and vertices (called n-gon) can contain
at most 2n elements. Indeed, any symmetry α must map vertices into vertices, and neighboring vertices
into neighboring vertices. Fixed vertex A has at most n possible images. Adjacent vertex B then has at
most two alternatives as it must be mapped into one of the two vertices next to α(A). After this, the
symmetry is uniquely determined.

Let us show that the regular n-gon has exactly 2n symmetries, and the symmetry group is the
dihedral group Dn. Let P be the center of the regular n-gon. It is clear that the rotation ρ = ρ

P, 360
◦

n
is a

symmetry of the n-gon. If m is line through P and one of the vertices then also σ = σm is a symmetry.
As the symmetries form a group, all products of σ and ρ are symmetries. These include the n rotations
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ρ, ρ2, . . . , ρn = ι generated by ρ, and n distinct odd isometries ρσ, ρ2σ, . . . , ρnσ = σ. (These are distinct
as ρiσ = ρjσ =⇒ ρi = ρj .) These are exactly the elements of Dn. There can be no other isometries as
no n-gon can have more than 2n symmetries.

Example 8. Cyclic group Cn is the symmetry group of a polygon that is obtained from a regular n-gon
by replacing each edge with a ”directed edge”, for example as follows:

Before proving that no other finite subgroups of I exists, let us first figure out multiplication rules of
even isometries.

Theorem 2.21 1. The product of two translations is a translation.

2. A rotation by angle Θ followed by a rotation by angle Φ is a rotation by angle Θ+Φ, unless Θ+Φ
is a multiple of 360◦, in which case the product is a translation.

3. A translation followed by a non-trivial rotation by Θ is a rotation by Θ. Also, a non-trivial rotation
by Θ followed by a translation is a rotation by Θ.

Proof.

1. Trivial: it follows from the definition of translations that τAτB = τA+B.

2. If the two rotations are about the same center P then the claim is trivial: ρP,ΘρP,Φ = ρP,Θ+Φ.
Assume then that the two rotations are about different points A and B. Let m be the line through
points A and B. According to Theorem 2.11 there exist lines l and n through points A and B,
respectively, such that

ρA,Θ = σmσl and ρB,Φ = σnσm,

so
ρB,ΦρA,Θ = σnσmσmσl = σnσl.

Moreover, the directed angle from l to m is Θ/2 and the directed angle from m to n is Φ/2, so the
directed angle from l to n is (Θ + Φ)/2. If this angle is a multiple of 180◦ then lines l and n are
parallel, that is, if Θ+Φ is a multiple of 360◦ then ρB,ΦρA,Θ is a translation. Otherwise lines l and
n are not parallel, so ρB,ΦρA,Θ is a rotation by angle Θ + Φ.
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3. Let τ be a translation and ρ a non-trivial rotation by angle Θ. Then τ = σlσm for parallel lines
l and m, and ρ = σnσk where the angle from line k to line n is Θ/2. By Theorem 2.11 We can
choose k to be parallel to l and m. Then ρτ = σnσkσlσm. Because k, l and m are parallel lines,
by Corollary 2.10 the product σkσlσm is a reflection σp where p is also parallel to k, l and m. The
angle from line p to line n is Θ/2, so ρτ = σnσp is a rotation by angle Θ.

Analogously, we could have chosen k and n so that n is parallel to l and m, in which case σlσmσn =
σq for a line q in the same direction. Then

τρ = σlσmσnσk = σqσk

is a rotation by angle Θ.

By iterating the theorem we easily get a rule for composing an arbitrary number of rotations:

ρC1,Θ1 ◦ ρC2,Θ2 ◦ · · · ◦ ρCn,Θn

is a rotation by angle Θ = Θ1 +Θ2 + · · ·+Θn, unless Θ is a multiple of 360◦, in which case the product
is a translation.

Corollary 2.22 If a subgroup of I contains two non-trivial rotations about different centers then it also
contains a non-trivial translation

Proof. Let ρA,Θ and ρB,Φ be two non-trivial rotations and A ̸= B. According to our theorem

ρ−1
B,Φρ

−1
A,ΘρB,ΦρA,Θ = ρB,−ΦρA,−ΘρB,ΦρA,Θ

is a translation. If it were the trivial translation ι then

ρA,ΘρB,Φ = ρB,ΦρA,Θ

but this is not possible as it was proved in a homework problem that non-trivial rotations about different
centers do not commute.

Now we are ready to prove the result mentioned in the beginning of this section:

Theorem 2.23 (Leonardo da Vinci’s Theorem) A finite subgroup of I is either a cyclic group Cn

or a dihedral group Dn.

Proof. Let H be a finite subgroup of I. Every non-trivial translation generates an infinite subgroup,
so H cannot contain non-trivial translations. If γ is a glide reflection with glide vector A then γ2 is
a translation by vector 2A, so H cannot contain any glide reflections except plain reflections. So only
rotations and reflections are possible.

By the previous lemma, all rotations in H must have the same center P . Let ρ = ρP,Θ be the rotation
having the smallest positive angle Θ among all rotations in H. It exists as H is finite. Let ρP,Φ ∈ H.
For every real number Φ there exists an integer k such that 0 ≤ Φ − kΘ < Θ. Because the rotation by
Φ − kΘ is in H, and because Θ is the smallest positive angle, we must have Φ − kΘ = 0. This means
that ρP,Φ = ρk. We have proved that ρ generates the rotations of H. This means that the set of even
isometries in H is {ρ, ρ2, . . . , ρn} = Cn for some n.
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If there are no reflections in H then H = Cn. Assume then that there is at least one reflection σ in
H. Then there are at least n distinct odd isometries σρ, σρ2, . . . , σρn in H. On the other hand, if α ∈ H
is odd then σα is even, so σα = ρk for some k = 1, 2, . . . , n. This means that α = σρk, and we have
proved that H = Dn.

Corollary 2.24 The symmetry group of every polygon is a cyclic group or a dihedral group.

Proof. In the example at the beginning of the section we concluded that the symmetry group of an n-gon
contains at most 2n elements, so it is finite.

2.8 Conjugacy

Two elements x and y of a group G are called conjugate if there exists an element α ∈ G such that
x = αyα−1. It is easy to see that conjugacy is an equivalence relation. Its equivalence classes are called
the conjugacy classes of the group.

It turns out that in the group I conjugate isometries are of the same type (both translations, both
rotations, both reflections or both glide reflections):

Theorem 2.25 Let α ∈ I be an arbitrary isometry.

1. Let σ = σm be the reflection in line m. Then ασα−1 is the reflection σα(m) in line α(m).

2. Let τ = τB−A be the translation that moves point A to point B = τ(A). Then ατα−1 is the
translation τα(B)−α(A) that moves point α(A) to point α(B).

3. Let ρ = ρP,Θ be a rotation about point P . Then αρα−1 is the rotation ρα(P ),±Θ about point α(P ),
where the angle is +Θ if α is even, and −Θ if α is odd.

4. Let γ = γm,B−A be a glide reflection. Then αγα−1 is the glide reflection γα(m),α(B)−α(A).

Proof.

1. Isometry ασmα−1 is an odd isometry that fixes every point α(P ) of line α(m). The only odd
isometry with this property is the reflection in line α(m).

2. Let τ = τB−A be the translation that moves A to B. Then τ = σmσl for two parallel lines m and
l. According to case 1 above, ασmα−1 = σα(m) and ασlα

−1 = σα(l). We get

ατα−1 = ασmσlα
−1 = ασmα−1ασlα

−1 = σα(m)σα(l).

Isometries preserve parallelism of lines, so α(m) and α(l) are parallel lines, which means that ατα−1

is a translation. It moves point α(A) into ατα−1α(A) = α(B) so it is the translation τα(B)−α(A).

3. Let ρ = ρP,Θ where Θ ̸= 0. (The case ρ = ι is trivial.) Clearly αρα−1 is an even isometry with
fixed point α(P ), so αρα−1 must be some rotation about point α(P ), say αρα−1 = ρα(P ),Φ. All we
need to prove is that Φ = ±Θ where the sign depends on the parity of α.

Assume first that α = σk for some line k. Let m and l be lines through point P such that the
directed angle from l to m is Θ/2, so ρ = σmσl. We are free to choose lines m and l in such a way
that neither is parallel to k. Let Θ1 and Θ2 be the directed angles from m to k and from k to l,
respectively. Notice that Θ1 +Θ2 is then the directed angle from m to l, that is, Θ1 +Θ2 = −Θ/2,
at least modulo 180◦.
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We have
ρα(P ),Φ = αρα−1 = σkσmσlσk.

This is the product of two rotations σkσm and σlσk of angles 2Θ1 and 2Θ2, respectively. According
to Theorem 2.21 the product is a rotation by 2Θ1 + 2Θ2 = −Θ, that is, Φ = −Θ as required.

Assume then a general α. We know that all isometries are products of (at most three) reflections,
so α = σ1σ2 . . . σn for some reflections σ1, σ2, . . . , σn. Number n is even iff isometry α is even. As

αρα−1 = σ1σ2 . . . σnρσnσn−1 . . . σ1

we can apply the single reflection case n times. In each application the sign of the rotation angle
changes, so in the end we have that αρα−1 is a rotation by the angle (−1)nΘ.

4. Let γ = γm,B−A, where A ̸= B. (If A = B then γ is a reflection, and that was already taken care
of.) Then αγα−1 is an odd isometry, so it is a glide reflection, say γ′. Because γ′(α(m)) = α(m),
line α(m) must be the axis of γ′. To find the glide vector of γ′ we can make the calculation

γ′γ′ = αγα−1αγα−1 = αγ2α−1 = ατB−AτB−Aα
−1 = ατB−Aα

−1ατB−Aα
−1 = τα(B)−α(A)τα(B)−α(A),

which shows that α(B)− α(A) is the glide vector of γ′.

Let s ⊆ R2. The following terminologies are widely used: If σm is a symmetry of s then m is called
a line of symmetry for s. If σP is a symmetry of s then P is a point of symmetry for s. If ρC,Θ is a

symmetry of s then C is a center of symmetry and, more precisely, if Θ = 360◦

n then C is a center of
n-fold symmetry.

In analyzing symmetries we frequently apply the statements of the conjugacy theorem above in the
following forms. Let α be an arbitrary symmetry of set s. Then in s:

� If m is a line of symmetry then also α(m) is a line of symmetry.

� If P is a point of symmetry then also α(P ) is a point of symmetry.

� If C is a center of (n-fold) symmetry then also α(C) is a center of (n-fold) symmetry.
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2.9 Frieze groups

Let us denote the set of translations by T . It is easily seen to be a subgroup of I. The intersection of two
subgroups is also a subgroup, so for every subgroup G of I, the set G ∩ T that contains the translations
of G is a subgroup of G, called the translation group of G.

We say that G ⊆ I is a frieze group if its translation group is cyclic and non-trivial, that is, if the
translations are generated by a single translation τ ̸= ι. The name comes from the fact that frieze groups
are the symmetry groups of repetitive friezes (=ornamented bands on buildings) such as, for example

(where the pattern is repeated indefinitely in both directions). Notice that there must exists the shortest
translation that keeps the frieze invariant — otherwise its symmetry group is not a frieze group. For
example, the symmetry group of a horizontal line is not a frieze group as it contains all horizontal
translations. It turns out that there are only seven different frieze groups (when we ignore the position,
orientation and the size of the frieze) and each is the symmetry group of some s ⊆ R2.

In this section we make the following convention: The direction of the translations in the frieze group
is called the horizontal direction, and the perpendicular direction is then the vertical direction. We start
with the following key observation:

Lemma 2.26 Let G be a subgroup of I such that all translations in G are horizontal, and assume that
there is at least one non-trivial translation. (This includes all frieze groups, but also groups without a
shortest translation.) Then there exists a horizontal line m such that all elements of G are products of
reflections in vertical lines, possibly followed by the reflection σm in line m. These products are:

� horizontal translations,

� reflections in vertical lines,

� reflection σm in line m,

� halfturns about points of line m, and

� glide reflections with axis m.

Proof. Let τ ∈ G be a fixed non-trivial translation.
First, let us prove that all non-trivial rotations in G are halfturns. Let ρ = ρP,Θ ∈ G be arbitrary.

Let A = τ(P ), so A ̸= P , and let B = ρ(A). According to Theorem 2.25, ρτρ−1 is the translation that
moves point ρ(P ) = P to point ρ(A) = B. Translations τ and ρτρ−1 are horizontal, so points A, P and
B must be on the same line. This is possible only if ρ is the trivial rotation or the halfturn about P .

Next, let us prove that all reflections in G are in vertical and horizontal lines. Let σl ∈ G be arbitrary,
P a point of line l, A = τ(P ), and B = σl(A). According to Theorem 2.25, σlτσ

−1
l is the translation

that moves point σl(P ) = P to point σl(A) = B. Again, translations τ and σlτσ
−1
l are horizontal, so

points A, P and B must be on the same horizontal line. Either A = B, in which case A is on line l so l
is horizontal, or A ̸= B, in which case l is the perpendicular bisector of AB so l is vertical.

Finally, let us show that glide reflections of G are horizontal. Indeed, if γ ∈ G is a glide reflection with
a non-zero glide A, then γ2 is the translation with the translation vector 2A. Vector 2A is horizontal, so
also the glide A is horizontal.
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In the three paragraphs above we have shown that every element of G is a product of reflections
in vertical and horizontal lines. As products of reflections in perpendicular directions commute (Corol-
lary 2.12), every element of G is a product

σ1σ2 . . . σvσ
(1)σ(2) . . . σ(h)

where each σi is a reflection in a vertical line, and each σ(j) is a reflection in a horizontal line. Moreover,
as the product of three reflections in parallel lines is a reflection in a parallel line, we can reduce the
number of reflections so that v, h ≤ 2.

Next we prove that, in fact, h ≤ 1. Assume the contrary: some

α = σ1σ2 . . . σvσ
(1)σ(2) ∈ G

where the reflections σ(1) and σ(2) are in two different horizontal lines. If v = 1 then α is a glide reflection
with a non-zero vertical glide, and if v = 0 or v = 2 then α is a translation in a direction that is not
horizontal. These isometries do not exist in G, so we must have h ≤ 1.

Moreover, the possible reflection σ(1) in a horizontal line must be in the same horizontal line m for
all isometries of G. Namely, if G would contain two isometries α = α′σ(1) and β = β′σ(2) where α′ and
β′ are products of reflections in vertical lines and σ(1) and σ(2) are reflections in two different horizontal
lines then the product

αβ = α′σ(1)β′σ(2) = α′β′σ(1)σ(2)

would contradict the previous paragraph.
So we conclude that every element of G is a product of 0,1 or 2 reflections in vertical lines, or a

product of 0,1 or 2 reflections in vertical lines followed by σm, the reflection in the horizontal axis m of
the group. This leaves the following non-trivial possibilities:

� σm: the reflection in the axis m,

� σ1σm: a halfturn about a point of line m,

� σ1σ2σm: a glide reflection with axis m,

� σ1: a reflection in a vertical line, and

� σ1σ2: a horizontal translation

Now we are ready to classify all frieze groups. Let G be a frieze group whose translations are generated
by the shortest translation τA, and let m be the horizontal line from the previous lemma, called the axis
of the frieze group. Let 2d be the length of vector A, so that τA is a product of two reflections in vertical
lines at distance d. The translations in G are then exactly the products of two reflections in any two
vertical lines whose distance is a multiple of d.

1) Assume first that σm ∈ G. Let l and k be arbitrary vertical lines. Then

σlσm ∈ G ⇐⇒ σl ∈ G, and
σlσkσm ∈ G ⇐⇒ σlσk ∈ G,

so glide reflections of G are uniquely determined by the translations, and the reflections in vertical lines
are uniquely determined by the halfturns. If there are no halfturns in G then G is generated by τA and
σm, and it is the symmetry group of the infinite strip
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Let us call it the group F1001. The four indices 1001 are interpreted as follows: the group contains the
reflection σm in the axis m, does not contain any reflection σl in vertical lines, does not contain any
halfturns, and contains glide reflections. This information uniquely specifies the group (for given A and
m).

Assume then that there is some halfturn σP in G. We know that point P is on line m. Because
σPσQ = τ2(P−Q) is a translation, the other halfturns are now uniquely determined: they are at points of
line m whose distance from P is a multiple of d. These then also uniquely determine the reflections σl in
vertical lines. Group G = F1111 is the symmetry group of

Groups F1001 and F1111 are the only groups containing the reflection σm.

2) Consider then groups that do not contain σm. One alternative is that there are no isometries except
the translations: We have the symmetry group F0000 of the strip

Let us assume then that there are other symmetries. The product of a reflection in a vertical line and a
halfturn is a glide reflection, the product of a glide reflection and a halfturn is a reflection in a vertical
line, and the product of a glide reflection and a reflection in a vertical line is a halfturn. Conclusion: G
either contains all three types of isometries, or at most one of the types. There are four alternatives,
resulting in groups F0100, F0010, F0001 and F0111, as discussed below.

If G contains a halfturn σP = σlσm then the other halfturns are uniquely determined: they are the
products of σP and the translations in G. The distances between the centers of the halfturns are then
exactly the multiples of d. This means that group F0010 is uniquely determined, and it is the symmetry
group of the following strip:

Analogously, if G contains a reflection σl in a vertical line l then the other reflections are determined
as they must be the products of σl and the translations in G. The lines of the reflections are at distances
that are multiples of d. So we have the group F0100 which is the symmetry group of

Consider then a glide reflection γ = σlσkσm ∈ G with axis m. Let 2g be the length of its glide vector,
that is, g is the distance between lines l and k. Then g must be a multiple of d/2 as γ2 is a translation of
length 4g. On the other hand, g cannot be a multiple of d because then there would exist a translation
in G that would cancel the glide, leaving σm, and we assumed that σm is not in G. We conclude that
g must be an odd multiple of d/2, or equivalently, the length 2g of the glide is an odd multiple of d.
All such glide reflections are obtained from γ by multiplying it with translations, so we have completely
characterized the glide reflections. Group F0001 is the symmetry group of
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The last open possibility is that G contains halfturns, reflections in vertical lines and glide reflections.
As discussed above, the glide reflections are uniquely determined (the glides are by odd multiples of d),
and after we fix one center P of a halfturn, also the halfturns are uniquely determined. This also fixes the
reflections as they are the products of the glide reflections and the halfturns. The lines of the reflections
bisect the consecutive points of reflections. We have the group F0111, which is the symmetry group of
the following strip:

We have fully classified the frieze groups, and we found seven different types. In each case, a ”frieze” with
the given symmetries was given, to prove that the seven types of frieze groups are the symmetry groups
of some sets s ⊆ R2. Notice that each of the seven groups has infinitely many ”geometric realizations”,
as the axis m can be any line, the shortest translation τ can be any non-trivial translation parallel to m,
and in those groups that involve halfturns or reflections in vertical line, one center P of a halfturn or one
line l of a reflection can be selected. But modulo these parameters, the groups are unique. It is clear that
all realizations of each group are isomorphic, and even more than that, isomorphic by isomorphisms that
preserve the type of isometry (translations correspond to translations, reflections to reflections, rotations
to rotations,. . . ).

We have proved the following theorem:

Theorem 2.27 Let G be a frieze group whose translations are generated by τ . Then there exists a line
m parallel to τ , and if G contains a halfturn there exists a point P ∈ m, otherwise a line l perpendicular
to m, such that G is one of the following seven groups:

F0000 = ⟨τ⟩ F1001 = ⟨τ, σm⟩ F1111 = ⟨τ, σm, σP ⟩
F0100 = ⟨τ, σl⟩ F0010 = ⟨τ, σP ⟩
F0001 = ⟨γ⟩ F0111 = ⟨γ, σP ⟩

where γ is the glide reflection with axis m such that γ2 = τ .

2.10 Wallpaper groups

A wallpaper group G is a subgroup of I whose translations are generated by two non-parallel translations
τ1 and τ2. Translations commute with each other, so the translations of G are exactly the isometries
τ i1τ

j
2 for all integers i and j. If A and B are the vectors of translations τ1 and τ2 then the vectors of

translations τ i1τ
j
2 are iA+ jB, which form a lattice
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Let us first show that there exists a shortest translation in G.

Lemma 2.28 Wallpaper group G has a shortest non-trivial translation. More generally, any non-empty
subset s of translations of G contains a shortest non-trivial translation.

Proof. Let A and B be the translation vectors of the generating translations τ1 and τ2. Let

B = rA+B′ and A = qB +A′

be the decompositions of vectors A and B into a sum of orthogonal vectors, where r, q ∈ R and B′ ⊥ A
and A′ ⊥ B. As A and B are not parallel, vectors A′ and B′ are non-zero. Let a > 0 and b > 0 be the
lengths of vectors A′ and B′, respectively.

Consider an arbitrary translation vector Aij = iA + jB in G. Using the orthogonal decompositions
above we have

Aij = (i+ jr)A+ jB′ and Aij = (j + iq)B + iA′.

These are sums of two orthogonal vectors, so the length of Aij is at least |j|b, the length of jB′, and at
least |i|a, the length of iA′. Let c be the length of some vector X in the set s of translations we consider.
Then any vector Aij with |j| > c/b or |i| > c/a is longer than vector X. Therefore there are only a
finite number of vectors that can potentially be shorter than X. The shortest among them is the shortest
translation vector in set s.

Rosette groups, frieze groups and wallpaper groups are exactly the discrete symmetry groups: We call
a subgroup G of I discrete if it does not contain arbitrarily short translations and does not contain
arbitrarily small rotations. More precisely, G is discrete if there exists ε > 0 such that

0 < |A| < ε =⇒ τA ̸∈ G, and
0 < Θ < ε =⇒ ρC,Θ ̸∈ G.

(|A| is the length of the translation vector A.)

Theorem 2.29 Discrete subgroups of I are exactly the rosette groups, frieze groups and wallpaper groups.

Proof. (⇐=) Rosette groups are finite and hence discrete. In frieze groups, the translation that generates
all translations is the shortest one, and halfturns are the only possible rotations, so frieze groups are
discrete. Let G be a wallpaper group. By Lemma 2.28, it contains a shortest translation τ . For every
rotation ρ ∈ G, the isometry τ ′ = ρτρ−1 is the translation that maps the center C of ρ to ρτ(C).
Consequently, translation τ ′τ−1 takes point τ(C) into ρτ(C). This translation is arbitrarily short for
arbitrarily small rotation angles, so G cannot contain arbitrarily small rotations. Hence G is discrete.

(=⇒) Let G be a discrete subgroup of I.

(1) If G contains no non-trivial translations then it does not contain any glide reflections with non-zero
glide vector. There are only rotations and reflections in G. Rotations can only have a finite number of
different rotation angles as otherwise there would be arbitrarily small rotations in G. Two rotations by
the same angles but with different centers generate a translation, so the rotations of G have the same
center C. Reflection lines must contain C, and there are only a finite number of possible angles between
the lines of reflections. We conclude that the group is finite, and hence it is a rosette group.

(2) Suppose then that G contains a non-trivial translation τA. Due to discreteness there can be only
a finite number of different translations by vectors shorter than A, so a shortest non-trivial translation
exists. We may assume τA is a shortest translation.
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(2a) If all translations in G are generated by τA then G is a frieze group.

(2b) Suppose then that there exists a translation τB in G that is not generated by τA. Again, by
discreteness, a shortest such translation exists, so we may assume that B has minimum length. To
complete the proof of Theorem 2.29, we use the following lemma that states that τA and τB generate all
translations in G, implying that G is a wallpaper group.

Lemma 2.30 Let G be a discrete subgroup of I, let τA be a shortest non-zero translation in G, and let
τB ∈ G be a shortest translation not generated by τA. Then τA and τB generate all translations of G.

Proof. It is clear that vectors A and B are not in parallel directions (otherwise A would not be the
shortest translation vector), so every vector of R2 is a linear combination of A and B. Assume that group
G contains a translation τC such that τC ̸∈ ⟨τA, τB⟩. Let C = xA + yB be the representation of C as
a linear combination of vectors A and B, where x, y ∈ R. By subtracting integer multiples of vectors A
and B from vector C, we can reduce x and y so that −1

2 ≤ x, y ≤ 1
2 . But then, using the triangular

inequality, we obtain

|C| = |xA+ yB| ≤ |x||A|+ |y||B| ≤ (|A|+ |B|)/2 ≤ |B|.

The first inequality can be an equality only if x = 0 or y = 0, but in these cases the second inequality is
proper. So in each case: |C| < |B|, which contradicts the minimality of vector B.

Let us start analyzing the possibilities for the wallpaper groups. It turns out that there are 17 different
types of groups. Deriving them is a lengthy case analysis. The rest of this chapter provides a complete
derivation. (See also the slide presentation from the course web page.)

Our first observation is an important restriction on possible rotations in wallpaper groups:

Theorem 2.31 (Crystallographic restriction) A wallpaper group G can only contain rotations by
multiples of 60◦ and 90◦. Hence all centers of rotations are centers of n-fold rotations for n = 2, 3, 4 or
6. Moreover, a 4-fold rotation cannot co-exist with 3- or 6-fold rotations.

Proof. Let τ = τA be the shortest translation in G, and let d be the length of its translation vector A.
Let ρ = ρP,Θ ∈ G be a non-trivial rotation, and let Q = τ(P ) and R = ρ(Q). Then G contains also

the translation τ ′ = ρτρ−1 that moves point ρ(P ) = P to point ρ(Q) = R. Translation τ ′τ−1 then moves
point Q to point R.

��������

Θ

QP

d

τ

τ’

R

If 0◦ < Θ < 60◦ then the distance between points Q and R is less than d, which contradicts the fact that
τ is the shortest translation in G. We conclude that every non-trivial rotation is by an angle that is at
least 60◦. This also means that G can contain at most 6 different rotations about point P , because if we
would have rotations by angles Θ1,Θ2, . . . ,Θ7 where

0◦ ≤ Θ1 < Θ2 < · · · < Θ7 < 360◦
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then necessarily 0◦ < Θi+1 −Θi < 60◦ for some i = 1, 2, . . . 6, a contradiction.
Let Θ be the smallest positive rotation angle about point P , and let Φ be any other rotation angle

about P . There exists an integer k such that 0 ≤ Φ− kΘ < Θ. This implies that Φ = kΘ. Therefore the
rotations about point P are generated by ρP,Θ, and Θ = 360◦

n for some n ≤ 6.
We still have to show that the case n = 5 of five-fold rotations is not possible. The rotation angle of

a five-fold rotation is Θ = 72◦. Consider points P,Q and R as in the beginning of the proof. Point Q is
the center of rotation τρτ−1 by the same angle Θ, and therefore G contains the rotation of −Θ about Q.
Let S = ρ′(P ).

QP

d

R S

Θ

τ

−Θ

It is easily seen that the distance between points R and S is positive but less than d for angles in the
interval 60◦ < Θ < 90◦. In particular, this includes the case Θ = 72◦ of five-fold rotations. Since G must
contain the translation that moves R to S, this contradicts the minimality of distance d.

Finally we easily observe that if G contains a rotation ρ of 90◦ then it cannot contain any rotation ρ′

of 60◦ or 120◦ because ρ−1ρ′ would be a rotation whose angle is ±30◦.

Let us start analyzing different wallpaper groups case-by-case depending on the largest order of
rotation that G contains.

1) Assume that G contains a 6-fold rotation ρ = ρP,60◦ . Let τ be the shortest translation in G, let
d be its length, and let P0 = τ(P ). Rotating point P0 about point P defines points Pi = ρi(P0) for
i = 1, 2, . . . 5 such that all translations τPi−P are in G. Then each Pi is a center of a 6-fold rotation in G.
These isometries are all generated by ρ and τ through conjugacies. We can repeat the reasoning on all
Pi, and then again on the six centers of rotation around them and so on. We conclude that G contains
6-fold rotations about centers that are the vertices of a lattice of equilateral triangles, and G contains all
translations between vertices of the lattice. Let us denote by s6 the set of the lattice points, indicated
by black circles in the following figure:

P

P
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Let us show that the even isometries in G are exactly the even symmetries of s6. First, there can be
no translation that moves a lattice point into a non-lattice point: The distance from every point of the
plane to the closest lattice point is less than d, so if τ ′ is a translation that moves lattice point P into
a non-lattice point Q = τ ′(P ) then the translation that moves Q to its closest lattice point is in G and
it is shorter than τ , which contradicts the minimality of τ . So the translations of G are exactly that
translations that keep s6 invariant.

Consider then an arbitrary rotation ρ′ ∈ G. The crystallographic restriction states that ρ′ is a 2-, 3-
or 6-fold rotation. This means that ρ′ρi is a translation for some integer i. Since translations in G are
symmetries of s6, and since ρ is a symmetry of s6 we conclude that ρ′ is also a symmetry of s6.

Conversely, if ρ′ is any rotation in the symmetry group of s6 then it must be a 2-, 3- or 6-fold rotation
(as the symmetry group of s6 is a wallpaper group that contains 6-fold rotations) so ρ′ρi is a translation
for some integer i. As ρ is a symmetry of s6 this translation is also a symmetry of s6. All such translations
are in G, so ρ′ ∈ G as well.

We have proved that the even elements of G are exactly the even symmetries of s6. If there are no odd
isometries in G we have our first wallpaper group W6 = ⟨τ, ρP,60◦⟩ that consists of the even symmetries
of s6. In addition to the translations and 6-fold rotation about lattice points this group also contains
3-fold rotations about the centers of the equilateral triangles, and 2-fold rotations about the midpoints
between adjacent lattice points. Notice that the lattice points are the only centers of 6-fold rotations,
because if ρ′ is a 60◦ rotation then ρ′ρ−1 = τ ′ is a translation and, since τ ′ρρτ ′(P ) = ρτ ′(P ), the lattice
point ρτ ′(P ) is the fixed point of ρ′ = τ ′ρ.

’
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τ
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Group W6 is the symmetry group of the following pattern where odd isometries are prevented by ”di-
recting” the lattice points counter-clockwise:

Assume then that G also contains some odd isometry α. This isometry has to take 6-fold rotation centers
of G into 6-fold rotation centers of G, that is, α is a symmetry of s6. If β is any other odd symmetry of
s6 then αβ ∈ G as αβ is an even symmetry of s6, so also β ∈ G. Conclusion: G is the symmetry group of
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s6. Note that s6 has odd symmetries (e.g. a reflection σ in any line through two closest lattice points),
so we have a new wallpaper group W 1

6 = ⟨τ, ρP,60◦ , σ⟩. Set s6 is an example of a pattern whose symmetry
group is W 1

6 . Here is another one:

2) Assume that G contains a 3-fold rotation ρ = ρP,120◦ but no 6-fold rotations. We start in the same
way as with the 6-fold rotations: Let τ be the shortest translation in G, let d be its length, and let
P0, P1, . . . , P5 be the points where P is taken by the translations τ , ρ−1τ−1ρ, ρτρ−1, τ−1, ρ−1τρ and
ρτ−1ρ−1, respectively. Points P0, P1, . . . , P5 are the vertices of the regular hexagon with center P , and
they are all centers of 3-fold rotations in G. We can repeat the reasoning on each Pi instead of P , so we
obtaining again a lattice of equilateral triangles such that the vertices of the lattice are centers of 3-fold
rotations, and the translations that move lattice points to lattice points are in G.
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As before, let s6 be the set of vertices of this lattice. Next we show that the even isometries of G are
exactly those symmetries of s6 that are translations or 3-fold rotations. First, exactly as in the case of
W6, we see that no other translation is possible: a translation that moves a lattice point into a non-lattice
point contradicts the minimality of translation τ . So the translations of G are exactly the translations
that keep s6 invariant. Consider then a rotation in G. We assumed that there are no 6-fold rotations,
and therefore there can be no 2-fold rotations either (together with a 3-fold rotation any 2-fold rotation
generates a 6-fold rotation). All other rotations would contradict the crystallographic restriction, so all
rotations in G are 3-fold. Conversely, every 3-fold rotation ρ′ that keeps s6 invariant must be in G because
ρ′ρ−1 is a translation that keeps s6 invariant, and all such translations are in G.

If there are no odd isometries in G we have our third wallpaper group W3 = ⟨τ, ρP,120◦⟩. In addition to
the translations and 3-fold rotations about lattice points, group W3 also contains 3-fold rotations about
the centers of the equilateral triangles of the lattice. Group W3 is the symmetry group of the following
pattern:
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Assume then that G also contains odd isometries. If G contains a glide reflection γ then it also contains
a reflection because γργρ−1γ is a reflection for every glide reflection γ and 3-fold rotation ρ (homework).
Every line p of reflection must contain a center of 3-fold rotation because also ρ(p) is a line of reflection,
lines p and ρ(p) are not parallel so they intersect, and the product σpσρ(p) is a rotation about the point of
intersection. In the beginning of case 3 the first center P of the 3-fold rotation ρ was chosen arbitrarily,
so we may assume that P is on line p. Consequently P is a fixed point of a reflection in G.

It follows then that every odd isometry in G is a symmetry of s6. Assume the contrary: there is an
odd α ∈ G and a lattice point Q such that α(Q) is not a lattice point. Then ατQ−Pσp ∈ G is an even
isometry that moves point P into the non-lattice point α(Q), and this contradicts the fact that all even
isometries in G are symmetries of s6.

Let m be a line through two adjacent lattice points P and P0, and let l be the line through P such
that the angle from m to l is 30◦.
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Both σm and σl are symmetries of s6, but since σlσm is a rotation by 60◦ they cannot both be in group G.
Let us prove that G must contain one of them. Assume the contrary: neither σm nor σl is in G, and let α
be some odd isometry in G. Then ασm and σlα

−1 are even symmetries of s6 that do not belong to G, so
they have to be rotations by an angle that is an odd multiple of 60◦ (=by 60, 180 or -60 degrees). Their
product σlα

−1ασm = σlσm would then be a translation or a rotation by an even multiple of 60◦, but we
know that σlσm is a rotation by 60◦, a contradiction. We conclude that exactly one of the reflections σm
and σl is in G.

Once we know one odd element of G, all other odd elements are uniquely determined by the even
elements of G. We have two new wallpaper groups: W 1

3 = ⟨τ, ρP,120◦ , σl⟩, which is the symmetry group
of

27



and W 2
3 = ⟨τ, ρP,120◦ , σm⟩, which is the symmetry group of

A difference between these groups is that W 1
3 contains a line of reflection through every center of 3-fold

rotation, while in W 2
3 there are lines of symmetry only through some of the rotation centers, namely

those that are the lattice points.

3) Let us assume now that G contains a 4-fold rotation ρP,90◦ . Then it cannot contain 3- or 6-fold
rotations. As in the previous cases: let τ be the shortest translation in G, let d be its length, and let Pi

be the point where P is taken by the translation ρiτρ−i, for i = 0, 1, 2 and 3. Points P0, P1, P2 and P3

are all centers of 4-fold rotations in G, so we can repeat the reasoning on each Pi. We obtain an infinite
lattice of centers of 4-fold rotations, but this time the lattice is a square lattice instead of a triangular
one. (See the next figure.) All translations between lattice points are in group G.

If G would contain any other translations, then it would contain a translation that moves a non-lattice
point into the closest lattice point. This is not possible as the distance of every point of the plane from
the lattice is less than d, the length of the shortest translation. We conclude that the translations in G
are exactly the translations that keep the lattice invariant. Let us denote the points of the square lattice
by s4.
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Analogously to the case of 60◦ rotations, we can prove that the even isometries in G are exactly the even
symmetries of s4. We already know this for translations. Consider then an arbitrary rotation ρ′ ∈ G. The
crystallographic restriction states that ρ′ is a 2- or 4-fold rotation. This means that ρ′ρi is a translation
for some integer i. Since translations in G are symmetries of s4, and since ρ is a symmetry of s4 we
conclude that ρ′ is also a symmetry of s4.

Conversely, if ρ′ is any rotation in the symmetry group of s4 then it must be a 2- or 4-fold rotation.
This follows from the crystallographic restriction and the fact that the symmetry group of s4 is a wallpaper
group that contains 4-fold rotations. So ρ′ρi is a translation for some integer i and, as ρ is a symmetry
of s4, this translation is also a symmetry of s4. All such translations are in G, so ρ′ ∈ G as well.

If G contains no odd isometries then G is the group of even symmetries of s4. This is a new wallpaper
group W4 = ⟨τ, ρP,90◦⟩. In addition to the translations and 4-fold rotations about lattice points this
group also contains 4-fold rotations about the centers of the lattice squares, and 2-fold rotations about
the midpoints between adjacent lattice points. Let us prove that no other rotations exist in G. Consider
a center Q of a halfturn. Lattice point P is also a center of a halfturn. The product of the two halfturns
is the translation by vector 2(Q− P ). Translations are between lattice points, so Q must be a midpoint
between lattice points. The only such points are the centers of the lattice squares (which are easily seen
to be also centers of 4-fold rotations), and the midpoints between adjacent lattice points (which are easily
seen not to be centers of 4-fold rotations). No other rotations are possible.

Group W4 is the symmetry group of the following pattern:

Assume then that G also contains odd isometries. Let m be a line through some adjacent lattice points,
and let l be a line that intersects m at 45◦ in some midpoint M between adjacent lattice points:
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Reflection σm is a symmetry of s4 whereas reflection σl is not. Instead, σl exchanges lattice points and
the centers of the lattice squares. Group G cannot contain both σm and σl because then it would also
contain a 4-fold rotation about point M . Let us prove that G must contain either σm or σl. If there is an
odd isometry α ∈ G that takes some lattice point into a lattice point then every odd isometry of G must
be a symmetry of s4. (Otherwise there would be an even element in G that is not a symmetry of s4.) As
G contains all even symmetries of s4 then all odd symmetries of s4 are in G as well, and this includes σm.
If, on the other hand, G contains an odd isometry α that takes all lattice points into non-lattice points
then these non-lattice points must be the centers of the lattice squares, so σlα is an even symmetry of
s4. Therefore σlα ∈ G, and also σl ∈ G.

We have two new wallpaper groups W 1
4 = ⟨τ, ρP,90◦ , σm⟩, which is the symmetry group of

and W 2
4 = ⟨τ, ρP,90◦ , σl⟩, which is the symmetry group of
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4) Assume that G contains halfturn σP , and that all non-trivial rotations in G are halfturns. Let τ1 and
τ2 be two translations that generate all translations of G. Let the lattice points be the points τ i1τ

j
2 (P )

for all integers i, j. They are all centers of halfturns. Also the products of σP and the translations
τ i1τ

j
2 are halfturns about points that are midpoints between lattice points, that is, centers of the lattice

parallelograms as well as the midpoints of their sides. No other halfturns are possible as otherwise we
would get translations that are not invariants of the lattice. We conclude that we have found all even
isometries in G. If G contains no odd isometries then we have the wallpaper group W2 = ⟨τ1, τ2, σP ⟩. It
is the symmetry group of
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Assume then that G contains also some odd isometries. As in the previous cases, a single odd isometry
α ∈ G uniquely determines all odd isometries because they are obtained by multiplying α with the even
elements of G. The purpose of the following lemma is to limit the possible odd isometries that any
wallpaper group can contain. It turns out that if G contains odd isometries then the translation lattice
is rhombic or rectangular:

Lemma 2.32 Let G be a wallpaper group that contains an odd isometry with axis m. Then there exist
translations τ1, τ2 ∈ G that generate all translations of G and either

(1) τ1 is parallel to m and τ2 is perpendicular to m, or

(2) τ1 and τ2 are of equal length and m is parallel to τ1τ2.

Moreover, in case (2), group G contains a reflection.

In case (1) the translation lattice is rectangular, and m is parallel to a side of the rectangles, and in case
(2) the translation lattice is rhombic, and m is parallel to a diagonal of the rhombi:
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Case (1) Case (2)

Proof. Let τA be the shortest translation in G, and let τB ∈ G be the shortest translation not generated
by τA. According to Lemma 2.30, τA and τB generate all translations of G. Let α ∈ G be an odd isometry
with axis m, that is, α is a glide reflection with axis m. Notice that for every translation τ

ατα−1 = σmτσm.

This follows from the facts that α = σmτ ′ where τ ′ is a translation, and that translations commute.
Consider the translation τC = ατAα

−1 = σmτAσm. It has the same length as the shortest translation
τA. If τC is not generated by τA then it is the shortest translation not generated by τA, and according to
Lemma 2.30 translations τA and τC generate all translations of G. If we choose τ1 = τA and τ2 = τC we
have generating translations that satisfy the condition (2) of the lemma.

Assume then that τC is generated by τA. Then either C = A, in which case m is parallel to A, or
C = −A, in which case m is perpendicular to A. Consider the conjugate τD = ατBα

−1 (if m is parallel to
A) or τD = ατ−Bα

−1 (if m is perpendicular to A). In either case, B+D is parallel to A. If |B+D| > |A|
then B − A or B + A is shorter than B, which contradicts the minimality of vector B. We must have
B + D = 0 or B + D = ±A. If B + D = 0 then B is perpendicular to A and we can choose τ1 = τA,
τ2 = τB and condition (1) of the lemma is satisfied. And if B+D = ±A then we choose τ1 = τB, τ2 = τD
(if m is parallel to A) or τ1 = τ−B, τ2 = τD (if m is perpendicular to A). In either case, condition (2) of
the lemma is satisfied. Notice that τB and τD generate all translations because they generate τA.

Finally, to prove the last claim, assume that case (2) applies. Because α2 is a translation that is
parallel to τ1τ2, we must have that α2 = (τ1τ2)

i = τ i2τ
i
1 for some integer i. Since translations τ1 and τ2

are conjugate by τ2 = ατ1α
−1, we also have that τ i2 = ατ i1α

−1. This means that α2 = ατ i1α
−1τ i1. Divide

both sides by α2 from the left, and we have the result that α−1τ i1 is an odd involution, that is, a reflection.

Our lemma limits the number of possible odd isometries of wallpaper groups sufficiently so that we
can proceed with the analysis of the wallpaper groups G with halfturns and some odd isometries.

(a) First, assume that G contains a reflection σm such that the condition (2) of the previous lemma is
satisfied. The lattice determined by the two generating translations from the lemma is rhombic. Let us
prove that line m must contain a center of a halfturn. Consider a rhombus that is intersected by m, whose
corners are centers of halfturns and whose interior does not contain any such centers. We know that m is
parallel to a diagonal of the rhombus. If m is not the diagonal then one of the corners is mapped inside
the rhombus by reflection σm, which contradicts the fact that there are no rotation centers inside the
rhombus. We conclude that m bisects the rhombus along its diagonal, and therefore m contains a center
of rotation. As the first halfturn σP was chosen arbitrarily, we can choose it in such a way that P ∈ m.
We see that line m is then uniquely determined by τ1, τ2 and P . All other odd elements of G are then
the products of σm and even isometries. This gives the wallpaper group W 1

2 = ⟨τ1, τ2, σP , σm⟩ where τ1
and τ2 are of equal length, and m is the line through P and τ1τ2(P ). This group is the symmetry group
of
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(b) Assume then that G contains a reflection σm that satisfies the condition (1) of the lemma. Let us
call the direction of τ1 and m the horizontal direction. We have two possibilities: (i) that m contains
a center of a halfturn, and (ii) that m does not contain a center of a halfturn. In the second case the
line m must run in the middle between two horizontal rows of rotation centers. As before, all other
odd isometries are uniquely determined by σm and the even isometries. We get two wallpaper groups
W 2

2 = ⟨τ1, τ2, σP , σm⟩ where m is the line through P and τ1(P ), and W 3
2 = ⟨τ1, τ2, σP , σm⟩ where m is

the perpendicular bisector between points P and the center of halfturn τ2σP . In both cases, τ1 and τ2
are perpendicular. Group W 2

2 is the symmetry group of

and group W 3
2 is the symmetry group of

(c) Finally, assume that G does not contain any reflections. Let γ ∈ G be a glide reflection with axis
m. According to the last claim of Lemma 2.32, case (1) of the lemma must apply. Let τ1 and τ2 be two
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perpendicular translations, as indicated by the case (1) of the lemma. If the axis m contains the center
P of some halfturn σP ∈ G then G contains the reflection γσP . We conclude that m must run in the
middle between two horizontal rows of rotation centers. Let integer i be such that γ2 = τ i1. If i would
be even then γ and τ1 would generate a reflection, so i must be odd. By multiplying γ with a suitable
power of τ1 we obtain a glide reflection whose square is exactly τ1. This is uniquely determined, so the
group G is also determined. It is W 4

2 = ⟨τ2, σP , γ⟩ where γ is a glide reflection such that τ1 = γ2 and τ2
are perpendicular. This is the symmetry group of

5) As our final case, assume that there are no non-trivial rotations in group G. The even isometries are
then all translations generated by τ1 and τ2. If there are no odd isometries then the group is W1 = ⟨τ1, τ2⟩.
This group is the symmetry group of
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Let us assume then that G also contains odd isometries. If G contains a reflection σm then according
to Lemma 2.32 either G has perpendicular generating translations τ1 and τ2 and m is parallel to τ1, or
G has generating translations τ1 and τ2 of equal length and m is parallel to τ1τ2. In the second case we
obtain group W 1

1 = ⟨τ1, τ2, σm⟩ that is the symmetry group of
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and in the first case we obtain the symmetry group W 2
1 = ⟨τ1, τ2, σm⟩ of

Assume then that G does not contain any reflections but contains a glide reflection with axis m. Case
(1) of Lemma 2.32 must apply. Then we can choose the glide reflection γ in such a way that τ1 = γ2.
This gives the last wallpaper group W 3

1 = ⟨γ, τ2⟩. A pattern with this symmetry group is for example

We have exhausted all possibilities of wallpaper groups. We found 17 groups: Two with 6-fold rotations,
three with 4-fold rotations, three with 3-fold (but no 6-fold) rotations, five with halfturns (but no higher
order rotations) and four without non-trivial rotations.

Theorem 2.33 Let G be a wallpaper group. Then G is among the 17 groups discussed above.
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2.11 Final remarks on discrete symmetry groups

The rosette groups, frieze groups and the wallpaper groups have standard names given by crystallog-
raphers, and standardized by the International Union of Crystallography. Another naming system was
developed by Fejes Tóth. The following table summarizes these notations:

Our notation Fejes Tóth Crystallographic

Cn Cn n

Dn Dn nm, if m is odd,
nmm, if m is even

F1001 F 1
1 p1m1

F1111 F 1
2 pmm2

F0000 F1 p111

F0100 F 2
1 pm11

F0010 F2 p112

F0001 F 3
1 p1a1

F0111 F 2
2 pma2

W6 W6 p6

W 1
6 W 1

6 p6m

W3 W3 p3

W 1
3 W 1

3 p3m1

W 2
3 W 2

3 p31m

W4 W4 p4

W 1
4 W 1

4 p4m

W 2
4 W 2

4 p4g

W2 W2 p2

W 1
2 W 1

2 cmm

W 2
2 W 2

2 pmm

W 3
2 W 3

2 pmg

W 4
2 W 4

2 pgg

W1 W1 p1

W 1
1 W 1

1 cm

W 2
1 W 2

1 pm

W 3
1 W 3

1 pg

Observe that each rosette, frieze or wallpaper group type is actually a family of subgroups of I. For
example, for each P ∈ R2, the halfturn around point P generates the cyclic group C2, but of course each
choice of P provides a distinct subgroup of I. In fact, each group type represents a family of affinely
conjugate subgroups, as explained briefly below:

� An affine transformation of the plane is a transformation that preserves parallelism of lines. It is
the composition of a linear transformation and a translation, that is, a mapping

f :

(︃
x
y

)︃
↦→ M

(︃
x
y

)︃
+

(︃
a
b

)︃
where M is a 2 × 2 matrix. The transformation is one-to-one if and only if M is invertible, i.e.,
det(M) ̸= 0. Isometries are exactly the distance preserving affine maps. Distance preservation
is equivalent to M being an orthogonal matrix, i.e., equivalent to MMT = I where MT is the
transpose of M and I is the 2×2 identity matrix. Even and odd isometries correspond to orthogonal
matrices M whose determinant is +1 and -1, respectively.
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� Two subgroups G1 and G2 of I are said to be equal up to affine conjugacy if there exists a one-to-one
affine transformation f such that G1 = fG2f

−1, that is, elements of G1 are exactly the functions
fαf−1 for α ∈ G2. (In particular, this requires that fαf−1 are isometries for all α ∈ G2, which is
not the case for all affine f and all isometries α ∈ I.)

� If G1 and G2 are wallpaper groups, frieze groups or rosette groups then equality up to affine
conjugacy exactly means that they are of the same wallpaper, frieze or rosette group type.

� Affine conjugacy preserves isometry types: If α and fαf−1 are both isometries then they are of
the same type: both translations, both rotations, both reflections or both glide reflections. (To see
this, note that the parity of the isometry is preserved by affine conjugacy, and that P is a fixed
point of α if and only if f(P ) is a fixed point of fαf−1.) But as mentioned above, fαf−1 may also
not be an isometry.

� As groups, C2 and D1 are isomorphic. But they are not equal up to affine conjugacy. Likewise,
frieze groups F0000 and F0001 are isomorphic (both are infinite cyclic groups, one is generated by
a translation the other one by a glide reflection) but we consider them different as they are not
affinely conjugate.

3 Tilings

Intuitively, a tiling is a covering of the plane without overlaps using some tiles. We start by giving more
precise definitions. You may want to review some basic concepts of topology (especially the standard
Euclidean topology of R2) such as

� open and closed sets,

� neighborhood of a point (=any open set containing the point),

� interior of a set (=largest open set contained in the set),

� closure of a set (=smallest closed set containing the set),

� boundary of a set (=intersection of the closures of the set and its complement),

� compactness,

� continuity of functions (inverse images of open sets are open),

� homeomorphism (=continuous bijection whose inverse is also continuous).

� connectedness (a set is connected iff it is not the union of two disjoint open sets),

Recall that since the Euclidean topology of R2 is metric, it is Hausdorff, and compactness is equivalent
to being closed and bounded. Also, in R2 an open set is connected if and only if it is path-connected,
that is, each pair of its points can be joined by a path (=homeomorphic image of the unit interval) inside
the set. Let us denote by

Br(P ) = {X ∈ R2 | d(X,P ) < r}

the open disk of radius r centered at P , and if P is the origin O, we simply denote Br = Br(O). The
closure of an open disk is a closed disk

Br(P ) = {X ∈ R2 | d(X,P ) ≤ r},

and Br = Br(O).
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3.1 Basic definitions

A tile is a subset of R2 that is a topological disk. This means that it is the image of the closed disk
B1 under some homeomorphism. Homeomorphisms preserve topological properties, so tile t immediately
inherits topological properties from the disk B1:

� t is compact (=closed and bounded),

� the interior of t is connected, and the complement of t is connected,

� the boundary of t is the boundary of its interior,

� the boundary of t is a simple closed curve, that is, homeomorphic to the unit circle

{X ∈ R2 | d(X,O) = 1}.

This definition of a tile is very general. Later, additional restrictions will be added as needed. For
example, we may restrict our attention to tiles that are polygons. Here are some examples of tiles:

but these are not tiles:

(They are with non-connected interior, non-connected complement, boundary that is not the boundary
of the interior, and unbounded, in this order.)

A tiling T is a family of tiles that covers the plane

(1) without gaps (every P ∈ R2 belongs at least one tile), and

(2) without overlaps (the interiors of the tiles are pairwise disjoint).

Notice that the boundaries of the tiles do not need to be disjoint. But it follows that every point that
belongs to more than one tile cannot belong to the interior of any tile. Notice also that the number
of tiles in any tiling must be infinite (union of a finite number of bounded sets would be bounded) but
countable (the interior of each tile contains a point with rational coordinates).

This definition of tilings is very general. It does not restrict the number of different shapes used in
any way, so one tiling can, for example, contain arbitrarily small tiles. The left picture below represents
a part of a tiling, while the rightmost picture is not a tiling since the horizontal line in the center is not
covered by any tile.
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Let T = {t1, t2, . . . } be a tiling. Its symmetry group G consists of those isometries α that take every
tile of T onto a tile of T , that is, for every i = 1, 2, . . . there exists j such that α(ti) = tj . It is easy to
see that symmetry groups of tilings (even under our very general definition of tiles) are discrete: the only
possibilities are our familiar rosette, frieze and wallpaper groups.

Theorem 3.1 The symmetry group of a tiling is discrete.

Proof. Let G be the symmetry group of tiling T = {t1, t2, . . . }. Then there must exist a positive number
ε such that the length of every non-trivial translation in G is at least ε. Indeed, the interior of tile t1
contains a disk Bε(P ) for some ε > 0, so any translation τ that is shorter than ε takes P into the interior
of t1. This means that τ(t1) = t1, which is possible only if τ = ι.

Consider then rotations. Suppose first there is a non-trivial translation τ in G. If there are arbitrarily
small rotations in G then there are arbitrarily small translations among τ−1ρτρ−1, which contradicts the
conclusion in the previous paragraph.

Suppose than that G contains only the trivial translation. Then all rotations have the same center P
of rotation (Corollary 2.22). Suppose there would be arbitrarily small rotations around P .

Let t ∈ T be a tile that contains point P . We have t ⊆ Bk(P ) for a sufficiently large number k. Let
Q be a point whose distance from P is at least k such that Q belongs to the interior of some tile t′ ∈ T .
(Just choose any point Q sufficiently far away from P . If Q is not in the interior of any tile then Q is on
the boundary of some t′. There are interior points of t′ close to Q. We can choose any one of them.)

The circle c = {X ∈ R2 | d(P,X) = d(P,Q)} does not intersect t, but it contains an interior point Q
of t′. Let us prove that c ⊆ t′. Assume the contrary: there exists a point R ∈ c such that R ̸∈ t′. The
complement of t′ is open so, for all sufficiently small angles Θ, we have ρP,Θ(R) ̸∈ t′.

Let ε > 0 be a small number so that ρP,Θ(Q) is an interior point of t′ and ρP,Θ(R) ̸∈ t′ for all angles Θ
with |Θ| < ε. Choose one positive angle Θ < ε such that ρ = ρP,Θ ∈ G. Because ρ is a symmetry of the
tiling such that ρ(Q) is an interior point of t′, we must have that ρ(t′) = t′. This means that ρi(Q) ∈ t′

for all integers i. Choose number i such that |iΘ− Φ| < ε where Φ is the angle such that ρP,Φ(Q) = R.
Then ρi(Q) ∈ t′ but, on the other hand,

ρi(Q) = ρP,iΘ(Q) = ρP,iΘ−ΦρP,Φ(Q) = ρP,iΘ−Φ(R) ̸∈ t′,

a contradiction.
We have proved that c ⊆ t′. Then the complement of t′ is not connected: Interior points of t are in

the disk Bk(P ) so they are separated by t′ from the points outside the circle c. This contradicts the fact
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that t′ should be a topological disk. Conclusion: there can only be a finite number of rotations in G, so
G is a finite subgroup of I, and therefore a rosette group.

Note that it is essential in the proof that the tiles are topological disks, and hence do not contain
holes. If we would allow tiles that are topological rings then we would have, for example, the following
”tiling” whose symmetry group is not discrete.

Each rosette group, frieze group and wallpaper group is the symmetry group of some tiling. We see
some examples in the homeworks. As another example, below is a piece of a tiling whose symmetry
group is D5. This can be easily generalized to obtain a tiling whose symmetry group is Dn or Cn, for
any n ≥ 5.

Our main interest is in tilings using only a finite number of different shapes. More precisely, tiles
{p1, p2, . . . , pk} are prototiles of a tiling T = {t1, t2, . . . } if every tile ti ∈ T is congruent to some pj .
By congruent we mean that there is an isometry (even or odd!) that takes ti onto pj . We say that
the prototiles {p1, p2, . . . , pk} admit the tiling T . Tiling T is called k-hedral, where k is the number
of prototiles pj . In the special cases of k = 1 and k = 2 the tiling is called monohedral and dihedral,
respectively. Note that some tiles may be ”flipped over” copies of the prototiles, that is, the isometry
that takes the prototile on a tile may be odd. In some cases we may be interested in those k-hedral
tilings where the tiles are congruent to prototiles by even isometries, but in these cases this will be stated
explicitly. Here is an example of a monohedral and a dihedral tiling:
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Let T = {t1, t2, t3, . . . } be a tiling. If h : R2 −→ R2 is a homeomorphism then also h(T ) = {h(t1), h(t2), h(t3), . . . }
is a tiling. We say that tilings T and h(T ) are topologically equivalent. This is easily seen to be an equiv-
alence relation among tilings.

Every isometry is a homeomorphism, so if α is an isometry then α(T ) = {α(t1), α(t2), α(t3), . . . } is a
tiling. We say that that α(T ) is congruent to tiling T . Also congruence is an equivalence relation among
tilings.

Finally, a similarity s : R2 −→ R2 is a composition of an isometry and a stretch (that is, a function that
maps (x, y) ↦→ (kx, ky) for some k > 0). In other words, a similarity s by factor k > 0 is a function such
that for any two points P,Q ∈ R2 we have d(s(P ), s(Q)) = k ·d(P,Q). Similarities are homeomorphisms,
so s(T ) = {s(t1), s(t2), s(t3), . . . } is a tiling. We say that tilings T and s(T ) are similar. Intuitively,
similarity of two tiling means that they look the same when one of them is watched under a suitable
magnifying class. Usually (unless otherwise noted) we consider similar tilings to be the same tiling.

The following figure contains four topologically equivalent monohedral tilings. First two are congruent
with each other, and they are similar to the third one:

Two tiles t1 and t2 of tiling T are called equivalent in T if there exists a symmetry of T that takes
t1 onto t2. This is clearly an equivalence relation among tiles ti. Equivalence classes are called the
transitivity classes of T . If tiling T has only one transitivity class then the tiling is called isohedral
(or tile-transitive). More generally, if there are k transitivity classes then the tiling is called k-isohedral.
Notice that any isohedral tiling is monohedral as equivalent tiles are congruent. But there are monohedral
tilings that are not isohedral. Analogously, a k-isohedral tiling is always k-hedral (but it can also be n-
hedral for some n < k). Here are examples of an isohedral tiling and a monohedral tiling that is not
isohedral, or even k-isohedral for any finite k.
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It is easy to see (in the homeworks!) that the symmetry group of a k-hedral tiling is a wallpaper
group if and only if the tiling is n-isohedral for some n. (But there are also tilings that are not k-hedral
for any k and whose symmetry group is a wallpaper group.)

3.2 Tilings by regular polygons

We restrict the study in this section to tilings that are by regular polygons, and that are edge-to-edge,
that is, the intersection of two tiles is either empty, single vertex of the polygons, or the entire edge of
the two neighboring polygons. Two tiles are called edge neighbors (vertex neighbors) if their intersection
is an edge (edge or vertex, respectively) of the polygons. Corners of the polygons are called the vertices
of the tiling.

Consider a vertex P where r regular polygons of orders n1, n2, n3, . . . , nr meet, in this order (counted
clockwise or counterclockwise). Then we say that the vertex is of type n1 · n2 · · · · · nr. For example,
vertices of types 3 · 3 · 6 · 6, 3 · 4 · 4 · 6 and 3 · 4 · 6 · 4 look like

Notice that types 3 ·4 ·4 ·6 and 4 ·6 ·3 ·4 and 4 ·3 ·6 ·4 are all identical, as they are obtained by changing the
starting point and/or the direction of reading the polygons. We also adapt the usual shorthand notations
for repetitions, so that 3 · 3 · 6 · 6 may be abbreviated as 32 · 62.

The interior angle of a regular n-gon is 180◦(1− 2
n). Consequently, if P is a vertex of type n1 ·n2 ·· · ··nr

then
r∑︂

i=1

(︃
1− 2

ni

)︃
= 2. (1)
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This follows from the fact that the interior angles of the polygons that meet at P must sum up to 360◦.
Assume first that the tiling is monohedral, with all tiles regular n-gons. Then (1) becomes

r(1− 2

n
) = 2,

which implies n = 2r
r−2 . Because n is positive, we must have r ≥ 3, and because n ≥ 3 we must have

r ≤ 6. With r = 3, 4, 5 and 6 we get n = 6, 4, 103 and 3. Number n is an integer so we only have three
solutions. These are the familiar regular tilings

Theorem 3.2 The only edge-to-edge monohedral tilings by regular polygons are the three regular tilings
above.

Consider then the case when the tiling is not necessarily monohedral. Possible types of vertices are
limited by (1). We only have the following numerical solutions to (1), and the corresponding possibilities
for the vertex types:

type archimedean

3 · 3 · 3 · 3 · 3 · 3 A

3 · 3 · 3 · 3 · 6 A

3 · 3 · 3 · 4 · 4 A

3 · 3 · 4 · 3 · 4 A

3 · 3 · 4 · 12
3 · 3 · 6 · 6
3 · 4 · 3 · 12
3 · 4 · 4 · 6
3 · 4 · 6 · 4 A

3 · 6 · 3 · 6 A

3 · 7 · 42
3 · 8 · 24
3 · 9 · 18
3 · 10 · 15
3 · 12 · 12 A

4 · 4 · 4 · 4 A

4 · 5 · 20
4 · 6 · 12 A

4 · 8 · 8 A

5 · 5 · 10
6 · 6 · 6 A
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The last column indicates whether the vertex type appears in some archimedean tiling: An edge-to-edge
tiling by regular polygons is termed archimedean if all vertices of the tiling are of the same type. The
three regular tilings are all archimedean, corresponding to vertex types 63, 44 and 36. In addition, it
turns out that there are only eight other examples of archimedean tilings, corresponding to the vertex
types marked by ”A” in the table above.

Theorem 3.3 (Kepler 1619) There are exactly eleven different archimedean tilings, one of each type
indicated by ”A” in the table above.

Proof. The eight non-regular archimedean tilings are shown below. It is easy to very that they are indeed
archimedean, and one can easily verify that the types of their vertices match the types marked by ”A”.
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To prove that no other archimedean tilings exist we have to show that (i) the vertex types without
”A” in the table are not possible in archimedean tilings, and (ii) each type with ”A” leads to a unique
tiling. Let us use the following terminology: a polygon is incident to its vertices and edges, and an edge
is incident to its endpoints. Two vertices are adjacent if they are the two endpoints of an edge.

(i) Vertex type x · y · z where x is odd and y ̸= z is not possible in any archimedean tiling: The edge
neighbors of an x-gon across two consecutive edges are a y-gon and a z-gon. (Note: This is true even if
x = y or x = z.) So y-gons and z-gons alternate as the edge neighbors of an x-gon when we go around
its edges clockwise. But since x is odd this is not possible: we necessarily end up with two consecutive
neighbors of the same type.

y

z

y

z

y

z

z

x

This reasoning rules out six vertex types 3 · 7 · 42, 3 · 8 · 24, 3 · 9 · 18, 3 · 10 · 15, 4 · 5 · 20 and 5 · 5 · 10.
By a similar argument, vertex type x · y · u · z is not possible when x is odd, y ̸= z, and no three of

the numbers are equal. Clearly x ̸= y or x ̸= z. The two situations are symmetric, so we may assume
that x ̸= z. Then two consecutive edge neighbors of an x-gon are an y-gon and a z-gon, or — if x = y
— possibly a y-gon and a u-gon. In either case, every other edge neighbor is a y-gon, and every other
neighbor is not a y-gon, which is not possible as x is odd.

y

yy

x

u or zu or z

u or zu or z

This rules out the remaining four vertex types 3 · 3 · 4 · 12, 3 · 3 · 6 · 6, 3 · 4 · 3 · 12 and 3 · 4 · 4 · 6.

(ii) Let us prove that any archimedean tiling T is similar to one of the given eleven tilings, namely the
one with the same vertex type. We start by selecting one arbitrary vertex P of T and one arbitrary
vertex P ′ of the known archimedean tiling A of the correct vertex type. There clearly exists a similarity
function s that maps P onto P ′ in such a way that the polygons incident to P in T are mapped onto
the polygons incident to P ′ in A. Let us show that (with one exception in type 3 · 3 · 3 · 3 · 6) similarity
s maps the entire tiling T onto tiling A.

It is enough to consider the vertices that are adjacent to P , and to show that all tiles incident to
those vertices are mapped by s onto similar tiles on tiling A. Namely then we can repeat the reasoning
on the adjacent vertices to conclude that all vertices adjacent to them are mapped correctly, and so on,
by mathematical induction, that all tiles at any distance from P are mapped onto tiles of A.
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Consider first tilings of vertex types 3 ·12 ·12, 4 ·6 ·12, 4 ·8 ·8, and 6 ·6 ·6, that is, the cases x ·y ·z where
three polygons meet at the vertices. Let Q be any of the three vertices adjacent to P . Two polygons
incident to Q are also incident to P so they are known. This means that also the third polygon incident
to Q is known and it must be mapped by s onto the corresponding tile in the archimedean tiling A.

z

P

x

����

y

y

z
x

As discussed above, this is enough to prove that the entire tiling T is mapped onto A.
Vertex types 4 · 4 · 4 · 4 and 3 · 3 · 3 · 3 · 3 · 3 are also trivial: the polygons are all congruent and they

must be correctly mapped onto the corresponding tiles in A.
Consider then the vertex types 3 ·4 ·6 ·4 and 3 ·6 ·3 ·6. Let Q be a vertex adjacent to P . Two polygons

that are edge neighbors and incident to Q are known. The other two are then also uniquely determined:
in the first case one of the known polygons is a square, and the polygon opposite to it at Q must be a
square as well, and in the case of 3 · 6 · 3 · 6 one of the known polygons is a triangle, and the polygon
opposite to it at Q is a triangle. In both cases the polygons incident to Q are uniquely determined, and
therefore mapped by s onto similar tiles in the tiling A.

There remain three vertex types to analyze, namely 3 · 3 · 3 · 3 · 6, 3 · 3 · 3 · 4 · 4 and 3 · 3 · 4 · 3 · 4.
Consider type 3 · 3 · 3 · 4 · 4 first: The following figure shows the order in which the vertices adjacent to
P can be processed to determine the polygons incident to them. One can easily verify that the polygons
are uniquely determined if the vertices are processed in the alphabetical order A,B,C,D, . . . . So the
tiles are all mapped correctly onto tiling A.

P

A

BC

DE

Analogously, if the vertex type is 3 · 3 · 4 · 3 · 4 the vertices should be processed in the order indicated in
this figure:
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Finally, consider the vertex type 3 · 3 · 3 · 3 · 6. In all previous cases, any similarity s that takes a vertex P
and the incident polygons of T onto a vertex P ′ and its incident polygons of A is necessarily a similarity
between entire tilings T and A. But in the case of vertices of the type 3 · 3 · 3 · 3 · 6 this is no longer
true. Instead, there exist two similarities from vertex P onto vertex P ′: one even and one odd similarity.
And exactly one of them is a similarity between tilings T and A. In the following figure, the polygons
incident to vertices A and B are uniquely determined. Then, the hexagon incident to vertex C must be
one of the two dotted hexagons in the illustration. (The third alternative would lead to two hexagons
that are vertex neighbors, and is therefore impossible.)

P

A

B

C

In either case, the similarity s can be chosen in such a way that the hexagon incident to C is mapped
correctly onto tiling A. The similarity is even or odd depending on the position of the hexagon. There-
after, the remaining polygons are uniquely determined. In this case we have to verify the uniqueness of
the polygons up to vertices of distance two from P . After this the uniqueness of the entire tiling follows
by mathematical induction:

P

A

B

C

D

E

Notice that the previous proof indicates that the 11 archimedean tilings are vertex transitive: for any
two vertices P1 and P2 of the tiling, there exists a symmetry of the tiling that takes P1 onto P2. With
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the exception of type 3 · 3 · 3 · 3 · 6, any isometry that takes vertex P1 and its incident polygons onto P2

and its incident polygons is a symmetry of the tiling. The archimedean tiling of type 3 · 3 · 3 · 3 · 6 comes
in two enantiomorphic forms that are congruent with each other only by odd isometries.

Archimedean tilings are also called uniform, which refers to the fact that they are vertex transitive:
the entire tiling looks exactly the same from each vertex. This is a stronger property than the property
we started with: that the tiling looks locally the same at each vertex, as each vertex is of the same type.

4 Wang tiles

Wang tiles are unit square tiles with colored edges. Hence each tile can be represented as a 4-tuple
(N,E, S,W ) where N,E, S and W are the colors of the north, east, south and west sides of the square.
Tilings with a finite number of prototiles are only considered. In Wang tilings copies of the prototiles
are placed at integer lattice points, without rotating or flipping the tiles, so that all tiles are congruent
to the given prototiles by translations only. A tiling can then be represented as a function f : Z2 → P
where P is the set of prototiles and f(i, j) gives the tile at position (i, j) ∈ Z2. The tiling rule is that in
a valid tiling the shared edge between any two tiles that are edge neighbors must have the same color.

For example, set P = {(Green, Green, Red, Red), (Red, Red, Green, Green)} consists of two pro-
totiles

sGreen GreenRed Redt

Green

Red Green

Red

that admit the checkerboard-tiling

t

t

t

t

t

t

ts

s s

s

s
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Wang tiles provide a discrete abstraction of tilings that allows us to study tilings using tools of discrete
mathematics rather than geometry. This is especially useful when investigating computational properties
and problems related to tilings. At first, Wang tiles may seem very restricted as the tilings are on a square
lattice only. Nevertheless, the computational problems on Wang tiles are as hard as on more general
types of tiles. By using Wang tiles we avoid problems related to representations of tiles (e.g. irrational
coordinates of vertices) on computers, and we transform geometric problems into more manageable
symbolic problems.

Our first observation is that Wang tiles fit our original definition of tiles as topological disks. We
can namely represent Wang tiles as polygons as follows: The basic shape is a unit square. The middle
of the north and east sides of each tile contain triangular ”bumps” and the south and west sides have
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”dents” that exactly fit the bumps. The bump/dent pairs are different in the horizontal and the vertical
directions, and they are asymmetric so that flipped and non-flipped tiles do not match:

It should be clear that these tiles can only tile the plane in such a way that all tiles are aligned, and
rotations and flips are not possible. To simulate the colors, we introduce an additional bump/dent pair
on the sides of the tiles. Each color has its own bump/dent shape that does not fit with any other color.
For example, our sample protoset of two tiles could look like this:

It should be obvious from this construction that any tiling by such polygons is congruent to a tiling
where the tiles are positions at integer lattice points, without rotations and flips. Such tilings are clearly
”isomorphic” to Wang tilings.

In the following we consider all tilings that given prototiles admit. In particular, we are interested to
know when do given prototiles admit at least some tiling and when do they admit a periodic tiling. As
it turns out that even among Wang tiles these questions can not be algorithmically answered (they are
undecidable), so it follows that the questions are undecidable also among tiles that are polygons.

In the following two subsections we prove two preliminary results that will be needed in the algorithmic
considerations that follow: First we show that if a finite set of Wang prototiles admits a tiling whose
symmetry is a frieze group then it automatically admits also a tiling with a wallpaper symmetry. Then
we prove that if one can tile arbitrarily large squares then one can also tile the entire infinite plane.

4.1 Periodic tilings

A tiling is called non-periodic if its symmetry group is finite, that is, if there is no translation that keeps
the tiling invariant. A tiling is two-way periodic, or simply periodic, if its symmetry group is a wallpaper
group, that is, if there are translations in non-parallel directions that keep the tiling invariant. A tiling
whose symmetry group contains some non-trivial translation will be called called one-way periodic.

Vector (a, b) ̸= (0, 0) is called a period of a tiling, if τ(a,b) is a symmetry of the tiling. In the case of a
Wang tiling f : Z2 −→ P this means that f(x, y) = f(x+ a, y + b) for all (x, y) ∈ Z2.

Notice that any two-way periodic tiling with Wang tiles has horizontal and vertical periods of equal
lengths. Namely, if f : Z2 −→ P is periodic with non-parallel periods (a, b) and (c, d) then it is also
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periodic with the horizontal period d(a, b)−b(c, d) = (ad−bc, 0) and the vertical period a(c, d)−c(a, b) =
(0, ad− bc). Note that ad− bc ̸= 0 as vectors (a, b) and (c, d) are not parallel. In other words, a two-way
periodic Wang tiling consists of a periodic repetition of a square pattern.

The next theorem states that a set of Wang tiles that admits a one-way periodic tiling also admits a
periodic tiling:

Theorem 4.1 Let P be a finite set of Wang prototiles that admits a tiling f : Z2 −→ P that is one-way
periodic. Then there exists also a two-way periodic tiling g : Z2 −→ P.

Proof. Let (a, b) ̸= (0, 0) be a period of tiling f . Without loss of generality we may assume that b > 0.
Consider a horizontal strip of height b extracted from tiling f , e.g., the tiles f(x, y) for 1 ≤ y ≤ b. The
sequences of horizontal colors on the top and the bottom of this strip are identical, with the horizontal
offset a:

(a,b)

Within this strip, consider the rectangular |a| × b blocks

f(j,1) f(j+|a|-1,1)

f(j+|a|-1,2)

f(j+|a|-1,b)

f(j+1,1)

f(j+1,2)f(j,2)

f(j,b) f(j+1,b)

j j+1 j+|a|-1

1

2

b

of tiles extracted from f with the bottom-left corner in position (j, 1), for all j ∈ Z. (And if a = 0
consider just the sequences of vertical colors on the b rows.) Since there are only a finite number of tiles
in the protoset, there are only a finite number of such blocks. This means that for two different values
of j, say j1 and j2, the blocks are identical.

Now we can construct a valid periodic tiling of an infinite horizontal strip of height b by repeating
the pattern between positions j1 and j2. Note that the sequences of horizontal colors on the top and the
bottom of this strip are again identical, with the horizontal offset a:

j
2

j
1
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The tiling of the strip is valid and it has a horizontal period of length j2 − j1. A valid, two-way periodic
tiling of the plane can now be obtained by stacking copies of the strip on top of each other, with the
horizontal offset a:

4.2 Compactness principle

In later chapters we’ll introduce a metric on tilings that induces a compact topology. This will imply
several interesting results, but for the main algorithmic questions that follow next we just need to know
that if a Wang set admits tilings of arbitrarily large squares then it admits a tiling of the whole infinite
plane. This is a direct consequence of the compactness, but we state the result here without a direct
reference to topology.

Let P be a finite set of Wang prototiles. Let us call any function

c : Z2 → P

a configuration, and let us denote by
PZ2

= {c : Z2 → P}

the set of all configurations over the tile set P. Note that configurations are arbitrary assignments of tiles
on integer lattice points. i.e., the color constraints are not checked. Valid tilings are particular types of
configurations.

Consider an infinite sequence c1, c2, . . . of configurations, each ci ∈ PZ2
. We say that the sequence

converges and c ∈ PZ2
is its limit if for every (x, y) ∈ Z2 there exists some k ≥ 0 such that ci(x, y) = c(x, y)

for all i ≥ k. In other words: if we look at an arbitrary position and browse through a converging sequence
c1, c2, . . . then from some moment on we always see the same tile in that position. It is obvious that if a
limit exists it is unique, and we denote this limit by

lim
i→∞

ci.

A subsequence of c1, c2, . . . is another sequence ci1 , ci2 , . . . where i1 < i2 < . . . . A subsequence is hence
obtained by picking infinitely many elements of the sequence, preserving their relative order. Obviously
every subsequence of a converging sequence also converges and has the same limit.

The following theorem states the compactness of the configuration space:

Theorem 4.2 Every sequence of configurations has a converging subsequence.

Proof. Let c1, c2, . . . be an arbitrary sequence, ci ∈ PZ2
. Let r⃗1, r⃗2, . . . be some (arbitrary) enumeration

of elements of Z2. In the following we show that there is a subsequence ci1 , ci2 , . . . such that for every
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n ≥ 1, if j ≥ n then cij (r⃗n) = cin(r⃗n), i.e., the subsequence has a constant value in the n’th position r⃗n
starting from the n’th element of the subsequence. Then clearly the subsequence converges.

Let us choose indices i0 < i1 < i2 < i3 < . . . inductively as follows: i0 = 0 and i1 ≥ 1 is the smallest
positive index such that there are infinitely many elements in c1, c2, . . . that agree with ci1 in the first
position r⃗1. Such ci1 exists because there are only finitely many different tiles that can appear in position
r⃗1.

Suppose then that ik−1 has been chosen and we want to choose ik for k ≥ 2. We choose ik to be the
smallest integer that satisfies the following three conditions:

(Ak) ik > ik−1,

(Bk) cik(r⃗j) = cik−1
(r⃗j) for all j = 1, 2, . . . k − 1.

(Ck) There exist infinitely many indices i such that ci(r⃗j) = cik(r⃗j) for all j = 1, 2, . . . k.

Numbers ik that satisfy (Ak)–(Ck) always exist for the following reasons: Because condition (Ck−1) was
satisfied when ik−1 was chosen, we have infinitely many choices of ik that satisfy (Bk). Set Pk is finite
so there is a finite number of combinations of tiles that can appear in positions r⃗1, . . . , r⃗k. Consequently,
among the infinitely many indices ik that satisfy (Bk) there are infinitely many choices that also satisfy
(Ck). Some of them hence satisfy all requirements (Ak)–(Ck).

It follows from properties (Bk) that ci1 , ci2 , . . . converges: For an arbitrary r⃗n ∈ Z2 all cij for j ≥ n
have the same tile in position r⃗n.

Note: The proof is essentially the same as the proof of weak Kőnig’s lemma which states that an
infinite binary tree contains an infinite path. The proof did not require the axiom of choice. (The same
result could also be easily proved using Tychonoff’s theorem, but that is equivalent to the axiom of
choice.)

Let us say that a configuration c : Z2 → P tiles correctly at position (x, y) ∈ Z2 if c(x, y) matches
in color with its neighbors c(x, y − 1), c(x, y + 1), c(x − 1, y), c(x + 1, y). A configuration is then a valid
tiling iff it tiles correctly at each position.

The following corollary of the compactness principle states that if P can be used to properly tile
arbitrarily large squares then it admits a valid tiling of the plane:

Corollary 4.3 Let P be a finite set of Wang tiles. Suppose that for each finite set F ⊂ Z2 of positions
there is a configuration that tiles correctly at each (x, y) ∈ F . Then P admits a valid tiling.

Proof. Let r⃗1, r⃗2, . . . be an enumeration of elements of Z2, and for each n ≥ 1 denote

Fn = {r⃗1, r⃗2, . . . , r⃗n}.

By the hypotheses of the corollary there exists for each n a configuration cn that tiles correctly at positions
r⃗1, r⃗2, . . . , r⃗n. By Theorem 4.2 the sequence c1, c2, . . . has a converging subsequence. Let c ∈ PZ2

be its
limit. Then c tiles correctly at every position r⃗k because there are arbitrarily large indices i such that c
and ci assign the same tile to position r⃗k and its neighbors.

4.3 Robinson’s aperiodic tile set

It is easy to construct Wang tiles that admit non-periodic tilings. For a long time it was thought
that any finite set of prototiles that admits a non-periodic tiling must also admit a periodic one. This
conjecture was refuted by R.Berger in 1966 when he constructed a set of Wang prototiles that only admit
non-periodic tilings.

A finite set of prototiles is called aperiodic if
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(i) it admits valid tilings, and

(ii) it does not admit any periodic valid tilings.

As an example of an aperiodic tile set we next describe a set of 56 Wang tiles due to R.M.Robinson.
This set will be also useful later in our undecidability proofs. Instead of colors we use arrows to describe
the matching rules between tiles. In valid tilings arrow heads and tails in neighboring tiles must match.
This formalism can be easily converted into a color-based matching simply by assigning a different color
for each orientation and positioning of arrows.

Robinson’s tile set consists of tiles

called ”crosses” and tiles

called arms. All tiles may be rotated so each tile comes in four orientations. Hence the total number of
such tiles is 28.

The following terminology will be used:

� Every tile has central arrows at the centers of all four sides, and possibly some side arrows.

� A cross is said to face the directions of its side arrows.

� The arrow that runs through an arm is called the principal arrow of the arm, and the direction of
the principal arrow is called the direction of the arm.

All six arms above are drawn in the north-to-south orientation. An important fact about arms is that if
there are side arrows perpendicular to the principal arrow then these side arrows are towards the head of
the principal arrow. Otherwise, all combinations of side arrows are allowed, as shown in the figure above.

We want to enforce a cross in the intersections of every other row and column. This can be established
by forming the cartesian product (”sandwich tiles”) with the parity tiles
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and by forbidding arms from the first parity tile. Since the only way the parity tiles tile the plane is by
alternating the tiles on even and odd rows and columns, the first parity tile is forced at the intersections
of every other row and column, and hence a cross is forced to appear in those locations. By numbering
the rows and columns suitably we can assume from now on that all odd-odd positions of the plane contain
a cross.

Note that between two crosses can only appear an arm, and the orientation of the arm has just two
possible choices as it cannot point towards either cross. This means that the second parity tile only needs
to be paired with north-to-south or south-to-north oriented arms, and the third parity tile is only paired
with east-to-west or west-to-east oriented arms. The fourth parity tile is paired with any of the 28 tiles.
So the final set contains 4 + 12 + 12 + 28 = 56 different tiles.

Next we investigate valid tilings admitted by Robinson’s tiles, and we show that the tile set is aperi-
odic. Specific patterns called 1-, 3-, 7-, 15-, . . . , (2n − 1)-squares are defined recursively as follows:

(i) A 1-square is a cross at the odd-odd position,

(ii) A (2n+1 − 1)-square consists of a cross in the middle (in an even-even position), sequences of arms
radiating out of the center and four copies of (2n−1)-squares facing each other at the four quadrants:

(2  -1)-square
n

nn

n
(2  -1)-square

(2  -1)-square(2  -1)-square

Note that for every n there are actually four different (2n − 1)-squares as the cross at the center may be
in any of the four possible orientations. For example, the following figure illustrates the 3-square facing
north and east:
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and the following figure shows the 7-square facing north and east. (For clarity, only the central, principal
arrows of the arms are shown. The other arrows are uniquely determined by the orientations of the
crosses.)

Inductively one easily gets the following properties of (2n − 1)-squares: (1) The tiling is valid within the
square, (2) all edges on the border of the square have arrow heads pointing out of the square, so all edge
neighbors of (2n− 1)-squares are forced to be arms, and (3) the only side arrows on the border are in the
middle of the borders in the directions where the center cross of the square faces.

Consider an arbitrary valid tiling of the plane by Robinson’s tiles. Let us show, using mathematical
induction on n, that every cross in odd-odd position belongs to a unique (2n − 1)-square, for every
n = 1, 2, . . . . The case n = 1 is trivial, as by definition 1-squares are themselves the crosses at odd-odd
positions. Suppose then the claim is true for n and let C be an arbitrary cross in an odd-odd position.
By the inductive hypothesis C belongs to a unique (2n − 1)-square s. There are four possibilities for the
orientation of this square, but they are all symmetric. Let us assume without loss of generality that s
faces north and east. In the following discussion we refer to symbols indicating positions in the following
figure:

Y

Z

U

X

Y

Z

U

ss

ss

a

b
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First we prove that tile X, outside the north-east corner of square s, must be a cross. Suppose the
opposite: X is an arm. Then it has an incoming arrow on all but one side, so one of its edge neighbors
in regions a or b must be an arm directed towards X. By continuing this reasoning we see that all tiles
in one of the regions a or b must be arms directed towards X. But this means that the tile at the center
of region a or b is an arm with an incoming side arrow at the wrong end of the principal arrow: the side
arrows are only possible towards the head of the principal arrow. Hence the assumption that X is an
arm must be incorrect, and X must be a cross.

Consider then tile Y that is a cornerwise neighbor of X. It is in an odd-odd position and therefore
Y is a cross. According to the inductive hypothesis Y belongs to a (2n − 1)-square sY . This square
cannot overlap with square s because then the tiles in the overlap region would belong to two different
(2n − 1)-squares which contradicts the uniqueness property. Also the tile north of X cannot belong to
sY because X is a cross. Hence Y has to be at the south-east corner of sY . Analogously, tiles Z and
U are corners of disjoint (2n − 1)-squares sZ and sU , respectively. Tiles between these (2n − 1)-squares
are forced to be arms radiating out from X. The side arrows at the middle of a and b force the center
crosses of sY and sZ to face squares s and sU , so the squares of s, sY , sZ , sU and the tiles between them
form a (2n+1 − 1)-square that contains tile C.

We have proved the existence of a (2n+1 − 1)-square that contains C. The uniqueness is obvious as
the orientation of the (unique) (2n − 1)-square s that contains C determines the location of the center of
the (2n+1 − 1)-square that contains C.

We have proved that every 1-square belongs to a 3-square, which belongs to a 7-square, which belongs
to a 15-square and so on. Based on this observation we can state:

Lemma 4.4 Robinson’s tiles form an aperiodic protoset.

Proof. The (2n − 1)-squares are valid tilings of arbitrarily large squares, so a valid tiling of the plane
exists (Corollary 4.3).

The centers of the quadrants of any (2n − 1)-square are crosses separated by (2n−1 − 1) arms. As
every valid tiling contains (2n − 1)-squares for every n, the tiling contains horizontally aligned crosses
separated by arbitrarily long sequences of arms. So there can be no horizontal period, and a periodic
tiling is not possible.

4.4 An aperiodic set of 14 Wang tiles

We have learned the aperiodic set of 56 Wang tiles by Robinson. In this section we learn a very different
method of constructing aperiodic tile sets that yields a set with only 14 tiles, shown in the figure below.
But note that even smaller aperiodic sets exist: E. Jeandel and M. Rao have an aperiodic Wang tile set
that contains just 11 tiles, and they proved that 11 is the smallest possible size.

In our 14 tile set, the edges are labeled with rational numbers. Each number represents one color, so
in valid tilings neighboring tiles must match in the numbers at the abutting edges. Notice also the the
labels of the vertical edges of the first four tiles are underlined: This means that those numbers represent
a different color than the same numbers without a line underneath.

The set consists of two parts: the first four tiles form the set P2 and the set of the last ten tiles is
called P2/3. The aperiodic set P is the union of these two sets. As the vertical sides of the elements of
the two parts have different labels, it is clear that on any valid tiling of the plane by P, each horizontal
row is tiled by tiles that come from P2 or P2/3 only.
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The tiles perform arithmetic operations in the following sense: We say that tile

b

a

d

c

multiplies by q if qa+ b = c+ d. In other words, the tile multiplies the ”input” number a on its bottom
edge by q, adds the ”carry forward” b from the left edge, and splits the result between the ”output” c at
the top edge and the ”carry forward” d to the right. It is easy to verify that the tiles in P2 all multiply
by 2, and the tiles in P2/3 multiply by 2

3 .
Consider a horizontal segment of n tiles that all multiply by the same number q. Let ai, bi, ci and di

be the numbers on the i’th tile so that qai + bi = ci + di, for all i = 1, 2, . . . n. Summing up over all n
tiles we get

q

n∑︂
i=1

ai +

n∑︂
i=1

bi =

n∑︂
i=1

ci +

n∑︂
i=1

di.

If the tiling constraint is satisfied then we have di = bi+1 for all i = 1, 2, . . . , n − 1, and if the segment
also starts and ends with the same carry forward dn = b1 we have that

n∑︂
i=1

di =
n∑︂

i=1

bi.

This happens if the segment is extracted from a periodic tiling with horizontal period n. Then

q
n∑︂

i=1

ai =
n∑︂

i=1

ci.

Theorem 4.5 The set P of 14 Wang prototiles above is aperiodic.

Proof. We have two facts to prove: (i) no periodic tiling is possible, and (ii) some valid tiling exists.

(i) Suppose the opposite is true: there exists a periodic tiling f : Z2 −→ P. Then we know that such a
periodic tiling must have a horizontal period h and a vertical period v, for some h, v > 0. (In fact we
could choose these two numbers to be identical.)
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Let ai,j , bi,j , ci,j and di,j be the colors on the south, west, north and east edges of the tile f(i, j) in
position (i, j) ∈ Z2. It follows from the tiling rule that di,j = bi+1,j and that ci,j = ai,j+1. As discussed
above, we have

qj

h∑︂
i=1

ai,j =

h∑︂
i=1

ci,j =

h∑︂
i=1

ai,j+1,

where qj = 2 or 2
3 depending on whether the tiles on row j come from set P2 or P2/3. By combining

these equations for rows j = 1, 2, . . . , v we get the result that

q1q2q3 . . . qv

h∑︂
i=1

ai,1 =
h∑︂

i=1

ai,v+1 =
h∑︂

i=1

ai,1.

It is clear from the tiles that we cannot have a horizontal row of tiles such that the bottom edges all have
value 0, so we have

∑︁h
i=1 ai,1 > 0. Hence we can divide

∑︁h
i=1 ai,1 from the equation, which leaves

q1q2q3 . . . qv = 1.

But each qj is either 2 or 2
3 , and any product of these numbers is some power of 2 divided by a power of

3. Numbers 2 and 3 are relative primes, so no such product can equal 1, a contradiction.

(ii) It is enough to construct one valid tiling. The tiling will of course be non-periodic. We use the
following notations and concepts. For any real number x, the floor ⌊x⌋ of x is the largest integer not
greater than x, that is, ⌊x⌋ is the unique integer that satisfies x − 1 < ⌊x⌋ ≤ x. Analogously, the
ceiling ⌈x⌉ is the smallest integer that is not smaller than x. By the balanced representation B(x) of
real number x we mean the bi-infinite sequence . . . B(x)−1, B(x)0, B(x)1, B(x)2, . . . whose i’th term is
B(x)i = ⌊ix⌋ − ⌊(i− 1)x⌋. Notice that the elements of the sequence are integers, and

B(x)i = ⌊ix⌋ − ⌊(i− 1)x⌋ < ix− ((i− 1)x− 1) = x+ 1, and
B(x)i = ⌊ix⌋ − ⌊(i− 1)x⌋ > ix− 1− (i− 1)x = x− 1.

Hence each element of the sequence B(x) is either ⌊x⌋ or ⌈x⌉.
Consider an arbitrary real number x ∈

[︁
1
2 , 1

]︁
. We have that 0 ≤ x ≤ 1 and 1 ≤ 2x ≤ 2. The symbols

in the balanced sequences for x and 2x are 0’s and 1’s, and 1’s and 2’s, respectively. Let us show that
the prototiles of P2 admit a tiling of an bi-infinite horizontal strip whose bottom labels read the sequence
B(x) and the top labels read B(2x). Let

ai = B(x)i,
bi = 2⌊(i− 1)x⌋ − ⌊(i− 1)(2x)⌋,
ci = B(2x)i, and
di = 2⌊ix⌋ − ⌊i(2x)⌋

be the labels on the south, west, north and east edges of the tile in position i ∈ Z of the strip. It is clear
from this definition that bi = di−1 so the labels match on the tiling of the strip. Let us analyze values of
ai, bi, ci and di to prove that the tile with these labels is in our set P2.

From the properties of the balanced sequences we know that ai ∈ {0, 1} and ci ∈ {1, 2}. Clearly,

di − bi = 2⌊ix⌋ − ⌊i(2x)⌋ − (2⌊(i− 1)x⌋ − ⌊(i− 1)(2x)⌋)
= 2(⌊ix⌋ − ⌊(i− 1)x⌋)− (⌊i(2x)⌋ − ⌊(i− 1)(2x)⌋)
= 2ai − ci,

so the tiles of the strip multiply by number 2. We also have

di = 2⌊ix⌋ − ⌊i(2x)⌋ < 2ix− (2ix− 1) = 1,
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and
di = 2⌊ix⌋ − ⌊i(2x)⌋ > 2(ix− 1)− 2ix = −2.

Because di is an integer, the only possible values of di (and hence also bi) are −1 and 0. The following
possibilities remain:

ai = 0, ci = 2 =⇒ di − bi = 2ai − ci = −2, not possible,
ai = 0, ci = 1 =⇒ di − bi = 2ai − ci = −1 =⇒ di = −1, bi = 0,
ai = 1, ci = 2 =⇒ di − bi = 2ai − ci = 0 =⇒ di = bi = −1 or di = bi = 0,
ai = 1, ci = 1 =⇒ di − bi = 2ai − ci = 1 =⇒ di = 0, bi = −1.

Only four possibilities exist, and these are precisely the four tiles in P2.
Next we analyze P2/3 in a similar way. Let x ∈ [1, 2], so that 1 ≤ x ≤ 2 and 2

3 ≤ 2
3x ≤ 4

3 . The

balanced representations of x and 2
3x consist of 1’s and 2’s, and 0’s, 1’s and 2’s, respectively. Let us show

that there is a tiling by P2/3 of a bi-infinite strip such that the labels on the bottom and the top of the

strip read the balanced representations B(x) of x and B(23x) of 2
3x. For brevity, let us denote q = 2

3 .
The tile in position i of the strip has labels

ai = B(x)i,
bi = q⌊(i− 1)x⌋ − ⌊(i− 1)(qx)⌋,
ci = B(qx)i, and
di = q⌊ix⌋ − ⌊i(qx)⌋.

The consecutive tiles of the strip match as bi = di−1. We know that ai ∈ {1, 2} and ci ∈ {0, 1, 2}. As
above, we also have

di − bi = q⌊ix⌋ − ⌊i(qx)⌋ − (q⌊(i− 1)x⌋ − ⌊(i− 1)(qx)⌋)
= q(⌊ix⌋ − ⌊(i− 1)x⌋)− (⌊i(qx)⌋ − ⌊(i− 1)(qx)⌋)
= qai − ci.

We also have
di = q⌊ix⌋ − ⌊i(qx)⌋ < qix− (qix− 1) = 1,

and
di = q⌊ix⌋ − ⌊i(qx)⌋ > q(ix− 1)− qix = −q.

Because di is an integer multiple of 1
3 , the only possible values of di (and hence also bi) are −1

3 , 0,
1
3 and

2
3 . The following possibilities remain:

ai = 1, ci = 2 =⇒ di − bi = qai − ci = −4
3 ,

not possible,

ai = 1, ci = 1 =⇒ di − bi = qai − ci = −1
3

=⇒ di = −1
3 , bi = 0 or di = 0, bi =

1
3 or di =

1
3 , bi =

2
3 ,

ai = 1, ci = 0 =⇒ di − bi = qai − ci =
2
3

=⇒ di =
1
3 , bi = −1

3 or di =
2
3 , bi = 0,

ai = 2, ci = 2 =⇒ di − bi = qai − ci = −2
3

=⇒ di = −1
3 , bi =

1
3 or di = 0, bi =

2
3 ,

ai = 2, ci = 1 =⇒ di − bi = qai − ci =
1
3

=⇒ di = 0, bi = −1
3 or di =

1
3 , bi = 0 or di =

2
3 , bi =

1
3 ,

ai = 2, ci = 0 =⇒ di − bi = qai − ci =
4
3 ,

not possible.
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The ten possibilities are exactly the tiles of P2/3.

We have proved that for every x ∈
[︁
1
2 , 1

]︁
we can tile a strip whose bottom and top edges read the

sequences B(x) and B(2x), respectively, and for every x ∈ [1, 2] we can tile a strip whose bottom and
top edges read the sequences B(x) and B(23x). Define the following real function f :

(︁
2
3 , 2

]︁
−→

(︁
2
3 , 2

]︁
:

f(x) =

{︃
2x, if x ≤ 1, and
2
3x, if x > 1.

It is easy to see that the range of f is the half-open interval
(︁
2
3 , 2

]︁
, so function f is surjective. (In

fact, function f is a bijection, but this fact is not relevant to the reasoning below.) It follows from the
surjectivity of f that there exist bi-infinite sequences . . . x−1, x0, x1, x2, . . . of real numbers such that
xj+1 = f(xj) for all j ∈ Z. In fact, since one element x0 of the sequence can be chosen arbitrarily from
the half-open interval

(︁
2
3 , 2

]︁
, the number of such sequences is uncountably infinite.

As proved above, for each j ∈ Z we can tile an infinite strip whose edges read B(xj) and B(xj+1).
By stacking these strips on top of each other we obtain a tiling of the plane. In fact, we proved there
exist uncountably many different valid tilings.

The following diagram illustrates the tiles as a directed graph whose nodes are labeled by the vertical
colors, and the edges are labeled by pairs of ”input”/”output” symbols. Each edge corresponds to a
tile: the tile with labels a, b, c and d is the edge from node b to node d that is labeled by a/c. Any
bi-infinite path through the diagram that follows the edges gives a valid tiling of one bi-infinite strip.
Such a diagram is called a finite state transducer.

M2 : ���� ����
-1 0

~

1/1

}

0/1

�

1/2

�

1/2

M2/3 : ���� ���� ���� ����
-13 0 1

3
2
3

~

2/1

~

2/1

~

2/1

}
1/1

}
1/1

}
1/1

�

2/2

�

2/2

�

1/0

�

1/0

Analogously, it is easy to construct for any given rational number q a finite set of tiles that multiply
balanced sequences representing numbers of a given interval by q. The requested tiles have edge labels

a = B(x)i,
b = q⌊(i− 1)x⌋ − ⌊(i− 1)(qx)⌋,
c = B(qx)i, and
d = q⌊ix⌋ − ⌊i(qx)⌋.

where x is a number in the desired interval and i ∈ Z. A simple analysis shows that we always have
−q < b < 1 and −q < d < 1, so there only is a finite number of such tiles.
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The balanced sequences we used in the proof have many interesting properties. Balanced sequences
of rational numbers are periodic, but if x is irrational then B(x) is non-periodic, but only ”barely so”:
it is a so-called Sturmian sequence, which means that the number of different subsegments of length n
is n + 1, for every n. This is the smallest possible number of different subsegments of length n in any
non-periodic infinite sequence.

5 Undecidable problems concerning tiles

The following question (known as the domino problem or the tiling problem) arises naturally: How can
one determine if a given finite set of Wang prototiles admits a tiling ? Does there exist some simple
(or even complicated) properties that one can use to develop a computer program to determine if a
tiling is possible. The input to the program should be an arbitrary finite set of Wang tiles, and the
output should be ”yes” or ”no” depending on whether the input admits a tiling. In this section we show
that such a computer program does not exist. The non-existence is a mathematical fact that cannot be
overcome by building more powerful computers or by developing new programming languages or tools.
The undecidability will be deduced from Turing’s result on the undecidability of the halting problem of
Turing machines, using the reduction technique.

The tiling problem is an example of a decision problem. A decision problem is a problem that has
an input parameter, and the answer to the problem is always ”yes” or ”no”. When we fix the value
of the input parameter we get an instance of the problem. An instance is called a ”yes”-instance or a
”no”-instance depending on whether the answer to the decision problem is ”yes” or ”no”, respectively.
For example, the problem ”Does a given quadratic polynomial have a real root ?” is a decision prob-
lem. Quadratic polynomials are instances (we always use the keyword ”given” in the decision problem
statement to indicate the input). For example, x2 − 2x + 2 is a ”no”-instance, while x2 + 2x − 1 is a
”yes”-instance to this problem. In the tiling problem, instances are finite sets of Wang tiles, and an
instance is a ”yes”-instance iff the protoset admits a tiling of the plane. The complement of a decision
problem is the decision problem where the ”yes” and the ”no” answers have been switched: for example,
the complement of the tiling question asks whether the given protoset does not admit a tiling. ”Yes”
means now that no tiling is possible.

An algorithm can be formally defined in various ways. In order to keep the discussion simple, we are
going to leave it undefined. For our purposes it is sufficient to understand a (decision) algorithm to be a
computer program that takes some input and returns a ”yes” or a ”no” answer on each input. We say
that the algorithm solves a decision problem if the algorithm returns the correct yes/no -answer on every
instance of the problem. If such an algorithm exists then the decision problem is called decidable and if
no such algorithm exists then the problem is undecidable.

Strictly speaking, the input of a computer program is a string of bits (or a string over some other
alphabet) so the instance of a decision problem has to be encoded into such a string. For example, Wang
tiles could be encoded as sequences of four colors, each color represented as a unique binary string. There
are of course many ways to do such an encoding, but all encodings are equivalent in the sense that the
decidability status of the decision problem is not affected by the encoding. In our discussion encodings
of inputs will be irrelevant as we are not going to write any actual programs – rather algorithms will
be defined by describing in plain English the steps that the algorithm executes. The idea is that we all
are sufficiently familiar with computer programming so that such a description (when detailed enough)
will convince everyone that a computer program exists for solving the program. Notice also that when
describing an algorithm we do not need to worry about things related to computing resources such as
memory space etc. We are always supposed to have unlimited amounts of such resources.

For example, the following algorithm solves the question whether a given quadratic polynomial has
a real root: Let ax2 + bx + c be the input to the algorithm. The algorithm starts by computing the
discriminant D = b2 − 4ac. Then it checks whether D ≥ 0 or not. If D ≥ 0 then the algorithm returns
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”yes”, and if D < 0 then the algorithm returns ”no”. This level of description should convince everyone
that the problem is decidable.

Notice that from the decidability point of view any problem that has no input instance or has only a
finite number of possible instances is trivially decidable. For example, a question like ”Is the Riemann
hypothesis true ?” is decidable. There is a trivial algorithm that solves this problem, we just do not know
what that algorithm is. (The algorithm is either the algorithm that only types ”yes” or the algorithm
that only types ”no”.) In the same way, any problem with a finite number of possible input instances
is solved by a program that simply looks-up from a finite table the correct answer corresponding to the
given input. For example, for any fixed number N it is decidable if a given set of N Wang tiles admits
a valid tiling, as there are only finitely many such sets, up to renaming of the colors. So decidability
questions are only relevant in connection to decision problems with an unlimited number of possible input
instances.

A semi-algorithm is a weaker concept than an algorithm: it is a computer program that halts and
returns ”yes” if the input is a positive instance of the problem, but it may run forever, without ever
halting, on negative input instances. So a semi-algorithm (semi-) solves a decision problem if on every
”yes” -instance of the problem it returns the correct ”yes” -answer, but when the input is a ”no” -instance
it may run forever without ever returning an answer. If an answer is returned, it has to be the correct
answer: semi-algorithms never return wrong answers. If a decision problem has a semi-algorithm then it
is called semi-decidable. Clearly every decidable problem is also semi-decidable as an algorithm is also
a semi-algorithm. As an example of a semi-algorithm that is not an algorithm consider the following
process of determining if a given Wang protoset does not admit a tiling.

Lemma 5.1 The complement of the tiling problem ”Does a given finite set P of Wang prototiles admit
a tiling ?” is semi-decidable.

Proof. The semi-algorithm enumerates positive integers n = 1, 2, 3, . . . one-by-one. For each n it tries all
possible ways of tiling the n × n square by the given prototiles. It can simply try (in the lexicographic
order) each sequence of n2 tiles, write the tiles inside the n × n square row-by-row and check whether
the tiles match or not. For each n there are only a finite number of sequences to try, and an algorithm
can easily go through all of them one-by-one. If we find a valid tiling of the n× n square we increment
n and repeat. If we do not find a tiling of the n × n square then a valid tiling of the plane does not
exist, so the semi-algorithm returns answer ”yes” to indicate that no tiling is admitted. Notice that if
the given instance is a ”no”-instance (i.e. admits a tiling) the process will never end as we keep on tiling
larger and larger squares. But on every ”yes” -instance (i.e. no tiling exist) the process will terminate
with the correct output, because by Corollary 4.3 some n× n square cannot be tiled. We conclude that
the complement of the tiling problem is semi-decidable.

We make the following observations:

Theorem 5.2 A decision problem is decidable if and only if the complement problem is decidable. A
decision problem is decidable iff the problem and its complement are both semi-decidable.

Proof. If decision problem P is decidable then there exists an algorithm A that solves P . We get an
algorithm for the complement problem if we simply switch the output of A, or more precisely, make a
new algorithm A′ that (i) calls A as a subroutine with the original input of A′, and (ii) if A returns ”yes”
algorithm A′ returns ”no” and if A returns ”no” then A′ returns ”yes”. This proves the first claim.

Algorithm is also a semi-algorithm so if P is decidable it is also semi-decidable and, since the com-
plement problem is decidable, the complement problem is also semi-decidable. Conversely, suppose that
problem P has a semi-algorithm A and the complement of P has a semi-algorithm A′. Here is a descrip-
tion of an algorithm that solves P : With a given input we execute both A and A′ at the same time. This
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can be arranged by, for example, alternating between the semi-algorithms by executing one step of each
semi-algorithm in turn. Eventually one of the two semi-algorithms will return the ”yes”-answer. If the
instance is a ”yes” -instance then it will be A that gives the answer and if the instance is a ”no” -instance
then A′ will give the answer. In the first case our algorithm returns ”yes”, in the second case we return
”no”.

In view of the previous theorem and lemma: if the tiling problem were semi-decidable then it would be
also decidable (because we know that the complement problem is semi-decidable). Equivalently: Once
we prove that the tiling problem is undecidable, it implies that the tiling problem is not semi-decidable
either.

In order to prove from the scratch that a problem is undecidable we would need a more precise
definition of an algorithm. Here, to avoid too deep and time consuming involvement in the computation
theory (which a topic of another course) we are not going to prove undecidability results from the
scratch. Rather, we take the classic result by Alan Turing without a proof. This result provides us
with one decision problem (the halting problem of Turing machines without input) that is known to be
undecidable. Turing’s proof of this result is a very nice — and not very difficult — diagonal argument
similar to Cantor’s proof for the uncountability of real numbers.

Once we have one undecidable decision problem available, we use the technique of reduction to prove
other problems undecidable. Reduction is an indirect proof technique that works as follows: Suppose P is
a known undecidable problem (e.g. the halting problem of Turing machines), and we want to prove that
problem Q is also undecidable. We make the assumption (indirect proof!) that there exists an algorithm
A that solves Q. Then we describe an algorithm that solves P , using A as a subroutine. Since P is
undecidable, no such algorithm can exist, so algorithm A cannot exist either. In the reduction technique
we design an algorithm for P in order to prove that no algorithm exists that solves Q.

5.1 Turing machines

Let us start by defining Turing machines. A Turing machine is a simple computing device that consists
of a bi-infinite tape that serves as the memory and a finite state processor that moves over the tape. The
tape consists of a sequence of memory locations, indexed by Z, each of which contains an element of a
finite set Γ, called the tape alphabet. So the content of the tape at any given time is given by a function
f : Z −→ Γ where f(i) is the symbol at location i. One element b ∈ Γ is specified as the blank symbol,
and in the beginning of the computation all tape locations contain symbol b.

At all times, the processor (also called the control unit) of the machine accesses one tape location
i ∈ Z. The control unit is in some state q that is an element of a finite state set S. Depending on the
current state q and the current tape symbol f(i) ∈ Γ at the current location i of the control unit, the
Turing machine changes the state of the control unit, replaces the tape symbol f(i) with a new symbol,
and moves the control unit one position to the left or right on the tape. This action of the machine is
specified by its transition function

δ : S × Γ −→ S × Γ× {L,R}.

The interpretation of δ(q, x) = (p, y, d) is that if the current state is q and the tape symbol at the current
location i is x then the machine changes the state into p, replaces x by y on the tape and moves one
position left or right on the tape depending on whether d = L or d = R.

The configuration of the machine is an element of S × Z × ΓZ. Configuration (q, i, f) specifies the
current state q of the machine, its current position i on the tape, and the current content f of the entire
tape. Formally we can now define one move of the machine: Configuration (q, i, f) is transformed in one
move into the configuration (p, j, g), where δ(q, f(i)) = (p, y, d), g(i) = y, g(k) = f(k) for all k ̸= i, and
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j = i+ 1 if d = R and j = i− 1 if d = L. We denote this move by

(q, i, f) ⊢ (p, j, g).

In the beginning of the computation the Turing machine is in one specific state s0 ∈ S called the
initial state, and another state sh ∈ S is specified as the halting state. The Turing machine halts when
the control unit enters state sh. The Turing machine then can be understood as a dynamical system
where the transformation ⊢ is applied repeatedly starting from the initial configuration (s0, 0, fb) where
fb(k) = b for all k ∈ Z until (if ever) the machine reaches and halts in some configuration (sh, i, f), where
i and f can be arbitrary.

To specify a Turing machine one needs to provide six items. We say that a Turing machine is a
six-tuple M = (S,Γ, δ, s0, sh, b) where S and Γ are finite sets, s0, sh ∈ S and b ∈ Γ are elements of those
sets, and δ : S × Γ −→ S × Γ× {L,R} is a function. Note that in the most common terminology in the
literature one also specifies a third finite set, the input alphabet, but we can ignore it here because we
only discuss Turing machines without input.

Example 9. Consider the following Turing machine M = ({s, t, h}, {a, b}, δ, s, h, b) where

δ(s, a) = (t, a, L)
δ(s, b) = (t, a,R)
δ(t, a) = (h, a, L)
δ(t, b) = (s, a, L)

(and the values of δ(h, . . . ) do not matter as h is the halting state.) The computation by M proceeds as
follows:

. . . bbbb
s
b bb · · · ⊢ . . . bbbba

t
b b · · · ⊢ . . . bbb

s
a abb · · · ⊢ . . . bb

t
b aab · · · ⊢

. . . b
s
b aaab · · · ⊢ . . . ba

t
a aab · · · ⊢ . . . b

h
a aaab . . .

Note that at all times only a finite number of tape locations may contain symbols that are different
from the blank symbol b. Hence configurations (s, i, f) have a finite representation. The following result
is given without proof:

Theorem 5.3 (Turing 1936) There is no algorithm to solve the following decision problem: ”Does a
given Turing machine M eventually halt ?”

Note that the decision problem of the previous theorem is semi-decidable: A simple semi-algorithm
for the ”yes” instances simply simulates the Turing machine step-by-step until it halts, if ever. Once the
halting state qh is reached, the semi-algorithm returns answer ”yes”. The ”no” answer is never returned:
if the Turing machine does not halt then the simulation continues indefinitely.

Based on Theorem 5.3 we can now prove other problems undecidable using the reduction technique
discussed earlier.

Example 10. As an example of a reduction, let us prove that the following decision problem is unde-
cidable: ”Given a Turing machine M and a tape symbol a, does the Turing machine M eventually write
symbol a somewhere on the tape ?” Let us call this problem Q, and let us call the halting problem of
Theorem 5.3 problem P . Suppose we have an algorithm A that solves Q. Then there exists the following
algorithm B to solve P :

Algorithm B gets as input a Turing machine M = (S,Γ, δ, q0, qh, b). In order to determine if M halts,
algorithm B creates a new Turing machine M ′ = (S ∪ {q′},Γ ∪ {a}, δ′, q0, q′, b) where q′ ̸∈ S is the new
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halting state, a ̸∈ Γ is a new tape symbol, and δ′ is exactly like δ, except for the following modification:
For every x ∈ Γ we set δ(qh, x) = (q′, a, R). For all x ∈ Γ ∪ {a} and q ∈ S ∪ {q′} the values of the new
entries δ(q′, x) and δ(q, a) of δ can be chosen arbitrarily. The idea is that the modified M ′ works exactly
like M until (if ever) M enters the halting state qh. Instead of halting in state qh the new machine writes
then the new tape letter a on the tape and halts. Clearly, M halts if and only if M ′ writes symbol a on
the tape.

Algorithm B can easily construct M ′. Then B gives this M ′ and symbol a as the input to the
algorithm A. Algorithm A returns ”yes” or ”no” depending on whether M ′ eventually writes a on the
tape or not. Algorithm B then simply returns that same answer.

We described an algorithm B that according to Theorem 5.3 does not exist. Therefore the assumption
that algorithm A exists must be incorrect.

5.2 The tiling problem with a seed tile

To use the reduction technique in connection to tiling questions we start by designing Wang protosets
that simulate Turing machines. A valid tiling will picture the entire computation history by a Turing
machine, move-by-move. Instead of colors on the edges of the tiles we use labeled arrows. In a valid
tiling, each arrow head and tail must meet a tail and head, respectively, with the same label. The tiling
constraints using such arrows can then be easily transformed into color constraints by replacing an arrow
with label L and direction D by color (L,D), where D can be North, East, South or West.

The labels of the arrows will be tape symbols (representing a tape location containing that symbol)
and state/tape symbol pairs (representing a tape location containing the control unit at the given state).
Any given Turing machineM = (S,Γ, δ, s, h, b) will be represented by a set PM of Wang tiles that contains

(i) the following three starting tiles to represent the blank tape

s,bb b

(ii) for every tape letter x ∈ Γ an alphabet tile

x

x

(iii) for every non-halting state q ∈ S \ {h} and tape symbol x ∈ Γ one action tile
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y

q,x

y

r

q,x

ror

where the left tile is used iff δ(q, x) = (r, y, L) and the right tile iff δ(q, x) = (r, y,R),

(iv) for every non-halting state q ∈ S \ {h} and tape symbol x ∈ Γ the two merging tiles

q

x

q,x q,x

q

x

(v) the blank tile

Theorem 5.4 The following decision problem is undecidable: ”Given a finite set P of Wang prototiles
and one specified seed tile t ∈ P, does P admit a valid tiling of the plane that contains at least one
occurrence of t ?”

Proof. Suppose an algorithm exists. Then we can solve the halting problem of Turing machines as follows:
For any given Turing machine M our algorithm starts by constructing the set PM described above. This
set can clearly be mechanically constructed based on M . Then set PM and the seed tile

s,b

are given as input to the algorithm that determines if a tiling exists that contains the seed tile. Such a
tiling exists if and only if M does not halt: The seed tile uniquely determines the entire tiling. Tiles on
the same horizontal row as the seed must be starting tiles of type (i). Horizontal rows above are forced to
represent consecutive configurations of the Turing machine. If the machine halts then the tiling becomes
impossible as there are no action tiles of type (iii) for the halting state. But if the machine M never
halts then the tiling can be continued indefinitely, to fill the entire upper half of the plane. The lower
half plane can be filled with the blank tile of type (v).
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Note that the decision problem in the previous theorem is not the same as the tiling problem. The
request for the named seed tile to appear in the tiling makes the proof easy, as it allows us to guarantee
the proper initialization of the Turing machine computation.

5.3 Finite systems of forbidden patterns

Before moving on to other decision problems concerning tiles, we simplify the discussion by relaxing
the requirement to use colors or arrows to specify which tiles may be put next to each other. Rather,
correctness of a tiling will be specified by a finite collection of forbidden patterns. A configuration is then
a valid tiling if and only if it does not contain a forbidden pattern.

More precisely, let us first define a neighborhood vector

N = (n⃗1, n⃗2, . . . , n⃗m)

where each n⃗i ∈ Z2 and n⃗i ̸= n⃗j for all i ̸= j. The elements n⃗i specify the relative locations of the
neighbors of each position: Position n⃗ ∈ Z2 has m neighbors n⃗+ n⃗i for i = 1, 2, . . . ,m.

Let T be a finite set, the set of prototiles, and let R ⊆ Tm be a relation specifying which patterns
are allowed in valid tilings: A configuration c ∈ TZ2

is valid at position n⃗ ∈ Z2 if and only if

[c(n⃗+ n⃗1), c(n⃗+ n⃗2), . . . , c(n⃗+ n⃗m)] ∈ R,

that is, the neighborhood of n⃗ contains an allowed pattern. Configuration c is a valid tiling iff it is valid
at at all positions n⃗ ∈ Z2.

Note that the complement of R is the set of forbidden patterns: any configuration that contains such
a pattern is not a valid tiling. The triplet (T,N,R) specifies valid tilings, and we call such a triplet a
finite system of forbidden patterns.

Any Wang tile set can be expressed as a finite system of forbidden patterns with the neighborhood

N = [(0, 0), (0,−1), (0, 1), (−1, 0), (1, 0)],

and the relation R that contains all those patterns where the colors of the tiles match:

(t, tS , tN , tW , tE) ∈ R

if and only if the colors match between t and the neighboring tiles in

t

t
N

S

W E

t

tt

There is also a correspondence to the other direction: for any finite system of forbidden patterns we can
effectively (that is, algorithmically) construct a Wang tile set such that there is a natural correspondence
between valid tilings in the two tile systems.

Lemma 5.5

(i) For every Wang protoset P one can effectively construct a finite system S = (P, N,R) of forbidden
patterns over P such that c ∈ PZ2

is a valid Wang tiling if and only if c is valid according to S.
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(ii) Conversely, for every finite system S = (T,N,R) of forbidden patterns one can effectively construct
a Wang protoset P such that P admits a (periodic) tiling if and only if S admits a (periodic) tiling.

Proof. Part (i) is clear and was already explained above. Consider then (ii). Let S = (T,N,R) be a
finite system of forbidden patterns. Observe first that we can assume, without loss of generality, that
elements of N form a square: Let m ≥ 2 be an integer such that there is an m×m square M containing
all elements n⃗i of the neighborhood vector N . We can add to N the missing elements of M – keeping
them irrelevant in the relation R – and obtain a system that admits exactly same valid tilings and whose
neighborhood vector consists exactly of the elements of M .

Assuming now that N forms an m × m square, we construct a set P of Wang tiles as follows: The
tiles are the allowed m × m square patterns over T , that is, P = R. Colors of t ∈ R are obtained by
erasing one boundary column or row from it: if t = [tij ]

1≤j≤m
1≤i≤m is a tile, where each tij ∈ T , then the left,

top, right and bottom colors of t are

[tij ]
1≤j≤m
1≤i≤m−1 , [tij ]

2≤j≤m
1≤i≤m , [tij ]

1≤j≤m
2≤i≤m , [tij ]

1≤j≤m−1
1≤i≤m ,

respectively. So the vertical colors are (m− 1)×m blocks and horizontal colors are m× (m− 1) blocks
over T .

For example, the following figure illustrates the tile corresponding to a 3× 3 allowed pattern:
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Allowed 3x3 pattern Wang tile

Note that two adjacent Wang tiles then match if and only if the m×m patterns they represent have the
correct (m− 1)×m or m× (m− 1) overlap when the tiles are placed next to each other.

This construction immediately implies that, if f ∈ TZ2
does not contain any forbidden pattern, then

the function g ∈ PZ2
is a correct Wang tiling, where for each (i, j) ∈ Z2 we set g(i, j) be the m × m

pattern in f whose lower left corner is in position (i, j).
Conversely, let g ∈ PZ2

be a valid Wang tiling. Let f ∈ TZ2
be the function such that f(i, j) is the

symbol at the lower left corner of the m×m square g(i, j), for every (i, j) ∈ Z2. Because of the overlap
property between neighboring Wang tiles, we have that the m×m blocks extracted from f coincide with
the corresponding tiles in g. Because the elements of P are the allowed m×m patterns we have that f
only contains allowed m×m blocks, and therefore f is a valid tiling.

Note that in the previous reasoning f is periodic if and only if g is periodic.

The previous lemma means that in the following decision problems we can describe tiles in any terms
that locally determine which tiles are allowed to be next to each other. Such tiles can anyway be effectively
converted into an equivalent set of Wang tiles. This substantially simplifies the discussion.
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5.4 The periodic tiling problem

Next we consider the problem of deciding if a given protoset admits a periodic tiling. There is an obvious
semi-algorithm:

Lemma 5.6 The decision problem ”Does a given finite set P of Wang prototiles admit a periodic tiling ?”
is semi-decidable.

Proof. The semi-algorithm enumerates positive integers n = 1, 2, 3, . . . one-by-one, and for each n it
constructs all valid tilings of the n × n square. There are only a finite number of them. For each such
tiling, we check if the top and the bottom of the square read the same colors, and if the left and the right
side also read the same colors. If they do, we have found a square pattern that can be repeated to form
a periodic tiling of the plane. The semi-algorithm returns then ”yes”. We know that if a periodic tiling
exists then some n× n square forms a period of a periodic tiling, so our semi-algorithm is guaranteed to
correctly detect all ”yes”-instances.

Note that if no aperiodic tile sets existed then there would be an algorithm for determining if a periodic
tiling exists: We namely have semi-algorithms for detecting that no tiling exists (Lemma 5.1) and that a
periodic tiling exists (Lemma 5.6). If these were the only two possibilities then the two semi-algorithms
would yield an algorithm (Theorem 5.2) that would determine if a (periodic) tiling exists. However, since
aperiodic protosets do exist, this reasoning can not be used. In fact, the admittance of periodic tilings
turns out to be undecidable. Not surprisingly, an aperiodic protoset is needed in the proof.

Theorem 5.7 The following decision problem is semi-decidable but not decidable: ”Does a given finite
set P of Wang prototiles admit a periodic tiling ?”

Proof. Semi-decidability was discussed above in Lemma 5.6. Let us prove undecidability via a reduction
from the halting problem of Turing machines. For any given Turing machine M , we construct the Wang
set PM from Theorem 5.4. We add to these the following halting tiles for every tape letter x ∈ Γ:

x

h

x

h

x

Here h is the halting state. The halting tiles have the effect that a tiling becomes possible even if the
Turing machine halts — then the state component simply disappears from the configuration. Using the
third tile, the entire configuration can then disappear.

We also add the following tile

b

b
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to the start tiles of the Turing machine. This tile allows the same horizontal row to contain several copies
of the start configuration of the Turing machine.

In addition to PM , we take one aperiodic tile set P. This can be, for example, the Robinson’s aperiodic
tile set. Finally, we also use the following set Q of prototiles: Set Q contains tiles with horizontal and/or
vertical fault lines, as well as tiles without a fault line:

H V HV B

There are no tiles to end a fault line, so all fault lines cut the plane horizontally or vertically:

We want the fault line tiles to satisfy the following property:

(*) If a tiling contains at least two parallel fault lines then it also contains at least two fault lines in
the perpendicular direction.

To establish this, we make two versions of the empty tile B without fault lines: one called red and the
other one called blue. Then we add the following local constraints on validity of tilings:

� The northern neighbor of a horizontal fault line (tile H) must be a blue blank (=blue version of tile
B).

� The southern neighbor of a horizontal fault line (tile H) must be a red blank (=red version of tile
B).

� The northern neighbor of a blue blank whose horizontal neighbors are blue blanks is a blue blank.

� The southern neighbor of a red blank whose horizontal neighbors are red blanks is a red blank.

These local constraints are satisfied in tilings where the fault lines partition the plane into squares of
even size. The insides of the squares consist of a blue and a red triangle and two triangles with the
checker-board pattern of blue and red:
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= Blue

= Red

Notice that the constraints are local and can be implemented using a finite system of forbidden patterns.
Suppose that a tiling contains two horizontal fault lines at distance n from each other. Suppose there

would be a horizontal segment of length 2n without a vertical fault line. Then there is a blue segment
of length 2n on top of the lower fault line. On top of it we have 2n− 2 blue tiles, then 2n− 4 blue tiles,
and so on. We see that the horizontal row below the upper fault line must contain blue tiles, which is
not allowed by the local constraints above. Conclusion: if a tiling contains at least two horizontal fault
lines then it also contains at least two vertical fault lines.

An analogous coloring is also done in the perpendicular direction. Hence the non-fault line tiles come
if four varieties, one for each combination of blue/red color in horizontal/vertical direction. Then our set
Q satisfies the required property (*).

After establishing the three tile sets PM (simulates the Turing machine), P (aperiodic set) and Q
(fault lines), the algorithm combines these three sets into a single tile set by taking their cartesian product

PM × P ×Q.

Each of the three components of any tile must match locally with its neighbors according to the rules of
the corresponding tile set. In this way tilings will be ”sandwiches” with three layers. For any (a, b, c) ∈
PM × P ×Q we call a, b and c the first, the second and the third layer, respectively.

We add the following local constraints on tilings:

(1) In tile (a, b, c), if c contains a fault line then the tiling rule is not enforced on the second layer b.
The idea is to allow periodic tilings (even though P is aperiodic) in the presence of fault lines.

(2) In tile (a, b, c), if c contains only the horizontal fault line then the first component a must be one
of the start tiles

s,bb b

(3) In tile (a, b, c), if c contains only the vertical fault line then the first component a must be
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b

b

(4) In tile (a, b, c), if c contains both horizontal and vertical fault lines then a must be

b

b

These constraints force the lower border of any rectangle surrounded by fault lines to contain (a finite
segment of) the blank tape and a single Turing machine in its initial state s. The vertical fault lines are
forced to contain the black symbol only, and the Turing machine is never allowed to reach a vertical fault
line.

The construction of the tile set is now complete. Suppose first that Turing machine M halts in n
steps. Then the tiles admit a valid periodic tiling with the horizontal and vertical period 2n. On the
third layer the fault lines partition the space into squares of size 2n × 2n. The second layer contains
a correctly tiled 2n × 2n square, repeated inside the squares between the fault lines. The tiling of the
second layer fails on some tiles along the fault lines, but that is allowed by (1) above.

The first layer consists of the halting simulation of the Turing machine M . The start of the simulation
begins at the bottom of each 2n × 2n square. The entire simulation fits inside the 2n × 2n square,
because the machine halts after n steps. The halting tiles allow the disappearance of the Turing machine
configuration before the next vertical line is reached. Hence a periodic tiling is admitted.

halt

Conversely, suppose a periodic tiling exists. Because P is an aperiodic set, there must be a place on the
tiling where the tiling in the second layer is incorrect. This is possible only if there is a fault line in that
location. Because the tiling is periodic, this implies the existence of infinitely many parallel fault lines.
By property (*) this further implies the presence of a rectangle bordered by fault lines. Consider the first
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layer of one such rectangle. The bottom is forced to contain a (finite segment) of the start configuration
of the Turing machine. The tiles in PM force the following rows to simulate the Turing machine moves
one-by-one. If the Turing machine does not halt then the simulation continues without a limit and the
Turing machine never disappears. But the next horizontal fault line is possible only if the Turing machine
disappears. Hence the Turing machine must halt before the simulation reaches the upper border of the
rectangle.

The tile set we constructed is given as input to our hypothetical algorithm that determines if the set
admits a periodic tiling. (More precisely, the input is the corresponding set of Wang tiles, obtained by
the conversion from the system of forbidden blocks as described in Lemma 5.5). We know that a periodic
tiling is possible if and only if M halts, so we get the answer to the halting problem, a contradiction.

5.5 The tiling problem

Now we turn to the general tiling problem: ”Does a given Wang tile set admit a valid tiling?” To
prove undecidability we make a reduction from the tiling problem with a seed tile, proved undecidable in
Theorem 5.4. Now we have no specified seed tile required to be used, so the main problem is how to force
the presence of the seed (=the beginning state of the Turing machine) in every valid tiling. Note that if
it is possible to have arbitrarily large squares without the seed, then it is also possible to make the entire
tiling without the seed. This is a consequence of the compactness of the tiling space (Corollary 4.3).
Therefore the seed must be enforced inside all n× n squares for some n. This on the other hand would
seem to be contradictory to the possibility that tilings with only a single seed tile may occur. (Indeed, in
our proof of Theorem 5.4 only a single seed tile occurs, starting an infinite, non-halting computation of
a Turing machine.) A solution is to partition the space using Robinson’s aperiodic tile set into ”nested
boards”, each containing a copy of piece of a valid tiling around a seed tile.

This takes us back to the Robinson’s tile set. Recall the special (2n−1)-squares that necessarily exist
in every valid tiling. We define nested boards using the side arrows of Robinson’s tiles. The following
figure shows only the side arrows of a (2n − 1)-square:

Notice that the side arrows form overlapping squares: The side arrows emitted from the crosses form
squares whose centers contain crosses, which in turn are corners of bigger squares. The smallest squares
have the corners at the odd-odd -positions. They are of size 2 × 2, and they only intersect one 4 × 4
square whose corner is at the center. Any other square S is of size 2n × 2n, for n ≥ 2, and it intersects
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one bigger square of size 2n+1× 2n+1 whose corner is at the center of S, and four smaller squares of sizes
2n−1 × 2n−1 whose centers are the corners of of S.

In order to pick non-overlapping squares we color the side arrows red or green according to the
following rules:

� The side arrows of each cross are both red or both green. The crosses at odd-odd positions have
green side arrows.

� In each arm the horizontal side arrows have the same color and the vertical side arrows have the
same color. In this way the color is transmitted unchanged through the arm. If the arm contains
both horizontal and vertical side arrows then these side arrows have different colors.

� In neighboring tiles the matching rule is that the meeting arrow heads and tails must have the same
color.

Following these rules, each square will be colored completely red or green, and intersecting squares have
opposite colors. The smallest squares are green, so the coloring of the squares is completely determined.
Notice that red squares do not intersect each other and green squares do not intersect each other. The red
squares are of sizes 4n × 4n for n = 1, 2, . . . . In the following figure green and red borders are indicated
light and dark, respectively.
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A piece of a Wang tiling with a seed tile will be enforced inside each red square. Small red squares nested
within a larger red square contain their own copies. We call a region within a red border but outside all
nested red borders within it a board. Here is the board with side 43 = 64:

Next we need to identify those rows and columns of a board that run completely across the board without
intersecting a smaller board inside. Let us call these free rows and columns. Let Fn be the number of
free rows (and columns) in a board of side 4n. In the middle the board of side 4n+1 we have the same
smaller boards as in the middle of the 4n board, and at the sides we have halves of those same boards.
The boundary of the 4n+1 square occupies one row, so the total number of free rows in the 4n+1 board
is Fn+1 = 2Fn − 1. Since F1 = 3, we easily obtain Fn = 2n + 1. Hence a valid tiling necessarily contains
boards with arbitrarily large numbers of free rows and columns.

To identify tiles of the board that are on a free row and/or a free column, we use a new set of arrows,
called obstruction signals. There are vertical and horizontal obstruction signals, used to identify free
columns and rows, respectively. An outer edge of a red border must emit or absorb an obstruction signal,
whereas the inner edges of the red borders may absorb but not emit such a signal. Inner edges can also
be without an obstruction signal.

Here are the four possible combinations of obstruction signals on the lower boundary of a red square:

The other boundaries (top, left, right) are analogous. Note that the position of a red side arrow identifies
whether it belongs to the top, bottom, left or right boundary of a red square.

Obstruction signals are transmitted unchanged through tiles that are not on the boundary of a board.
Then no free column can contain a vertical obstruction signal and no free row can contain a horizontal
obstruction signal, as such a signal would have to be emitted from the inside edge of the boundary. In
contrast, any interior tile of a board that is not on a free column is either between the inner edge of the
board and the outer edge of a smaller board, or between outer edges of two smaller boards. In either

75



case, there is a vertical obstruction signal at the tile. Analogously, any tile that is not on a free row must
contain a horizontal obstruction signal. We conclude that the horizontal and vertical obstruction signals
correctly identify the free rows and columns of the boards.

The following figure shows a possible arrangement of vertical obstruction signals on a 16× 16 board:

Based on the presence or absence of horizontal/vertical obstruction signals, tiles inside a board can be
classified into four classes:

(00) with horizontal and with vertical obstruction signal,

(01) with horizontal and without vertical obstruction signal,

(10) without horizontal and with vertical obstruction signal,

(11) without any kind of obstruction signal.

Tiles of type (11) are free, and they form a scattered (2n+1)× (2n+1) -square, whose disjoint parts are
connected by tiles of types (01) and (10):
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Let R be the tile set constructed above. Now we are ready to reduce the tiling problem with the seed
tile into the tiling problem without a seed tile: Let P be a given set of Wang tiles, and let s ∈ P be the
given seed tile. Let C be the set of colors used in P. To determine if P admits a tiling that contains a
copy of s we construct a set X of ”sandwich tiles” (r, p), whose first component r ∈ R, and the second
component p is a Wang tile over the color set C ∪ {b}, where b ̸∈ C is a new ”blank color”.

The first components tile according to the local matching constraints of R described above. The
second components tile under the color constraints, as in Wang tiles. The set X contains all the pairs
(r, p) that satisfy the following:

(a) If r is a free tile (no obstruction signal present in r) then p ∈ P.

(b) If r is on a free column but not on a free row then p is a tile

x

x

bb

where x ∈ C and b is the blank color.

(c) If r is on a free row but not on a free column then p is a tile

x x

b

b

where x ∈ C and b is the blank color.

(d) If r is not on a free row or column then p is arbitrary: any element of (C ∪ {b})4 is acceptable.

(e) If r is a corner of a green square of size > 2 × 2 (that is, a cross with green side arrows in an
even-even position), then p = s, the seed tile.
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Notice that the corners of green squares that are in even-even positions are exactly at the centers of red
squares. These center positions are always free.

Condition (e) guarantees that the center of each board is paired with the seed tile s. Properties (b)
and (c) mean that color information is transmitted along free rows and columns between disjoint parts
of the board, while (a) guarantees that on free areas a tiling by P is formed. These conditions make the
board behave as if the free rows and columns were contiguous and the board then is like a square board
of side 2n + 1. Condition (d) simply allows different boards to be joined arbitrarily.

Let us prove that our sandwich tiles admit a tiling if and only if P admits a tiling that contains a
copy of the seed tile s:

⇐= Suppose first that P admits a tiling that contains s. Then we can properly tile any board by placing
s at the center and scatter the proper tiling containing s in the free areas. Smaller nested boards can
be tiled in the same way. Different boards are not immediate neighbors of each other since there are at
least the red boundary tiles between them. So different boards can be tiled independently of each other.
As we can tile arbitrarily large squares in this way, the whole plane can be tiles as well.

=⇒ For the converse direction, suppose that the sandwich tiles admit a tiling. The underlying Robinson’s
tiling necessarily contains special (2n − 1) -squares for arbitrarily large number n. Hence there are red
squares of size 4n × 4n, for every n, and consequently there are arbitrarily large boards. The center of
each board is paired with s, and the free areas of the board necessarily contain a piece of a valid tiling
by P. As the free area is arbitrarily large, and its center contains s, we conclude that P admits a tiling
that contains a copy of tile s.

We have proved the following theorem by Berger. The proof presented here is from 1971 by Robinson.

Theorem 5.8 (Berger 1966) The tiling problem ”Does a given Wang protoset admit a valid tiling ?”
is undecidable.

Each finite protoset is exactly one of the following types:

1. protosets that do not admit any tilings,

2. protosets that admit some periodic tilings,

3. aperiodic protoset

Membership in the first two classes are known to be semi-decidable (Lemmas 5.1 and 5.6). The unde-
cidability of the tiling problem implies that membership in the third class cannot be semi-decidable, so
there is no semi-algorithm to determine if a given protoset is aperiodic. Membership in the union of
classes 2 and 3 is not semi-decidable (Theorem 5.8), and the membership in the union of classes 1 and 3
is not semi-decidable (Theorem 5.7). Hence we have been able to determine the semi-decidability status
for all combinations of the three classes above.

5.6 The completion problem

Consider next the following decision problem: Is a given finite pattern part of some valid tiling ? We
call it the completion problem. More precisely, a finite pattern over the tile set T is a pair (D, p) where
D ⊆ Z2 is a finite domain, and p : D −→ T assigns tiles to the cells in the domain. We say that (D, p)
is a subpattern of configuration c ∈ TZ2

if c(n⃗) = p(n⃗) for all n⃗ ∈ D. We want to determine for a given
(D, p) whether there exists a valid tiling that contains it as a subpattern.

The completion problem is clearly undecidable if the input contains both the tile set and the pattern
(as the tiling problem with a seed tile is a particular case of this). But it turns out that the completion
problem is undecidable already for some fixed tile sets. In this case only the pattern (D, p) is the
input. A tile set with undecidable completion problem can be constructed from any Turing machine with
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undecidable halting problem: here we consider computations of Turing machines from initial tapes that
are not necessarily blank. Instead, we assume that there may be finitely many tape locations that have
a non-blank symbol. So let us call b-finite a tape content f : Z −→ Γ such that the set {i ∈ Z | f(i) ̸= b}
is finite.

Theorem 5.9 There exists a Turing machine U = (S,Γ, δ, s, h, b) such that the following decision prob-
lem is undecidable: ”Given b-finite f : Z −→ Γ, does U reach the halting state h from the initial
configuration (s, 0, f) ?”

Proof. (sketch) The machine U we construct is a universal Turing machine: it is able to simulate any
other Turing machine if a description of that machine is initially written on the tape. Then if we could
determine whether U halts from a given initial tape then we could also determine for any given Turing
machine whether it halts from the empty input tape.

First we observe that the halting problem from the empty tape is undecidable even among Turing
machines with the binary tape alphabet Γ = {a, b}, where b is the blank symbol:

Lemma 5.10 It is undecidable if a given Turing machine with binary tape alphabet eventually halts from
the empty input tape.

Proof. (sketch) For any given Turing machine M with k tape letters 1, 2, . . . , k, we effectively construct
machine M ′ that has tape alphabet {0, 1} and that halts from the empty input tape if and only if M
halts from the empty input tape. On the tape of machine M ′ a binary encoding of the k letter alphabet
is done using blocks of n = ⌈log2(k)⌉ bits. The code for the blank tape letter of M is 00 . . . 0.

At all times, M ′ memorizes the current state q of machine M . To simulate one instruction of M , the
machine M ′ does the following:

� It reads and memorizes the next block of n bits from the tape: this gives the current tape letter x
of M .

� Let δ(q, x) = (p, y, d).

� Machine M ′ memorizes the new state p, writes the n bits representing y over the block that it just
read, and moves n positions left or right on the tape, depending on the value of d.

This is the simulation loop for one step of M . The initial and halting states of M ′ are the first states of
the simulation loop, with the initial and halting state of M being memorized, respectively.

It is clear that when started on the empty tape (0 is the blank), machine M ′ simulates M until, if
ever, it halts.

Based on the lemma, it is enough for our universal Turing machine U to simulate those Turing
machines that have the tape alphabet {a, b}. The tape of U will contain five tracks:

1. On the first track, the tape of the simulated machine is written. This track has alphabet {a, b}.

2. The second track stores the state of the simulated machine. We may assume, without loss of
generality, that the states of M are numbers 1, 2, . . . , k, where 1 is the initial state and k is the
halting state. Current state i is expressed on track two as a segment of i symbols $, starting at
position zero of the tape. Outside the segment the track contains the blank b, so the track alphabet
is {$, b}.

3. The third track stores the position of M on its tape during the simulation. The track simply
contains ↑ at cell i if machine M currently reads that cell. Other cells are blank. This track
alphabet is {↑, b}.
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4. The fourth track stores the ”program”, i.e. the transition function δ of the simulated machine M .
Each transition δ(i, x) = (j, y, d) is expressed as the word $j y d where y is either a or b, and d is
either L or R. For example, transition δ(i, x) = (4, a, L) is represented as $$$$aL. We represent
the transition table δ as the word

# E(1, a) & E(1, b) # E(2, a) & E(2, b) # . . . # E(k − 1, a) & E(k − 1, b) #

where E(i, x) is the word representing δ(i, x). Note that the transitions from the halting state k
are not written. The alphabet of track four is {#,&, $, L,R, a, b, B}. (We use B for the blank.)

5. The fifth track is a ”scratch pad” where temporary information is stored during the simulation.

As an example of the encoding of the program, consider the three-state Turing machine of Example 9,
where we number the states as follows: s = 1, t = 2, h = 3. The corresponding program in our universal
machine is

# $$aL & $$aR # $$$aL & $aL #

The tape at the beginning of the simulation will be

# $ $ a L & $ $ a R # $ $ $ a L & $ a #L

$

h

To simulate one step of M , the universal machine memorizes the current tape symbol scanned by
M , as well as whether the position being scanned is positive or negative (so that ↑ can be easily found).
Then it performs the following operations:

� Using the scratch pad (track 5) to store check markers, the machine matches the symbols $ of track
2 and the symbols # of track 4 starting from the left. This way the machine finds the i’th marker
# from the program where i is the state of the simulated machine.

� If the symbol on track four that follows the i’th delimiter # is a blank then the machine halts. The
simulated machine has namely entered the halting state k.

� If the tape letter being scanned by M is b then the machine finds the next & symbol on track 4.
Now the machine is at the beginning of E(i, x) for the next instruction to be executed.

� Using the scratch pad (track 5) the machine copies the signs $ from the word E(i, x) on track 4 to
track 2.

� The machine memorizes the the next two symbols y and d of the instruction. The machine finds
the symbol ↑ on track 3, writes the symbol y in that location on track 1 and moves ↑ on track
3 one position left or right, depending on the value of d. The tape letter in the new location is
memorized.

� The machine clears the scratch pad, and moves the position 0, ready to simulate the next step.

For example, after the first simulation round the tape in our sample machine will be

# $ $ a L & $ $ a R # $ $ $ a L & $ a #L

$ $

a

h
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It is clear that each simulation loop of U sketched above properly simulates one step of M . If the
simulated machine M enters the halting state, then also U halts.

If we had an algorithm to determine whether U halts when started on a given finite initial tape, then
we could use this algorithm to determine if any given Turing machine M halts form the empty tape.
Indeed, we construct the initial configuration where the program track four contains the description of
M and ask whether U halts from this configuration.

The universal Turing machine sketched in the proof above contains many states and and has a large
tape alphabet. Smaller universal machines have been discovered.

Example 11. The following universal Turing machine (due to Y.Rogozhin) with 4 + 1 states and 6
tape symbols has an undecidable halting problem, i.e. it satisfies the condition of the previous theorem:
M = ({q1, q2, q3, q4, h}, {1, b, >,<, 0, c}, δ, q1, h, b), and δ is given by the following table

q1 q2 q3 q4
1 (q1, <, L) (q2, 0, R) (q3, 1, R) (q4, 0, R)
b (q1, >,R) (q3, >, L) (q4, <,R) (q2, c, L)
> (q1, b, L) (q2, <,R) (q3, b, R) (q4, <,R)
< (q1, 0, R) (q2, >, L) h h
0 (q1, <, L) (q2, , 1, L) (q1, c, R) (q2, c, L)
c (q4, 0, R) (q2, b, R) (q1, 1, R) (q4, b, R)

where the item on column q, row x is δ(q, x).

Modifying slightly the Turing machine tile construction in Section 5.2 we can now easily obtain the
following:

Theorem 5.11 There exists a finite set P of Wang prototiles such that the following problem is unde-
cidable: ”Is a given finite pattern a subpattern of some valid tiling ?”

Proof. In the homework assignments.

5.7 Beyond aperiodicity: arecursive tile sets

Robinson’s tile set is aperiodic: no periodic tilings exist. Still, valid tilings that are ”simple” exist. Using
the special 2n − 1 -squares one can effectively construct bigger and bigger portions of a fixed valid tiling.

But there exist tile sets that only admit very complicated tilings: namely tilings that cannot be
algorithmically constructed. We call a tiling c : Z2 −→ T recursive if there exists an algorithm that
outputs c(i, j), when given arbitrary integers i, j as input. If no such algorithm exists then c is called
non-recursive. Analogously, a tape content f : Z −→ Γ of a Turing machine is recursive if there exists an
algorithm that returns f(i) for any given input i ∈ Z. Otherwise f is non-recursive.

Clearly any two-way periodic tiling is recursive. Some non-periodic tilings are recursive, too: for
example Robinson’s tile set admits a recursive, non-periodic tiling. Analogously to aperiodicity, we
define the concept of arecursivity as follows: Wang tile set P is arecursive if and only if

(i) it admits valid tilings, and

(ii) it does not admit any recursive valid tilings.
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Clearly any arecursive tile set is aperiodic, but the converse is not true since Robinson’s tile set is not
arecursive. So arecursivity is a stronger property than aperiodicity.

Arecursive tile sets exist. First, let us sketch a proof that there exist Turing machines MR =
(S,Γ, δ, s0, sh, b) with the following behavior:

(i) For every recursive f : Z −→ Γ, machine MR halts from the initial configuration (s0, 0, f), but

(ii) there exists a (non-recursive) tape content f : Z −→ Γ such that MR does not halt from the initial
configuration (s0, 0, f).

To construct such MR we consider the problem of determining which of two halting states does a given
Turing machine halt. In this problem we are given a TM M with two halting states h1 and h2. We
are looking for an algorithm that returns answer 1 or 2 if M halts in state h1 or h2, respectively, when
started on the blank tape. If M does not halt then the algorithm can (and must) return either answer 1
or answer 2. That such an algorithm can not exist can be proved using a diagonal argument (which we
skip), similar to Turing’s proof for the undecidability of the halting problem:

Lemma 5.12 There is no algorithm that, for any given TM M with two halting states h1, h2 ∈ S,

� always returns an answer ”1” or ”2”, and

� returns answer ”1” (”2”,respectively) if M halts in state h1 (or h2, respectively) when started on
the blank tape.

We say that the set A of Turing machines that halt in state h1 is recursively inseparable from the
set B of Turing machines that halt in state h2. (More generally, disjoint sets A and B are recursively
inseparable if there is no algorithm that returns an answer on every input x, and if x ∈ A then the answer
must be 1 and if x ∈ B then the answer must be 2. In other terms: there is no decidable set R such that
A ⊆ R and B ∩R = ∅.)

Now we can construct TM MR with several tracks on the tape:

� On the first track we have symbols of the alphabet {1, 2}. These symbols are not modified by MR.

� On the second track the machine enumerates integers n = 1, 2, 3, . . . one-by-one.

� For each value n on the second track, the machine then enumerates on the third track numbers
m = 1, 2, . . . n. Values of m are interpreted as TM descriptions using, say, the encoding given in the
proof of Theorem 5.9: Number m is written in the number system with 7 digits, using the symbols
of the alphabet Σ = {#,&, $, L,R, a, b} as the digits.

� If m is not a proper encoding of a TM transition rule (which can be easily checked) then nothing
is done, but the machine simply moves on to the next value of m.

� But if m represents some TM M then a simulation of M is started from the blank tape, using the
universal machine from the proof of Theorem 5.9. The simulation is done only for n steps, where
n is the number on the second track.

� If the simulated machine reaches state h1 or h2 (which we can fix to be the second and the third
state of the machine, respectively) before n simulation steps are executed then MR checks the
symbol on the first track in position m: if the symbol is 1 but M reached state h2, or the symbol
is 2 but M reached state h1, then MR halts. Otherwise it moves on to the next value of m.
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The idea of MR is to simulate all Turing machines for arbitrarily long times, and to verify for each
machine that the first track correctly identifies which state h1 or h2 is first reached in each machine.
Machine MR halts from an initial configuration if and only if for some Turing machine m the first track
identifies in position m incorrectly the state in which m halts.

Suppose the initial tape content f : Z −→ Γ of machine MR is recursive. Let us prove that MR

must halt. Suppose the contrary: MR does not halt. Then for any Turing machine m we can effectively
calculate the symbol on the first track in position m of f . Because MR does not halt, this symbol must be
1 if m halts in state h1 and 2 if m halts in state h2. So we have described an algorithm that contradicts
lemma 5.12. We conclude that MR halts when started on any recursive initial tape content.

On the other hand, if the first track is such that it correctly identifies which machines halt in state h1
and h2 then MR does not halt. So there are (non-recursive) initial tapes from which MR does not halt.

We have sketched a proof of the following lemma:

Lemma 5.13 There exists a Turing machine MR that halts when started on any recursive initial tape,
but for some non-recursive initial tape MR does not halt.

Based on machine MR we can now easily construct a Wang tile set with a seed tile such that there
are valid tilings that contain the seed tile, but none of these tilings is recursive. This is a weaker property
than arecursivity defined above, because of the presence of a seed tile.

Theorem 5.14 There exists a finite set P of Wang prototiles such that for some t ∈ P every valid tiling
that contains t is non-recursive, and there are valid non-recursive tilings that contain t.

Proof. Let us construct for MR of lemma 5.13 the machine tiles of Section 5.2, except that the start tiles

s,bb b

that represent the initial empty tape will be replaced by the following tiles for all tape letters x ∈ Γ,
the initial state s ∈ S, and a single tape letter a ∈ Γ. Letter a is chosen so that there is an initial tape
content f : Z −→ Γ with f(0) = a such that MR does not halt when started on tape f .

s,ax x

These start tiles allow non-blank initial tapes. As the seed tile t we select the new start tile

s,a
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The initialization tiles allow the horizontal row with t to contain any initial tape content f with f(0) = a.
The machine tiles then force the rows above to simulate machine MR. If MR halts then the tiling becomes
impossible.

These tiles admit a valid tiling: We simply choose an initial row that represents a tape content f
from which MR does not halt. But the tiles do not admit any recursive tiling containing t: If the tiling
is recursive then the horizontal row containing t is recursive, so we would have a recursive initial tape
from which MR does not halt, a contradiction with Lemma 5.13.

It is possible (but we skip the proof) to modify Robinson’s tile set so that the seed tile restriction in
Theorem 5.14 can be removed. As in the proof of Theorem 5.8 we form nested boards, and a simulation
of the Turing machine MR is done on all boards. The main problem to be addressed in the construction
is the fact the simulations on all boards should be from the same initial tape content. Otherwise, if
different boards are allowed to run MR on different initial tape contents then a recursive tiling could be
easily built. Hence new signals need to be introduced that carry the information about the initial tape
content between boards of different sizes, so that different boards are forced to be consistent with each
other.

Theorem 5.15 There exist arecursive sets of Wang tiles.

Proof. For the original proof, if interested, see:

Dale Myers. Nonrecursive Tilings of the Plane, II. The Journal of Symbolic Logic, 39(2), pp. 286-294,
1974.

6 Compact topology on Wang tilings

In this section we assign a metric to the space TZ2
of configurations over the finite tile set T . The space

under this metric is compact and complete. Convergence of a sequence c1, c2, . . . of elements under this
metric is exactly equivalent to the convergence introduced in Section 4.2. The compactness principle of
that section then simply reflect the compactness of the metric space.

We define the distance d(e, c) between configurations e, c ∈ TZ2
as follows:

d(e, c) =

{︃
0, if e = c,

2−min {|x|+|y| | e(x,y)̸=c(x,y)}, if e ̸= c.

In other words, two configurations that differ in a cell that is close to 0⃗ are far away from each other
under this metric, while configurations that agree with each other on a large area around the origin are
close to each other. Under this metric, two configurations have distance < 2−r if and only if they agree
with each other at all positions (x, y) where |x|+ |y| ≤ r.

Note that other vector norms ∥(x, y)∥ could be used instead |x|+|y|, and any other decreasing function
could be used instead of x ↦→ 2−x. A different metric, but the same topology would result.

Lemma 6.1 Function d : TZ2 × TZ2 −→ R is a metric.

Proof. We have to check the three defining properties of metric:

(a) d(c, e) ≥ 0, and d(c, e) = 0 if and only if c = e,

(b) d(c, e) = d(e, c), and
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(c) d(c, e) ≤ d(c, c′) + d(c′, e).

The first two conditions (a) and (b) are immediate. The third condition (c), called the triangle inequality,
follows from the fact that for every x⃗ ∈ Z2, if c(x⃗) ̸= e(x⃗) then either c(x⃗) ̸= c′(x⃗) or c′(x⃗) ̸= e(x⃗), or
both. This means that either d(c, c′) ≥ d(c, e) or d(c′, e) ≥ d(c, e), so even the strong form

d(c, e) ≤ max{d(c, c′), d(c′, e)}

of the triangle inequality holds.

From now on we consider TZ2
as a metric topological space under this metric. The following subsection

contains a brief review of some basic facts about metric spaces.

6.1 Review of topology and metric spaces

Let X be a set. A family T of subsets of X is called a topology if it satisfies the following three conditions:

(i) ∅ ∈ T and X ∈ T ,

(ii) the union of the sets in any subfamily of T is in T ,

(iii) the intersection of finitely many elements of T is always in T .

Elements of T are called open sets, and their complements (with respect to X) are closed sets. A set
that is both open and closed is called clopen.

Example 12. For any X, let T contain all subsets of X. Then T is a topology, the discrete topology of
X. Also {X, ∅} is a topology, the trivial topology of X.

Example 13. Let us call S ⊆ R open if for every x ∈ S there is a positive real ε > 0 such that
|y − x| < ε =⇒ y ∈ S. These open sets form a topology of X = R. It is called the usual topology of R.
For example, all open intervals (a, b) for a < b are open sets. Closed intervals [a, b] are not open but they
are closed. Set Q of rational numbers is not open or closed. The only clopen sets are ∅ and R.

Generalizing the previous example, let X be a set and let d : X ×X −→ R be a metric. For every
ε > 0 and x ∈ X we denote

Bε(x) = {y ∈ X | d(x, y) < ε}

and call Bε(x) the (open) ε-ball with center x. Let us call U ⊆ X open if

∀x ∈ U : ∃ε > 0 : Bε(x) ⊆ U.

These open sets form a topology of X, the metric topology induced by d.

Example 14. The discrete topology is induced by the discrete metric

d(x, y) =

{︃
0, if x = y,
1, if x ̸= y.

In contrast, if |X| ≥ 2 then the trivial topology {X, ∅} is not metric.

Let A ⊆ X. Point x ∈ X is an accumulation point of A if every open set U that contains x also
contains some element y ̸= x of A. The following simple properties hold for closed sets:

Proposition 6.2 A subset A ⊆ X is closed if and only if its accumulation points belong to A. Closed
sets satisfy the following properties (that are dual statements of the defining properties of open sets):
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(i) The empty set ∅ is closed, and X is closed,

(ii) the intersection of any number of closed sets is closed, and

(iii) the union of a finite number of closed sets is closed.

Let A ⊆ X. The closure of A is the intersection of all closed sets that contain A. It is then the
smallest closed set that contains A. We denote the closure of A by A. Notice that A itself is closed if
and only if A = A. Notice also that the closure of A is the union of A and its set of accumulation points.

Set A is called dense if A = X.

Example 15. Consider the usual topology of R. All real numbers are accumulation points of the set Q
of rational numbers. This means that the closure of Q is R, so Q is dense in R. Accumulation points
of the open interval (0, 1) are the elements of the closed interval [0, 1], while the set Z of integers has no
accumulation points.

Let A ⊆ X. Point x ∈ A is an interior point of A if there is an open set U such that x ∈ U and
U ⊆ A. The set of all interior points of A is the interior of A. It is easily seen to be the union of all open
subsets of A, or equivalently, the largest open subset of A. Then set A is open if and only if its interior
is A itself.

The exterior of set A ⊆ X is the interior of the complement of A, and the boundary of A consists of
all points that are not in the interior or the exterior of A. Note that the interior, exterior and boundary
of A is a partitioning of X. A set A ⊆ X is called a neighborhood of x ∈ X if x is an interior point of A,
that is, if there is an open set U such that x ∈ U ⊆ A.

Example 16. In the usual topology of R, the interior, exterior and the boundary of an open interval
(a, b) are (a, b), (−∞, a)∪(b,∞) and {a, b}, respectively. The closed interval [a, b] has these same interior,
exterior and boundary. Set Q has empty interior and exterior. All real numbers are in its boundary.

A topology is called Hausdorff if for every x ̸= y there are open Ux and Uy such that x ∈ Ux, y ∈ Uy

and Ux ∩ Uy = ∅. In other words, any two distinct points have non-intersecting neighborhoods.

Example 17. Every metric topology is Hausdorff. Indeed, if x ̸= y then d(x, y) > 0. If we choose
ε = 1

2d(x, y) then Bε(x) and Bε(y) are non-intersecting neighborhoods of x and y

A sequence x1, x2, . . . of points of X converges to point x ∈ X if for every open U ⊆ X that contains
x there is positive integer n such that xi ∈ U for all i ≥ n. If the topology is metric this is equivalent to
saying that for every ε > 0 there is n such that d(xi, x) < ε for all i ≥ n.

Note that generally a converging sequence may converge to several different points, but if the topology
is Hausdorff (e.g. metric) the limit is unique.

Proposition 6.3 In Hausdorff topology every converging sequence converges to a unique point.

Proof. Suppose x1, x2, . . . converges to x and y where x ̸= y. Since X is Hausdorff, there are open sets
U and V such that x ∈ U , y ∈ V and U ∩ V = ∅. By the definition of convergence, xi ∈ U and xi ∈ V
for all sufficiently large i, a contradiction.

Note: the proposition does not hold in all topological spaces. For example, in the trivial topology
T = {∅, X} every sequence converges to every point.

In Hausdorff topology we denote by limi→∞ xi the unique point into which the sequence x1, x2, . . .
converges, if it exists. This point is the limit of the sequence.

The following proposition states that if the topology is metric then the closure A of any set A consists
exactly of the limits of converging sequences of elements of A:

86



Proposition 6.4 Let X be a metric space and A ⊆ X. Then x ∈ A if and only if x = limi→∞ ai for
some converging sequence a1, a2, . . . where all ai ∈ A.

Proof. ”⇐=”: Let a1, a2, . . . be a converging sequence where all ai ∈ A and let x = limi→∞ ai. Let U
be an arbitrary open set that contains x. By the definition of convergence there are some ai ∈ U , so
U ∩A ̸= ∅. This means that x ∈ A. (This direction of the proof holds for any topological space.)

”=⇒”: Conversely, suppose x ∈ A. For every positive integer i, let ai be an element of A∩B 1
i
(x). Then

d(x, ai) <
1
i , so x = limi−→∞ ai.

Corollary 6.5 In metric space X, set A is closed if and only if it contains the limit of every converging
sequence of its elements.

A family B of open sets is called a base of the topology iff every open set is the union of some members
of B. Equivalently: B ⊆ T is a base if for every open set U and x ∈ U there exists some B ∈ B with the
property that x ∈ B ⊆ U .

Example 18. The open intervals (a, b) with a < b form a base of the usual topology of R. More generally,
in any metric topology the open balls Bε(x) over all ε > 0 and x ∈ X form a base.

If B is a base of a topology then this topology is uniquely determined by B:open sets are exactly the
unions of members of B.

Next we define compactness. Let A ⊆ X where X is a topological space. A family of open sets Ui is
called an open cover of A if every element of A belongs to some Ui. A subfamily of an open cover of A
is called a subcover if it is also a cover of A.

Set A ⊆ X is called compact if every open cover of A has a finite subcover of A. The topology is
called compact if the whole space X is compact. In other words, a topology is compact if every family
of open sets whose union is X has a finite subfamily whose union is X.

Example 19. In the usual topology of R the set

A = {0} ∪ { 1
n

| n ∈ Z+}

is compact. Namely, an open set that contains 0 covers all but finitely many elements of A. So any open
cover of A contains a finite subcover: Open set U that covers 0 together with a finite number of open
sets that cover the finitely many elements of A that are outside of U .

On the other hand, set B = { 1
n | n ∈ Z+} is not compact. It has an open cover in which every open

set covers exactly one element of B. Such cover has no finite subcover.

The following proposition states the finite intersection property. It is dual to the open cover property
we used as the definition, and in fact the finite intersection property could have been taken equally well
as the definition of compactness. We state the property for the whole space X:

Proposition 6.6 Topology of X is compact if and only if every family of closed sets whose intersection
is empty has a finite subfamily whose intersection is empty.

Proof. This follows directly from the definition of compactness and de Morgan’s laws: A family of open
sets is a cover of X if and only if the family of their complements have empty intersection.

We typically apply the previous proposition in the following set-up:

87



Corollary 6.7 Let F1 ⊇ F2 ⊇ F3 ⊇ . . . be an infinite chain of closed sets in a compact space X. If

∞⋂︂
i=1

Fi = ∅,

then Fi = ∅ for some i.

The next proposition gives a characterization of compact subsets in metric spaces. The proposition
gives a condition that looks very similar to Proposition 4.2 for configurations. In fact, we use the
proposition later to show the compactness of the configuration space. The proposition is valid (and is
stated) for arbitrary metric spaces, but we only prove it now for metric spaces that have a countable
base. Our configuration space satisfies this restriction, so the proof is sufficient for our set-up. The proof
for general metric spaces is not very difficult either.

Proposition 6.8 Suppose X is a metric space. Set A ⊆ X is compact if and only if every sequence
a1, a2, . . . of elements of A has a subsequence that converges to an element of A.

Proof. ”=⇒” Suppose A is compact, and let a1, a2, . . . be arbitrary sequence where each ai ∈ A.
Suppose first that there is some a ∈ A such that for every ε > 0 the ball Bε(a) contains infinitely

many different elements of the sequence a1, a2, . . . . Then the sequence has a subsequence that converges
to a: There namely is a subsequence whose n’th element belongs to B 1

n
(a).

Suppose then that for every a ∈ A there is some εa > 0 such that Bεa(a) only contains finitely many
different elements of the sequence a1, a2, . . . . Clearly the family of Bεa(a) over all a ∈ A is an open cover
of A, so by compactness of A it has a finite subcover

Ui = Bεai
(ai) for i = 1, 2, . . .m.

But each Ui only covers finitely many different elements of sequence a1, a2, . . . , while each element of the
sequence is covered by some Ui. This means that the sequence has only finitely many different elements.
Then some element a ∈ A repeats infinitely many times in the sequence so the sequence has a constant
subsequence a, a, . . . which trivially converges to a ∈ A.

”⇐=” Suppose every sequence of elements of A has a converging subsequence whose limit is in A. Here
we simplify the set-up by making the additional assumption that the topology has a countable base.
Then it is enough to show that any countable open cover of A has a finite sub-cover. (Indeed, for an
arbitrary open cover by Ui we can consider instead the countable cover that consists of all base sets Bj

that are completely included in some Ui. If every countable cover has a finite subcover, then the original
cover also has a finite subcover where we take for each selected Bj one Ui from the original cover that
satisfies Bj ⊆ Ui.)

So consider a countable open cover {U1, U2, . . . } of A. If it has no finite subcover then for every i there
is some ai ∈ A such that ai ̸∈ Uj for all j < i. By the hypothesis, sequence a1, a2, . . . has a converging
subsequence with limit a ∈ A. But a ∈ Uj for some j, and then by the definition of convergence ai ∈ Uj

for infinitely many indices i. In particular, there is i > j such that ai ∈ Uj , which contradicts the choice
of ai’s. We conclude that a finite subcover must exist.

Next two propositions show that in our forthcoming situation compact sets of the space are exactly
the closed sets.

Proposition 6.9 If X is a compact topological space then every closed A ⊆ X is compact.
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Proof. Let A ⊆ X be closed. Consider an open cover of A. Together with the complement of A it forms
an open cover of X. By compactness of X this has a finite subcover of X, from which we obtain a finite
subcover of A by removing the complement of A (if present). Hence A is compact.

Proposition 6.10 If X is Hausdorff then every compact A ⊆ X is closed.

Proof. Let A ⊆ X be compact. Let x ∈ X \ A. By the Hausdorff property, for every a ∈ A there are
open sets Ua and Va such that a ∈ Ua, x ∈ Va and Ua ∩ Va = ∅. Sets Ua form an open cover of A so by
compactness of A there is a finite subcover Ua1 , . . . , Uam of A. But then the intersection

Vx = Va1 ∩ · · · ∩ Vam

of the corresponding sets Vai is an open set satisfying x ∈ Vx and Vx ∩A = ∅. The union of sets Vx over
all x ∈ X \A is the complement of A. Since the union is open, we see that A is closed.

A topological space is separable if it has a countable dense subset,and it is second countable if it has
a countable base. Our space of interest is both separable and second countable. In fact, every compact
metric space has these properties.

Proposition 6.11 A compact metric space is separable.

Proof. For every n the cover of X by the open balls B1/n(x) has a finite subcover. The centers of all the
balls in these finite subcovers for n = 1, 2, 3, . . . form a countable set A. It is dense: For every y ∈ X
and n ≥ 1 there is a ball B1/n(x) with center x ∈ A that contains y. Then x ∈ B1/n(y).

Proposition 6.12 A metric space is separable if and only if it has a countable base.

Proof. Let {x1, x2, . . . } be a dense countable subset of X. Then the open balls B1/n(xi) over all positive
integers i, n form a countable base. Indeed: For every open U and x ∈ U there exists ε > 0 such that
Bε(x) ⊆ U . Choose an integer n > 2/ε. Some xi ∈ B1/n(x). Because 1/n < ε/2 we have

x ∈ B1/n(xi) ⊆ Bε(x) ⊆ U.

Conversely, if U1, U2, . . . is a countable base, then {x1, x2, . . . } is dense where each xi ∈ Ui.

Let A ⊆ X. We say that point x ∈ A is isolated in A if there is an open set U such that A∩U = {x}.
In other words, some open neighborhood of x does not contain any other elements of A. A non-empty
set S is called perfect if it is closed and has no isolated points.

Proposition 6.13 In a compact metric space, a perfect set is uncountable.

Proof. Clearly, in a Hausdorff space, all points of a finite set are isolated, so a perfect set is infinite.
Suppose there is a countable perfect set

S = {x1, x2, . . . }.

In the following we define a decreasing sequence F1 ⊇ F2 ⊇ F3 ⊇ . . . of closed sets such that, for all i,
set Fi contains an open neighborhood Ui of some element of S, but xi ̸∈ Fi.
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First, F1 = Bε(x2) where ε < d(x1, x2). Then the open neighborhood U1 = Bε(x2) of x2 is contained
if F1, but x1 ̸∈ F1. Suppose then Fi−1 and Ui−1 have been defined. Because S has no isolated points,
the open neighborhood of any point contains also other elements of S. Hence Ui−1 contains at least two
elements of S, and consequently some a ∈ S, a ̸= xi, is in Ui−1. We choose

Fi = Fi−1 ∩Bε(a) and
Ui = Ui−1 ∩Bε(a),

where ε < d(a, xi). Then Fi is closed, Fi−1 ⊇ Fi and xi ̸∈ Fi. Moreover, Ui is open and a ∈ Ui ⊆ Fi.
Because Fi ∩ S are closed and non-empty, by Corollary 6.7 the intersection

A =

∞⋂︂
i=1

Fi ∩ S

is not empty. But xi ̸∈ Fi, so A = ∅, a contradiction.

Finally, a few words about continuous functions. Let X and Y be two topological spaces. A function
f : X −→ Y is continuous at point x ∈ X if for every open V ⊆ Y that contains f(x) there exists an
open U ⊆ X such that x ∈ U and f(U) ⊆ V .

If X and Y are metric spaces with metrics d and e, respectively, then continuity at x is equivalent to
the following: For every ε > 0 there exists δ > 0 such that f(Bδ(x)) ⊆ Bε(f(x)).

We call function f : X −→ Y is continuous if it is continuous at every x ∈ X.

Example 20. If X has the discrete topology then every function f : X −→ Y is continuous. Also, if Y
has the trivial topology {∅, Y } then every f : X −→ Y is continuous. In all topological spaces X and Y
all constant functions f : X −→ Y are continuous. If X has the trivial topology and Y has the discrete
topology then the constant functions are the only continuous functions.

Proposition 6.14 Let f : X −→ Y be a function between two topological spaces. The following condi-
tions are equivalent:

(i) Function f : X −→ Y is continuous,

(ii) pre-image f−1(V ) is open in X for every open V ⊆ Y ,

(iii) pre-image f−1(C) is closed in X for every closed C ⊆ Y .

Proof. (i) =⇒ (ii): Suppose f is continuous and let V ⊆ Y be open. Let x ∈ f−1(V ) be arbitrary, so
f(x) ∈ V . From continuity it follows that there is an open U ⊆ X such that f(U) ⊆ V and x ∈ U . This
means that x ∈ U ⊆ f−1(V ), which implies that f−1(V ) is open.

(ii) =⇒ (i): Suppose f−1(V ) is open for every open V ⊆ Y . Let x ∈ X be arbitrary. Let us show that f
is continuous at point x. Let f(x) ∈ V for open V ⊆ Y . Then U = f−1(V ) is an open set that satisfies
x ∈ U and f(U) ⊆ V . So f is continuous at x.

(ii) ⇐⇒ (iii): Follows directly from the fact that for every A ⊆ Y holds

X \ f−1(A) = f−1(Y \A).

Next propositions give some properties of continuous functions and compact sets.

90



Proposition 6.15 Suppose function f : X −→ Y is continuous. For every compact A the set f(A) is
compact.

Proof. Consider an open cover of f(A) by open sets Vi. Then, by Proposition 6.14 the sets f−1(Vi) form
an open cover of A. By compactness of A there is a finite subcover of A by f−1(Vi) where i ∈ F for some
finite set F . But then the corresponding sets Vi for i ∈ F form a finite subcover of f(A). Hence f(A) is
compact.

Proposition 6.16 If f : X −→ Y is a continuous bijection where X is compact and Y is Hausdorff then
the inverse function f−1 : Y −→ X is also continuous.

Proof. By Proposition 6.14 it is enough to show that for every closed A ⊆ X also f(A) is closed. But if
A ⊆ X is closed then by Proposition 6.9 it is also compact. By Proposition 6.15 set f(A) is also compact,
and then by Proposition 6.10 set f(A) is closed.

6.2 Basic facts about the configuration space

Let us return to the space of interest to us: The space TZ2
of configurations, with the metric

d(e, c) =

{︃
0, if e = c,

2−min {|x|+|y| | e(x,y)̸=c(x,y)}, if e ̸= c.

The open ball of radius ε = 2−r centered at c ∈ TZ2
is

Bε(c) = {e ∈ TZ2 | e(x⃗) = c(x⃗) for all ∥x⃗∥ ≤ r},

where (and from now on) we denote ∥(x, y)∥ = |x|+ |y|. These balls form a base of the topology.
More generally, for any finite domain D ⊆ Z2 and configuration c ∈ TZ2

we define the cylinder set

Cyl(c,D) = {e ∈ TZ2 | e(x⃗) = c(x⃗) for all x⃗ ∈ D}

that contains all those configurations that agree with c in domain D.
Note that for sufficiently large r we have D ⊆ E where

E = {x⃗ ∈ Zd | ∥x⃗∥ ≤ r}.

Then
Cyl(c,D) =

⋃︂
e∈Cyl(c,D)

Cyl(e, E),

so all cylinders are (finite) unions of open balls, and hence they are open in the topology. Balls form a
base of the topology, so also cylinders form a base.

The complement of cylinder Cyl(c,D) is ⋃︂
e̸∈Cyl(c,D)

Cyl(e,D),

so all cylinders are also closed, hence clopen. Our space has a clopen base. Clopen sets are exactly finite
unions of cylinders (homework).
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Let us next show that a sequence of configurations c1, c2, . . . converges to c ∈ TZ2
in this topology,

if and only if it converges to c according to the definition of convergence in Section 4.2. First, suppose
convergence to c in the topology, and let n⃗ ∈ Z2 be arbitrary. Denote

U = Cyl(c, {n⃗}).

Convergence to c implies that for all sufficiently large i holds ci ∈ U , that is, ci(n⃗) = c(n⃗). So the
sequence converges to c according to the definition of Section 4.2.

Conversely, suppose converge to c as defined in Section 4.2. Let U be an open set that contains c.
Because cylinders form a base, there is a finite D ⊆ Zd such that Cyl(c,D) ⊆ U . By the definition of
convergence of c1, c2, . . . there is k ∈ Z such that ci ∈ Cyl(c,D) for all i > k. This means that the
sequence converges to c in the topology.

Now we immediately obtain the following corollaries of our earlier propositions:

Corollary 6.17 The metric space TZ2
is compact.

Proof. Follows directly from Propositions 4.2 and 6.8.

Based on the propositions in the previous section, every compact metric space is a Hausdorff, separable
and second countable, so the space TZ2

has all these properties.
Next we look into translations and show that they are continuous functions. A translation by n⃗ ∈ Z2

is the transformation τn⃗ : TZ2 −→ TZ2
that maps c ↦→ e where e(m⃗) = c(m⃗ − n⃗) for all m⃗ ∈ Z2.

Translations are bijective, and τn⃗ and τ−n⃗ are inverses of each other. The east shift σe and the north
shift σn are translations by vectors (1, 0) and (0, 1) respectively, and the west and the south shifts are
their inverses σw = σ−1

e and σs = σ−1
n . All translations are compositions of the four shifts. Let us denote

by T the set of all translations.
For every n⃗ ∈ Z2 and D ⊆ Z2 we denote the translation of D by n⃗ as

D + n⃗ = {d⃗+ n⃗ | d⃗ ∈ D}.

Let Cyl(c,D) be an arbitrary cylinder. Because

τn⃗ (Cyl(c,D)) = Cyl(τn⃗(c), D + n⃗)

we have that translations τn⃗ are continuous.
So we have a compact, metric space TZ2

, equipped with continuous transformations generated by
σs, σe, σn, σw. This is a set-up studied by topological dynamics.

6.3 Subshifts

A set A ⊆ TZ2
is translation invariant if τ(A) = A for every τ ∈ T. For translation invariance it is

enough to verify that σe(A) = A and σn(A) = A. A topologically closed, translation invariant set is a
(two-dimensional) subshift, while the entire configuration space TZ2

is also called the (two-dimensional)
full shift over the alphabet T .

Recall from the beginning of Section 5.6 that a finite pattern over T is a pair (D, p) where D ⊆ Z2 is
finite, the domain of the pattern, and p : D −→ T . Let us denote by P(T ) the set of all finite patterns
over T . Clearly P(T ) is countable as the number of finite subsets of Z2 is countable.

Pattern (D, p) is a subpattern of c ∈ TZ2
if c(n⃗) = p(n⃗) for all n⃗ ∈ D. Configurations that have (D, p)

as a subpattern form a cylinder which we denote by

Cyl(p,D) = {c ∈ TZ2 | c(n⃗) = p(n⃗) for all n⃗ ∈ D }.

92



This is of course the same cylinder as Cyl(c,D) for any configuration c in the cylinder.
We say that the pattern (D, p) appears in c if (D, p) is a subpattern of τ(c) for some translation

τ ∈ T. For any configuration c let Patt(c) be the set of all finite patterns that appear in c, and for any
A ⊆ TZ2

we denote by

Patt(A) =
⋃︂
c∈A

Patt(c)

the set of finite patterns that appear in some element of A.
For any set P of finite patterns we define the set

Σ(P ) = {c ∈ TZ2 | Patt(c) ∩ P = ∅}

of configurations in which no element of P appears. Next we prove that sets Σ(P ) are precisely the
subshifts over T .

Theorem 6.18 Σ ⊆ TZ2
is a subshift if and only if Σ = Σ(P ) for some set P of finite patterns over T .

Proof. First we observe that Σ(P ) is a subshift, for every P ⊆ P(T ). Clearly Σ(P ) is translation
invariant because Patt(c) = Patt(τ(c)) for all configurations c and translations τ . And Σ(P ) is closed
because for every c ̸∈ Σ(P ) there exists (D, p) ∈ P that appears in c, i.e., is a subpattern of τ(c) for some
translation τ . Then τ(c) ∈ Cyl(p,D) and Cyl(p,D) ∩ Σ(P ) = ∅. This means that τ−1(Cyl(p,D)) is an
open neighborhood of c whose intersection with Σ(P ) is empty.

For the converse direction, let Σ be an arbitrary subshift over T and define

P = P(T ) \
⋃︂
x∈Σ

Patt(x),

that is, P contains all the patterns that do not appear in any configuration belonging to Σ. Let us prove
that Σ = Σ(P ). If c ∈ Σ then by the definition of P we have Patt(c) ∩ P = ∅. Hence c ∈ Σ(P ). And if
c ∈ Σ(P ) then Patt(c) ⊆ ∪x∈ΣPatt(x), so for every finite D ⊆ Z2 we have Σ ∩ Cyl(c,D) ̸= ∅. Because Σ
is closed we have c ∈ Σ.

Subshifts Σ(P ) for finite P are called subshifts of finite type (SFT). So a SFT can be specified by
giving a finite collection P of forbidden patterns. But this is exactly how we defined valid tilings in
Section 5.3. So the valid tilings form a SFT, and conversely, every SFT is the set of valid tilings when the
forbidden patterns are defined as in the SFT. Valid tilings by Wang tiles are particular types of subshifts
of finite type, with small forbidden patterns. The construction in Lemma 5.5 in Section 5.3 in fact shows
the following: Every subshift of finite type is conjugate to the set of valid tilings by some Wang tile set.
(Two subshifts X and Y are called conjugate if there exists a translation commuting homeomorphism
between them, i.e., a continuous bijection h : X −→ Y such that h ◦ τ = τ ◦ h for all τ ∈ T. Conjugate
subshifts are in many respects equivalent with each other.)

6.4 Orbits, transitivity and minimality

For any c ∈ TZ2
the set

O(c) = {τ(c) | τ ∈ T}

is the orbit of c. The set O(c) is trivially translation invariant. The orbit is not necessarily closed, so
we frequently consider the orbit closure O(c). The orbit closure is translation invariant: Let e ∈ O(c)
and let τ be any translation. Since there are e1, e2, · · · ∈ O(c) such that limi−→∞ ei = e, we have
limi−→∞ τ(ei) = τ(e) and each τ(ei) ∈ O(c). This means that τ(e) ∈ O(c). We have proved the
following:

93



Lemma 6.19 The orbit closure O(c) is a subshift, for every c ∈ TZ2
.

The orbit closure O(c) is the subshift generated by c, that is, the intersection of all subshifts that
contain c.

Example 21. Let T = {0, 1} and let c ∈ TZ2
be the infinite cross: c(i, 0) = c(0, i) = 1 for all i ∈ Z and

c(i, j) = 0 if i, j ̸= 0. Then O(c) is not closed. The orbit closure also contains the zero configuration c0
with c0(i, j) = 0 for all i, j ∈ Z, as well as horizontal and vertical rows of 1’s, i.e. elements of O(cv) and
O(ch) where ch(i, 0) = cv(0, i) = 1 for all i ∈ Z and ch(i, j) = cv(j, i) = 0 if j ̸= 0.

Lemma 6.20 e ∈ O(c) if and only if Patt(e) ⊆ Patt(c).

Proof. We have e ∈ O(c) if and only if for every finite D ⊆ Z2 there exists τ ∈ T such that τ(c) ∈
Cyl(e,D). But this is equivalent to Patt(e) ⊆ Patt(c).

A non-empty subshift Σ is called transitive if for every (D1, p1), (D2, p2) ∈ Patt(Σ) there exists c ∈ Σ
such that (D1, p1), (D2, p2) ∈ Patt(c). In other words, any two patterns that appear in some elements of
Σ, appear in the same element of Σ. Next we show that transitive subshifts are exactly the orbit closures
of configurations:

Theorem 6.21 Subshift Σ is transitive if and only if Σ = O(c) for some c ∈ Σ.

Proof. For every configuration c the subshift O(c) is transitive: By Lemma 6.20 we have the inclusion
Patt(O(c)) ⊆ Patt(c), so all patterns that appear in some elements of O(c) appear in c, and hence Σ is
transitive.

Conversely, suppose that Σ is transitive. By transitivity and translation invariance of Σ, if U and V
are cylinders such that U ∩Σ ̸= ∅ and V ∩Σ ̸= ∅ then there is a translation τ such that U ∩ τ(V )∩Σ ̸= ∅.
And since non-empty intersections of cylinders are cylinders, the set U ∩ τ(V ) is a cylinder.

Let U1, U2, . . . be all the cylinders such that Ui ∩ Σ ̸= ∅. By the observation above, there are
translations τ1, τ2, . . . such that

Vn = τ1(U1) ∩ τ2(U2) ∩ · · · ∩ τn(Un) ∩ Σ

is non-empty for every n = 1, 2, . . . . Every Vn is closed and V1 ⊇ V2 ⊇ V3 ⊇ . . . . By compactness there
exists c in their intersection. This c is in Σ and it contains the patterns in Patt(Σ). This means that
Σ = O(c).

So we can observe that if Σ is transitive then some c ∈ Σ contains all the finite patterns that appear
in any elements of Σ.

Motivated by the previous theorem, we call an element c ∈ Σ transitive in Σ if Σ = O(c). By the
theorem, a transitive element c exists exactly in those subshifts that are transitive, and in that case O(c)
is a dense subset of Σ consisting of transitive elements.

Example 22. In Example 21 the infinite cross is transitive in its orbit closure. The orbit closure contains
a non-transitive subset Σ = O(cv) ∪ O(ch) generated by the horizontal and vertical rows of 1’s.

A non-empty subshift Σ is called minimal if the only subshifts contained in Σ are ∅ and Σ.

Theorem 6.22 Let Σ be a subshift. The following are equivalent:

(i) Σ is minimal.
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(ii) All elements of Σ are transitive in Σ.

(iii) Patt(e) = Patt(c) for all e, c ∈ Σ.

Proof. (i) =⇒ (ii): For every c ∈ Σ the orbit closure O(c) is a subshift inside Σ, so by minimality
O(c) = Σ.

(ii) =⇒ (i): If Σ is not minimal then it properly contains a non-empty subshift Σ′ ⊊ Σ. If c ∈ Σ′ then
O(c) ⊆ Σ′, so c is not transitive in Σ.

(ii) =⇒ (iii): By the definition of transitivity, O(e) = Σ = O(c) for all e, c ∈ Σ. By Lemma 6.20 this
means that Patt(e) = Patt(c).

(iii) =⇒ (ii): If Patt(e) = Patt(c) for all e, c ∈ Σ then by Lemma 6.20 we have e ∈ O(c). As e ∈ Σ is
arbitrary, we have Σ ⊆ O(c), i.e., c is transitive in Σ.

So the theorem states that Σ is minimal if and only if the orbits of all its elements are dense in Σ. Next
we show that minimal subshifts are found inside all non-empty subshifts. This could be proved directly
using Zorn’s lemma. We present an elementary topological proof.

Theorem 6.23 Every non-empty subshift Σ contains a minimal subshift.

Proof. Cylinders form a countable base U1, U2, . . . of the topology. Let us denote by

O(Ui) = {τ(c) | τ ∈ T, c ∈ Ui} =
⋃︂
τ∈T

τ(Ui)

the orbit Ui. It is clearly translation invariant, and also open as a union of open sets τ(Ui).
Inductively we construct a sequence F0 ⊇ F1 ⊇ F2 ⊇ . . . of non-empty, closed, translation invariant

sets as follows. F0 = Σ. Then suppose that Fm−1 has been defined. If Fm−1 ⊆ O(Um) then Fm = Fm−1,
else Fm = Fm−1 \ O(Um). Then Fm ̸= ∅, Fm is closed as Fm−1 is closed and O(Um) is open, and Fm is
translation invariant because Fm−1 and O(Um) are translation invariant. Let

F =

∞⋂︂
i=1

Fi.

Because all Fi are closed and translation invariant, so is F , and it follows from the compactness that
F ̸= ∅. So F is a non-empty subshift.

Let us show that F minimal. Suppose on the contrary that there exist e, c ∈ F such that Patt(e) \
Patt(c) ̸= ∅. This means that there is a cylinder Ui such that e ∈ O(Ui) and c ̸∈ O(Ui). As F ⊆ Fi−1 is
not a subset of O(Ui), we see that Fi = Fi−1 \ O(Ui). But this contradicts the assumption e ∈ O(Ui).

6.5 Periodicity and recurrence properties

A configuration c ∈ TZ2
is one-way periodic if there exists n⃗ ∈ Z2 \ 0⃗ such that c = τn⃗(c). Vector n⃗ is a

period of c. Configuration c is two-way periodic if it is periodic with two linearly independent periods n⃗1

and n⃗2. A two-way periodic configuration is always periodic with horizontal and vertical periods (0, n)
and (n, 0) for some n > 0, as shown in the beginning of Section 4.1. If a subshift of finite type contains
a one-way periodic element then it contains a two-way periodic element as well: this was show for valid
Wang tilings in Theorem 4.1, and by Lemma 5.5 subshifts of finite type are conjugate to sets of valid
Wang tilings. Note that a conjugacy preserves vectors of periodicity.
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The orbit O(c) of c is finite if and only if c is two-way periodic. The orbit is also closed if and only if
c is two-way periodic (homework).

Two-way periodicity is a very strong form of recurrence. Some weaker recurrence properties are
defined in the following. A configuration c ∈ TZ2

is uniformly recurrent if for every open U with c ∈ U
there exists a finite D ⊆ Z2 such that for every n⃗ ∈ Z2 we have τ

n⃗+d⃗
(c) ∈ U for some d⃗ ∈ D. In other

words, if a finite pattern appears somewhere in a uniformly recurrent c then it appears inside every n×n
square, for some n.

A configuration is called recurrent if for every open U with c ∈ U there exists n⃗ ̸= 0⃗ such that
τn⃗(c) ∈ U . In other words, every pattern that appears in c appears more than once. It is easy to see that
then the pattern has to appear infinitely many times in c:

Lemma 6.24 Configuration c is recurrent if and only if for every open neighborhood U of c there are
infinitely many translations τ ∈ T such that τ(c) ∈ U .

Proof. Let c be recurrent, and let U be open, c ∈ U . Suppose, contrary to the claim, that the only
translations τ such that τ(c) ∈ U are by vectors n⃗1, n⃗2, . . . n⃗k. Let

V =

k⋂︂
i=1

τ−n⃗i
(U).

As V is open and c ∈ V , by the recurrence of c there exists n⃗ ̸= 0⃗ such that τn⃗(c) ∈ V . Then τn⃗i+n⃗(c) ∈ U
for all i = 1, 2, . . . , k. This means that {n⃗1+ n⃗, n⃗2+ n⃗, . . . n⃗k + n⃗} = {n⃗1, n⃗2, . . . n⃗k}. This is possible only
if n⃗ = 0⃗, a contradiction. (Namely, suppose w.l.o.g. that n⃗ = (x, y) where x > 0. If n⃗i has the largest
x-coordinate among n⃗1, n⃗2, . . . n⃗k, then n⃗i + n⃗ would have a larger x-coordinate than any of the vectors
in the set.)

Configuration c is quasi-periodic if for every open neighborhood U there exist linearly independent
translation vectors a⃗, b⃗ ∈ Z2 such that τ

i⃗a+jb⃗
(c) ∈ U for all i, j ∈ Z. In other words, in quasi-periodic con-

figurations all finite patterns are part of a two-way periodic repetition of the pattern, but the period may
be different for different patterns. Configuration c is called isochronous if for every open neighborhood
U there exists an offset vector c⃗ ∈ Z2 and two linearly independent a⃗, b⃗ ∈ Z2 such that τ

i⃗a+jb⃗+c⃗
(c) ∈ U

for all i, j ∈ Z.
The following implications are obvious from the definitions:

c two-way periodic =⇒ c quasi-periodic =⇒ c isochronous =⇒ c uniformly recurrent =⇒ c recurrent

Example 23. For any integer n let us define deg2(n) = k if n = a2k for some odd a, and deg2(0) = ∞.

Let T = {0, 1}. Define configuration c ∈ TZ2
as follows: c(i, j) = 1 if and only if deg2(i) = deg2(j). The

following figure illustrates c where black square indicates value 1 and white square value 0:
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This c is isochronous but not quasi-periodic, as defined above. The configuration is not quasi-periodic,
because symbol 1 in position (0, 0) is not repeated two-way periodically: all other cells at (i, 0) and (0, i)
carry symbol 0. But the configuration is isochronous (and hence uniformly recurrent and recurrent)
because deg2(n) = deg2(n+2k) for every k > deg2(n). This means that for any odd integers a and b the
translated configuration τ(a2k,b2k)(c) agrees with c inside the square {(i, j) ∈ Z2 | − 2k < i, j < 2k}.

Uniformly recurrent configurations are important because they exactly generate all minimal subshifts.

Theorem 6.25 Subshift O(c) is minimal if and only if c is uniformly recurrent.

Proof. By Theorem 6.22 subshift O(c) is minimal if and only if Patt(e) = Patt(c) for all e ∈ O(c).

”⇐=”: Let c be uniformly recurrent and let e ∈ O(c) arbitrary. By Lemma 6.20 we know that Patt(e) ⊆
Patt(c) so it is enough to show that Patt(c) ⊆ Patt(e). Let (D, p) ∈ Patt(c). By uniform recurrence of
c, there exists n such that every n× n square in c contains a copy of (D, p). Because every n× n square
pattern in e also appears in c, every n× n square pattern of e contains (D, p). So (D, p) ∈ Patt(e).

”=⇒”: Conversely, assume that c is not uniformly recurrent. Let us show that Σ = O(c) is not minimal.
By uniform recurrence there exists a finite domain D ⊆ Z2 such that for any finite F ⊆ T a translation
α ∈ T exists such that for all τ ∈ F holds ατ(c) ̸∈ cyl(c,D). In particular, if T = {τ1, τ2, . . . } then
for every j = 1, 2, . . . there exists αj ∈ T such that αjτi(c) ̸∈ cyl(c,D) for all i = 1, 2 . . . , j. Let e be
the limit of a converging subsequence of α1(c), α2(c), α3(c), . . . . Then e ∈ Σ but for all τi ∈ T holds
τi(e) ̸∈ cyl(c,D). This is due to the fact that for all j ≥ i we have τiαj(c) = αjτi(c) ̸∈ cyl(c,D). We
conclude that Patt(c) \ Patt(e) ̸= ∅, so Σ is not minimal.

We have shown that a subshift Σ is minimal if and only if Σ = O(c) for some uniformly recurrent
c, and that in this case all elements of Σ are uniformly recurrent. There are two possibilities for the
elements of a minimal Σ: Either all of them are two-way periodic, in which case the subshift is their
finite orbit, or all elements are non-periodic (but uniformly recurrent) configurations that contain exactly
the same finite patterns. In the second case the subshift turns out to contain an uncountable number of
elements:
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Theorem 6.26 A minimal subshift is either finite or uncountably infinite.

Proof. Let Σ be a minimal subshift of countable cardinality. By Proposition 6.13, there is an isolated
point c ∈ Σ, so that some open set U satisfies Σ∩U = {c}. By Theorem 6.25 configuration c is uniformly
recurrent. This means that there are many translations τ such that τ(c) ∈ U . In fact, for some n, every
n × n square must contain a point n⃗ such that τ = τn⃗ has this property. Whenever τn⃗(c) ∈ U we have
τn⃗(c) = c, so c is periodic. This implies that Σ = O(c) is finite.

The following corollary states some implications of the above theorems in the case the subshift con-
sidered is the set of valid tilings:

Corollary 6.27 If a tile set admits a valid tiling then it admits a uniformly recurrent tiling. If it admits a
uniformly recurrent tiling that is not two-way periodic, then it admits uncountably many different tilings.
In particular, every aperiodic tile set admits uncountably many valid, uniformly recurrent tilings.

6.6 Equicontinuity and isolated points

Recall that point c ∈ Σ is isolated in Σ if there exists an open set U such that U ∩ Σ = {c}.

Lemma 6.28 Let Σ be a subshift. All c ∈ Σ are isolated in Σ if and only if Σ is finite.

Proof. Let Σ be a finite subshift, and let c ∈ Σ. Set F = Σ \ {c} is closed as a finite union of singleton
sets. Hence the complement of F is an open neighborhood of c that does not contain any other elements
of Σ.

Conversely, suppose that Σ is an infinite subshift. By compactness there exists an infinite converging
sequence c1, c2, . . . where each ci ∈ Σ and and ci ̸= cj whenever i ̸= j. The limit c = limi→∞ ci is in Σ,
but it is not isolated in Σ.

Finite subshifts are exactly the ones whose elements are all two-way periodic:

Theorem 6.29 A subshift Σ is finite if and only if every c ∈ Σ is two-way periodic.

Proof. If c is not two-way periodic then its orbit is infinite, so one direction is trivial. We only need to
show that if all c ∈ Σ are two-way periodic then Σ is finite.

Suppose the contrary: Σ is infinite and all c ∈ Σ are two-way periodic. Due to infinity, there exists a
converging sequence c1, c2, . . . such that all ci ∈ Σ and ci ̸= cj for all i ̸= j. Let c = limi→∞ ci. Because
all elements of Σ are two-way periodic, c ∈ Σ is two-way periodic.

For each ci ̸= c let us identify a vector (xi, yi) ∈ Z2 of minimum ni = max{|xi|, |yi|} such that
ci(xi, yi) ̸= c(xi, yi). In other words, ci(x, y) = c(x, y) for all −ni < x, y < ni, but ci(xi, yi) ̸= c(xi, yi) for
some xi, yi satisfying |xi| = ni or |yi| = ni. Note that limi→∞ ni = ∞.

Infinitely many of the vectors (xi, yi) are in the same quadrant of the plane. Without loss of generality
we assume now that all xi, yi ≥ 0. By setting τi = τ(−xi,−yi) we see that for all i = 1, 2, . . . τi(ci)(⃗0) ̸=
τi(c)(⃗0) but τi(ci)(x, y) = τi(c)(x, y) for all −ni < x < 0 and −ni < y < 0. Because c is two-way periodic,
there are only finitely many different configurations among τi(c). By choosing a subsequence, we can
hence assume now that τi(c) = τ(c) for some translation τ and all i = 1, 2, . . . .

Sequence τ1(c1), τ2(c2), . . . has a converging subsequence. The limit e ∈ Σ of the subsequence coincides
with a two-way periodic configuration τ(c) at (x, y) for all x, y < 0, but it does not coincide with τ(c) at
(0, 0). All elements of Σ are two-way periodic, so e is two-way periodic. Configurations e and τ(c) have
a common period (a, b) with a, b < 0, which implies that

τ(c)(0, 0) = τ(c)(a, b) = e(a, b) = e(0, 0),
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a contradiction.

The following term comes from topological dynamics: Configuration c ∈ Σ is an equicontinuity point
if

(∀ε > 0)(∃δ > 0)(∀e ∈ Σ)(∀τ ∈ T) d(c, e) < δ =⇒ d(τ(c), τ(e)) < ε.

In other words, if e is chosen sufficiently close to c then all translates τ(e) and τ(c) are close to each
other.

Because for any c ̸= e there exists τ ∈ T such that d(τ(c), τ(e)) = 1, we see that c is an equicontinuity
point in Σ if and only if it is isolated in Σ. Indeed, if c is isolated then for some δ > 0 the only configuration
e satisfying d(c, e) < δ is c itself. And conversely, if c is not isolated then all neighborhoods of c contain
e ̸= c, so the choice ε = 1/2 contradicts the equicontinuity condition at c.

The subshift Σ is called equicontinuous if all c ∈ Σ are equicontinuity points. By the observation
above, Σ is equicontinuous if and only if all its elements are isolated. By Lemma 6.28 equicontinuous
subshifts are exactly the finite subshifts, which by Lemma 6.29 are exactly the subshifts all of whose
elements are two-way periodic.

A subshift Σ is called sensitive if there exists ε > 0, called the sensitivity constant, such that

(∀c ∈ Σ)(∀δ > 0)(∃e ∈ Σ)(∃τ ∈ T) 0 < d(c, e) < δ and d(τ(c), τ(e)) > ε.

In other words, arbitrarily close to each c there is another configuration e such that for a suitable
translation τ the configurations τ(c) and τ(e) are not close to each other. Note that if c is isolated in
Σ then there are no elements within distance δ of c for small δ, and hence the system is not sensitive.
In contrast, if there are no isolated points then the system is sensitive with any sensitivity constant
0 < ε < 1 because, as pointed out above, for any c ̸= e we have d(τ(c), τ(e)) = 1 for a suitable τ ∈ T.

Finally, the fact that

(∃ε > 0)(∀c, e ∈ Σ) c ̸= e =⇒ (∃τ ∈ T) d(τ(c), τ(e)) > ε

means, in terms of topological dynamics terminology that all subshifts are expansive.

Theorem 6.30 Let Σ be a subshift.

(i) Σ is expansive.

(ii) Σ is sensitive if and only if it has no isolated points.

(ii) Σ is equicontinuous if and only all its elements are isolated, i.e., the subshift is finite.

7 A brief revisit to tilings by polygons

In the beginning of Section 4 we showed how any Wang protoset can be converted into an equivalent
set of prototiles that are polygons, by replacing colors with suitable bumps and dents. By ”equivalent”
we mean that for every valid tiling by the polygons there is an isometry α that maps the tiling into
another tiling where the tiles are aligned on integer lattice points so that the tiles – if replaced by the
corresponding Wang tiles – provide a valid Wang tiling.

Using this construction of bumps and dents we can lift many results of the previous chapter to the
case of polygonal prototiles. In particular, by Theorem 4.5 we know that there are aperiodic protosets of
polygons, that is, finite sets of polygons that admit valid tilings but none of these tilings have translational
symmetry. The bumps and dents prevent any reflectional or rotational symmetries so it is clear that the
protosets we obtain only admit tilings without any non-trivial symmetries.
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Theorem 7.1 There exists a protoset of polygons that admits a valid tiling but does not admit a valid
tiling with a non-trivial symmetry.

The smallest aperiodic Wang protoset contains 11 tiles, but with geometric tiles a single tile is enough
to force non-periodicity! A polygonal prototile (the hat) was recently reported that is alone aperiodic:
there exist monohedral tilings of R2 using the hat but none of these tilings has a translational symmetry.
We discuss this tile in Section 7.4 below.

An older aperiodic protoset consists of two polygons. In 1974 R.Penrose presented this famous
aperiodic pair called kite and dart :

green

red

red

redred

green

green green

7272
144

72

72

36 36

1 1

1 1

Dart:Kite:

j j

j j

The Penrose tiles are obtained by cutting in two a rhombus that has a 72◦ angle. The resulting quadri-
laterals have edges of length 1 and φ = (1 +

√
5)/2 = 1.618 . . . , the golden ratio. The vertices are

colored red and green, and in valid tilings equal edges must be placed together and also the colors at
the vertices must match. (This condition prevents one from gluing the kite and dart back together to
form the rhombus.) These matching rules can be easily enforced using geometric constraints only by, say,
using bumps and dents as follows:

Here is a part of a tiling using kites and darts. (For clarity, the bumps and the dents are not shown):
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The following result will be proved in the homework problems:

Theorem 7.2 Penrose kite and dart are an aperiodic pair of prototiles. They do admit valid tilings with
a 5-fold rotational symmetry.

7.1 Substitutions

Substitutions are a popular method to construct hierarchical, non-periodic tilings. As a simple example,
consider the chair substitution where an L-tromino is cut into four smaller, similar shapes:

Starting from a single tile, we repeat the following operations:

(i) Replace each tile by four smaller copies as above,

(ii) Magnify the obtained pattern by factor two horizontally and vertically.

Here are the first two iterations (the meaning of the grey tile will be explained later):
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The first and the second steps produce “supertiles” that consist of four and sixteen copies of the tile.
The k’th supertile is a pattern of 4k tiles. It is clear that in this way we obtain ever larger areas covered
by the tiles. To obtain a tiling of the infinite plane, we suitably position the obtained supertiles on the
plane so that the next pattern always expands the previous one, and take the limit of the process. Note
that the k’th supertile consists of four copies of the (k − 1)’st supertile, so we can position it (in four
different ways) on the plane so that the (k − 1)’st supertile is its subpattern. Moreover, we can do this
positioning so that the patterns grow in all directions, so that each point of the plane gets eventually
covered by a tile.

For example, in the illustration above, we can align the gray tile of the second supertile over the initial
tile, and repeat this positioning after all even rounds. Because the grey tile is not on the boundary, it is
guaranteed to get surrounded by more and more tiles on all sides. The following illustration shows the
position of the grey tile in the fourth supertile.

In the limit we obtain a tiling t of the infinite plane. It is clear that in this tiling each tile belongs to
a supertile, which in turn belongs to a second level supertile, and so on.

To prove that the obtained tiling t is not periodic, we make the important observation that two
supertiles cannot overlap: each tile in the tiling is part of a unique supertile. To see this, consider the
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four parts of a supertile:

C

A

B D

We observe that neighbors A and B meet at the end of the L, that is, they are adjacent to each other at
an edge denoted by ∗ here:

*

*

Also neighbors B and D meet each other at their ∗-ends. In contrast, the ∗-ends of tile C are not adjacent
to ∗-ends of other tiles. So we can recognize the center tiles C of all supertiles simply by the property
that neither ∗-end is adjacent to a ∗-end of another tile. In the other cases A, B and D, the neighbor
at the inner corner (indicated by • above) is the center tile C of the supertile, and hence the supertile
containing the tile is unique also in this case.

We conclude that tiling t has a unique partitioning into a tiling by the supertiles. The same reasoning
then applies to the next levels, so that tiling t can be partitioned in a unique way into a tiling by k’th
level supertiles, for every k.

Suppose now that tiling t would have a period n⃗ ̸= (0, 0). Applying translation τn⃗ to the supertiling
produces a supertiling. But since t remains the same under τn⃗, and since the coresponding supertiling
is unique, the supertiling must have period n⃗. The same reasoning applies to supertilings of level k, for
every k. But for sufficiently large k, the k’th level supertile overlaps its translate by n⃗, so n⃗ cannot be a
period of the k’th level supertiling, a contradiction.

We have proved that the tiling obtained by iterating the chair substitution is non-periodic. It was
essential in the proof that the partitioning of the tiling into supertiles is unique. Note that the L-tromino
is of course not aperiodic: it trivially tiles a 2 × 3 rectangle, which yields a periodic tiling of the plane.
However, there are general methods to decorate tiles in such substitutions so that non-periodicity is
forced. This increases the total number of tiles as several variants of the tiles are needed with different
decorations. We skip the general method, but discuss in detail Amman’s aperiodic tile set that is also
based on the substitution concept.

7.2 Amman’s aperiodic tile set

The following pair of tiles, due to R.Amman in 1977, forms an aperiodic tile set.

a

a
b

b

d

d
c

c a

a

a

a

bb

d d

c

c

The tiles may be rotated and flipped in any orientation. The labeled arrows along the edges give a
matching rule: each arrow must fit against an arrow with the same label and oriented in the same
direction. The lengths of the arrows are arbitrary (yet positive), but all arrows with the same label
have also the same length. (A remark: this matching rule can not be implemented geometrically with
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bumps and dents. It can be implemented geometrically, though, by adding a third key tile, so that the
construction provides an aperiodic set of three geometric tiles.)

The following illustration shows how an A-tile and a B-tile fit together into a super-A, and how an
A-tile and two B-tiles form a super-B:
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Any tiling by the resulting supertiles
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can hence be broken into a tiling by the original tiles. Let us redecorate the supertiles with arrows labeled
a′, b′, c′ and d′, where the new arrows represent combinations of old arrows as follows:

d

a

b’

a’ a c=

=c’

b

d

d’ = =

The redecorated supertiles

c’

c’

d’

a’

b’

b’

d’

a’

d’

b’

a’ c’a’

d’

a’

b’

c’a’
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are called expanded A and expanded B, respectively. Of course, in any valid tiling by the expanded
tiles, the tiles can be replaced by the corresponding supertiles, and the tiling remains valid. But also the
converse holds: in any tiling by the supertiles, replacing the supertiles by the coresponding expanded tiles
yields a valid tiling. To see this, note that in the supertiles the c-arrow is always immediately followed by
an a-arrow in the same direction. Hence two neighbors with a common c-segment also share the following
a-segment. So replacing every ca -segment by a new a′-arrow leaves the tiling valid. Analogously, every
b-arrow is immediately followed by a d-arrow, so replacing bd -segment by a new d′-arrow keeps the tiling
valid. But the obtained tiles are (up to renaming the arrows) exactly the expanded A- and B-tiles. We
conclude that the supertiles and the expanded tiles admit exactly the same tilings.

Next we observe that the expanded tiles are isomorphic to the original tiles, where the arrows with
labels a′, b′, c′ and d′ correspond to the arrows a, b, c and d, respectively. (However, the ratios of the arrow
lengths may change, so the shapes of the expanded tiles are not necessarily similar to the original tiles.
Similarity in shapes is obtained if the length of arrow d is φ times the length of b, and the length of a is
φ times the length of c, where φ is the golden ratio, i.e., the positive number satisfying φ2 = φ+ 1. But
similarity in shapes is not necessary in the reasoning that follows.)

We can now build supertiles of level two by simply combining the expanded tiles the same way we
combined the original tiles to build the first level supertiles. Iterating the reasoning allows us to build
supertiles and expanded tiles of levels two, three, four and so on. These provide tilings of larger and
larger regions of the plane by the original A- and B-tiles. As with the chair substitution, we can take
the limit, which yields a valid, hierarchical tiling of the infinite plane. The following illustration shows
the first levels of the process:
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Consider now an arbitrary tiling of the plane by A and B. First we prove that every tile belongs to
a supertile. Consider an A-tile and its neighbor at the inner corner *.

a

a
b

b

d

d
c

c a

a

a

a

bb

d d

c

c

* *

A simple case analysis (based, for example, on the b-arrows) shows that the only tile to match is the
B-tile, oriented to form the super-A.

Consider then a B-tile and its inner corner *. An A-tile fits in the corner in two different ways: one
provides super-A, as seen above; the other (shown below) cannot be expanded into a tiling of the plane,
because no tile fits in the corner •:
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a

a

a

bb

d d

c

c
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b

d

d
c

c
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On the other hand, there is only one possible way to fit a B-tile in the *-corner of the B-tile:

a

a

a

a

bb

d d

c

c

a

a

a

a

bb

d d

c

c

The only tile to fit in the *-corner of the second B-tile is the A-tile, so that the three tiles together form
super-B. We conclude that every tile of a valid tiling is part of a super-A or a super-B.

In fact, the tiles of any tiling by A- and B-tiles can be grouped into non-overlapping supertiles and,
moreover, such grouping is unique. To see this, find first all B-tiles whose *-neighbor is also a B-tile.
These necessarily are part of a super-B, as discussed above. The super-B tiles do not overlap. All
remaining tiles must be part of super-A tiles, so the unique grouping is concluded.

We are ready to make the following conclusion:

Theorem 7.3 The A- and B-tiles form an aperiodic pair of tiles.

Proof. By iterating the substitution to form supertiles, while properly aligning the obtained supertiles,
we obtain a sequence of growing, correctly tiled patterns. In the limit, a valid tiling is obtained.

Let us show that no periodic tiling is possible. Suppose the contrary: A valid tiling t exists that is
invariant under the translation by n⃗ ̸= 0⃗. The tiles in t can be partitioned in a unique way into supertiles.
If this tiling ts by supertiles is translated by vector n⃗, a tiling t′s by the supertiles is obtained. However,
when the supertiles in t′s are broken into their A- and B-pieces, the obtained tiling is the n⃗-translation of
t, hence it is equal to t. But the supertiling obtained from t is unique, so t′s = ts, and tiling ts is invariant
under the translation by n⃗.

When the supertiles in ts are replaced by the corresponding extended tiles, a valid tiling te by the
extended tiles is obtained that has period n⃗. By repeating this argument on te in place of t, and iterating
the reasoning, we see that there are valid tilings by extended tiles of all levels that are n⃗-periodic. This
is not possible since an extended tile of a sufficiently high level overlaps with its translation by n⃗.

We conclude that the A- and B-tiles do not admit a periodic tiling, and hence they are an aperiodic
pair of tiles.

7.3 The extension and the periodicity theorems

To prove that repeating a substitution leads, in the limit, to a tiling of the plane was easy in our examples.
We used the fact that the pattern obtained at iteration k+1 contains the level k pattern as its subpattern.
This means that the sequence of obtained patterns have a well-defined limit. Moreover, in our examples
the patterns grow on all sides, so that the limit covers the whole plane and is thus a valid tiling of the
plane.

But it can be shown that even if the obtained patterns do not contain previous ones as subpatterns, a
valid tiling exists as long as arbitrarily large disks can be covered. This result (which we present without a
proof) extends Corollary 4.3 from Wang tiles to geometric tiles. It is important to note that the theorem
only considers finite protosets of topological disks:
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Theorem 7.4 (Extension theorem) A finite protoset P of topological disks admits a tiling if and
only if, for every r > 0, a disk of radius r can be covered by copies of the prototiles. (That is, there is
a collection of tiles, all congruent to elements of P, such that (i) the interiors of the tiles are pairwise
disjoint, and (ii) a disk of radius r is included in the union of the tiles.)

Theorem 7.4 above generalizes Corollary 4.3 from Wang tiles to geometric tiles. The other important
basic property of Wang tiles states that a Wang tile set that admits a one-way periodic tiling admits also
a two-way periodic tiling (Theorem 4.1). Also this theorem can be generalized to finite sets of polygonal
prototiles and edge-to-edge tilings:

Theorem 7.5 (Periodicity theorem) Let P be a finite set of polygons. Assume that there exists an
edge-to-edge tiling by the protoset P that is one-way periodic (=invariant under some translation). Then
there also exists an edge-to-edge tiling by P that is two-way periodic (=invariant under translations by
two linearly independent vectors).

7.4 Hat: an aperiodic monotile

The polygonal tile hat was recently proved to be an aperiodic monotile, i.e., there exist monohedral
tilings of the plane using the hat, but none of these tilings are periodic. The tile is a union of eight kites
of a grid formed by overlapping the regular tilings by equilateral triangles and regular hexagons:

The grid of equilateral triangles is formed by equally spaced infinite lines in three directions, at 120◦

angles with each other. We number these directions 1, 2 and 3. For each direction i ∈ {1, 2, 3} we call
i-lines the infinite lines in direction i that together form the triangular lattice.

The grid of kites is in fact the dual of the 3 · 4 · 6 · 4 Archimedean tiling, obtained by joining the
centers of adjacent tiles of the Archimedean tiling. A kite in the grid is a quadrilateral with two short
edges (length 1) and two long edges (length

√
3). The long edges are along the i-lines, while the short

edges are on the boundaries of the regular hexagons. The hat tile inherits these edge lengths. Note that
when viewed as a polygon the hat has also one edge of length 2 (formed by two consecutive parallel short
edges of kites), but in the following we consider this segment to consist of two edges of length 1. Thus
the hat has 6 long edges and 8 short edges.

Let us read the edges as vectors, moving around the hat clockwise. We get 6 vectors of length
√
3,

in three pairs of opposite vectors, and 8 vectors of length 1. The sum of the vectors is the zero vector
(as the sum represents the vector leading from a vertex to itself). In fact, both the short and the long
vectors separately sum up to zero:

� (H1) The sum of the six long vectors on the boundary of the hat is the zero vector, as is the sum
of the eight short vectors.
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Based on (H1) we can deform the hat tile as follows: keeping the orientations of the edges unchanged,
scale the lengths of all long edges by some constant a ≥ 0 and the lengths of all short edges by some
constant b ≥ 0, with a ̸= 0 or b ̸= 0. The scaled long edge vectors naturally still sum up to zero, and the
scaled short edge vectors sum up to zero as well. The scaled edges define a boundary of a deformed tile.
In our proof below we actually only need the scaling factors a = 1 and b = 0, i.e., we remove the short
edges. This results in the deformed tile that is the chevron

This is a hexagon with three pairs of equally long and parallel sides. It is also a union of four equilateral
triangles with sides

√
3. On the other hand, three kites tile an equilateral triangle with side 2

√
3. Thus

the area of the chevron is the same as the area of three kites. Because the hat consists of eight kites, we
see that

� (H2) the area of the hat is 8/3 times the area of the chevron.

Let us argue next that deforming the tiles as above in a valid hat tiling produces a corresponding
valid tiling by the deformed tiles. So let T be a valid monohedral tiling using the hat. Let V ⊆ R2 be
the set of vertices of T , and let us assume, without loss of generality, that 0⃗ ∈ V. Let us determine how
the tile deformation moves an arbitrary vertex v⃗ ∈ V.

A path p is a sequence v⃗0, v⃗1, . . . , v⃗n ∈ V of vertices such that for each i ∈ {1, 2, . . . n} some tile in
T has an edge from v⃗i−1 to v⃗i. The path thus tracks edges of the tiles. Denote a⃗i = v⃗i − v⃗i−1, and let
L ⊆ {1, 2, . . . n} be the set of indices such that a⃗i is long (of length

√
3, that is), and let S = {1, 2, . . . n}\L

be the index set of the short edges (of length 1). If v⃗n = v⃗0 then the path is a cycle. If, moreover, v⃗i ̸= v⃗j
for all i ̸= j except when {i, j} = {0, n} then the cycle is simple. For each cycle it is clear that

n∑︂
i=1

a⃗i = 0⃗,

but in fact we also have the property that∑︂
i∈L

a⃗i =
∑︂
i∈S

a⃗i = 0⃗. (2)

To see this, it is enough to focus on simple cycles since every cycle breaks into a union of simple cycles.
Each simple cycle is the boundary of a topological disk that is a union of the tiles of a finite subset F ⊆ T ,
and without loss of generality we may assume that the cycle is oriented clockwise. We use induction on
the number k = |F| of enclosed tiles. The claim is trivial if k = 0. Assume then k > 1, and let t ∈ F
be an enclosed tile whose edge is on the path. Any edge of t that is tracked by the path is tracked
in the clockwise orientation. Let b⃗1, . . . , b⃗14 be the edge vectors of t in the opposite, counter clockwise
direction. By (H1), both the long vectors and the short vectors among b⃗j add up to zero. We merge the

collections of vectors a⃗i and b⃗j . For each edge of t that is on the path there is the opposite vector among

b⃗j . Cancelling such pairs, the remaining vectors can be grouped into simple cycles that enclose subsets
of F \ {t}. By the inductive hypotheses the sums of the long and the short vectors among them both
sum up to zero. So overall the sums of the long and the short vectors among a⃗i and b⃗j add up to zero,
which implies the claimed equality (2).

It now follows that scaling the long and the short edges of the hat by factors a ≥ 0 and b ≥ 0,
respectively, transforms the tiling T into a tiling T ′ by the transformed tiles: Any vertex v⃗ ∈ V is
reached from 0⃗ by a path p = v⃗0, v⃗1, . . . , v⃗n in T where v⃗0 = 0⃗ and v⃗n = v⃗. The corresponding vertex v⃗′
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in T ′ is reached from 0⃗ by the path p′ obtained from p by scaling the long and short edges of the path
by factors a and b, respectively. This results in the same v⃗′ regardless of the choice of p: If q is another
path from 0⃗ to v⃗ then the path p followed by q reversed is a cycle, and as proved above, the long and
the short edges of the cycle sum up to zero. Thus the scaled long and short edges also sum up to zero,
and therefore the paths p′ and q′ obtained by scaling p and q lead from 0⃗ to the same point v⃗′. Thus the
deformed tiling is well-defined.

The following picture illustrates a piece of a hat tiling and the corresponding tiling by the chevrons.
The figure also shows four sample vertices of the hat tiling and the corresponding vertices in the chevron
tiling.

Skipping the detailed proof, we note that all valid hat tilings of R2 must be such that the copies of
the hat are aligned on the grid of kites. So in the following we only consider tilings where the hats are
aligned on a given fixed grid of kites. This means that there are 12 possible orientations of the hat: six
obtained by rotating the hat, and another six obtained by rotating the reflected hat:
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A notable property of the hat tile is that while the kites in the hat come in all 6 available orientations,
one opposite pair of kite orientations is used twice. (In the illustration above these excess kites are
indicated in darker color.) Contrasting this imbalance with the fact that the grid itself has kites in all six
orientations in equal proportions, we see that in valid tilings there are three groups of four orientations
of the hat (the columns of the illustration above) such that

� (H3) in a valid tiling, one third of the hats come oriented as in each of the three column in the
picture above.

Recall that the long edges of hats are along i-lines for i ∈ {1, 2, 3}. Observe that the pairs of parallel
long edges of the hat are always on consecutive i-lines. These lines are are at distance 3 from each other.
Denote D = 3

2 so that the i-lines repeat with distance 2D.
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Deforming the hat into a chevron preserves the orientations of the long edges. From the 12 possible
orientations of the hat we obtain only six different orientation of the chevron, due to the reflection
symmetry of the chevron:

The three columns in this picture correspond to the three columns in the picture of hat orientations
before. It follows that

� (H4) a chevron tiling that is obtained by deforming a hat tiling has one third of its chevrons from
each of the three columns above.

The chevrons are also aligned with a grid of equilateral triangles, formed by three families of parallel
lines in the same directions as the i-lines in the grid of kites. We also call these i-lines, for i ∈ {1, 2, 3}.
The sides of the triangles are of length

√
3, and so the consecutive i-lines of chevrons are at distance 3

2
from each other,i.e., the distance is D, half of the distance of i-lines of hats.

Consider, for example, the pair of vertical (i = 1) edges of a chevron: if oriented as in the first column
above, the edges are on consecutive 1-lines but the rightmost edge is higher (by

√
3/2) than the leftmost

edge. (See the grey vector in the picture above.) In the third column the rightmost edge is lower by
the same amount. In the middle column the vertical edges are on the same height but they are not on
consecutive 1-lines, but at double distance 2D. We have that, on the average, the vertical position of
the two vertical edges is the same, and the average horizontal distance between them is 4

3D. Due to
symmetry, edges in the other two directions behave similarly.

In the following we prove that the hat tile does not admit a two-periodic tiling. Assume the contrary:
suppose T is a two-periodic tiling using the hat. Let p⃗ and q⃗ be generators of the periods of T , meaning
that ip⃗ + jq⃗ are precisely its vectors of periodicity, for i, j ∈ Z. Denote P = Zp⃗ + Zq⃗ for the set of the
periods of T . Let V ⊆ R2 be the set of vertices of T , and assume that 0⃗ ∈ V. Note that

v⃗ ∈ V ⇐⇒ v⃗ + p⃗ ∈ V ⇐⇒ v⃗ + q⃗ ∈ V,

which, together with 0⃗ ∈ V, implies that P ⊆ V.
We deform the hat and the periodic tiling T by scaling factors a = 1 and b = 0, as discussed above.

Let T ′ be the deformed tiling (by chevrons) and let V ′ be its vertex set. Let f : V −→ V ′ give for each
vertex the corresponding vertex in the deformed tiling, i.e., if p is a path in T from 0⃗ to v⃗ ∈ V then the
corresponding deformed path p′ leads in T ′ from 0⃗ to f(v⃗). (Note that f is not one-to-one: removing
short edges merges the vertices they connect.)

For any x⃗ ∈ V, choose a path px⃗ in T from 0⃗ to x⃗ and let p′x⃗ be the corresponding deformed path

in T ′ from 0⃗ to f(x⃗). Let v⃗ ∈ P ⊆ V be any period of T , and let x⃗ ∈ V be arbitrary. Since v⃗ ∈ P,
there is a path q in T from v⃗ to v⃗ + x⃗ that is a translation by v⃗ of the path px⃗. The path pv⃗ followed by
the path q is a path from 0⃗ to v⃗ + x⃗ whose deformation leads in T ′ from 0⃗ to f(v⃗) + f(x⃗). We see that
f(v⃗ + x⃗) = f(v⃗) + f(x⃗). In particular, we have that f(v⃗) is a period of T ′ since for any vertex f(x⃗) ∈ V ′

also f(v⃗) + f(x⃗) is in V ′.
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Moreover, it follows that f(ip⃗ + jq⃗) = if(p⃗) + jf(q⃗) for all i, j ∈ Z where p⃗, q⃗ are the generating
periods of T . This means that f is linear among the periods. Let us denote by f̂ : R2 −→ R2 the
unique linear map that coincides with f on P, that is, the unique linear function that maps p⃗ ↦→ f(p⃗)
and q⃗ ↦→ f(q⃗). Note that f and f̂ do not need to coincide on V \ P. The linear function f̂ is one-to-one:
it has full rank since otherwise f(P) would be on a single line, which is clearly not the case. (If f(P) ⊆ ℓ
for some line ℓ, then for any two hats in T that are transitive under some translational symmetry of T
the corresponding deformed tiles in T ′ are on a common line parallel to ℓ. There are only finitely many
transitivity classes under translational symmetries in T but clearly there is an infinite set of chevrons in
T ′ that are pairwise not on such a common line, a contradiction.)

Our next goal is to prove that the linear function f̂ is a similarity, i.e., distances of points are scaled
by the same constant: we argue that there exists a constant c such that for any x⃗, y⃗ ∈ R2 it holds that
d(f̂(x⃗), f̂(y⃗)) = d(x⃗, y⃗)/c.

Consider any of the three directions i ∈ {1, 2, 3}. A de Bruijn segment on a hat tile in direction i
is a line drawn inside the tile connecting the centers of the two long edges of the hat that are parallel
to i-lines. Similarly we define de Bruijn segments of chevrons. There is one de Bruijn segment drawn in
each tile in each direction i. Here are examples in the vertical direction i = 1:

In the valid tiling T , the de Bruijn segments of two tiles sharing a long edge continue across that edge,
thus defining infinite de Bruijn lines in directions i across the entire tiling. Each tile is crossed by a
unique de Bruijn line in each direction i, and the lines in the same direction do not cross each other. Let
us call the set of tiles on the same de Bruijn line in direction i an i-strip. Similarly we define de Bruijn
lines and i-strips in tilings by chevrons. The following picture shows a patch of a tiling by hats, and two
de Bruijn lines across the patch in the vertical direction i = 1. Tiles of the i-strip of the lower line are
rendered dark. The lower patch is the same drawing in the corresponding tiling by chevrons.
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Note that any translational symmetry τ of T must map i-strips onto i-strips, preserving the order of tiles
on the strips: if t2 = τ(t1) then the tile following (preceding) t1 on its i-strip will be mapped on the tile
following (preceding, resp.) t2 on its i-strip.

Fix direction i and consider one i-strip. The strip contains infinitely many tiles. Because T is two-
periodic, there are only finitely many tiles that are not transitive under translational symmetries of T .
Thus the strip contains distinct tiles t1, t2 such that t2 = τ(t1) for some translational symmetry τ of T .
As noted above, this means that the strip is mapped by τ onto itself. As τ cannot change the order of
i-strips, it follows that every i-strip is mapped onto itself by τ .

A similar reasoning works with all directions i ∈ {1, 2, 3}. For each i, let u⃗i be a unit vector parallel
to i-lines, chosen so that u⃗1, u⃗2 and u⃗3 are at 120◦ angles to each other. For each i, let v⃗i be a vector of
length 2D, perpendicular to i-lines, again chosen so that v⃗1, v⃗2 and v⃗3 are at 120◦ angles to each other,
i.e., so that v⃗1 + v⃗2 + v⃗3 = 0⃗.
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As seen above, for each i ∈ {1, 2, 3} there is a translational symmetry of T that maps i-strips onto
themselves. Let such a translation in direction i ∈ {1, 2, 3} be by the vector p⃗i = xiv⃗i + yiu⃗i. Here xi is
a positive integer indicating how many tiles the translation moves forward on an i-strip. As multiples of
periodicity vectors are also periodicity vectors, we can choose the periods p⃗i so that x1 = x2 = x3 is the
same positive integer k.

Consider then the i-strips on the corresponding chevron tiling T ′. These are precisely the i-strips of
T after the deformation. The translation by vector f(p⃗i) = f̂(p⃗i) is a symmetry of T ′ that maps each
i-strip onto itself: it shifts by k the tiles within each i-strip. Averaging over all finitely many i-strips with
distinct translational transitivity classes we see – based on observation (H4) – that the vector f̂(p⃗i) must
be perpendicular to the i-lines, and its length is k · 43D. The length is independent of i, and the directions

for i ∈ {1, 2, 3} are at 120◦ angles to each other, implying that f̂(p⃗1) + f̂(p⃗2) + f̂(p⃗3) = 0⃗. Linearity of f̂
thus means that f̂(p⃗1 + p⃗2 + p⃗3) = 0⃗, and by the injectivity of f̂ then p⃗1 + p⃗2 + p⃗3 = 0.

On the other hand, as p⃗i = kv⃗i + yiu⃗i and v⃗1 + v⃗2 + v⃗3 = 0⃗, we have that y1u⃗1 + y2u⃗2 + y3u⃗3 = 0⃗.
Vectors u⃗i are unit vectors at angles 120

◦ to each other, so that we must have y1 = y2 = y3. In conclusion,
vectors p⃗i have equal lengths and they are at 120◦ angles to each other, and their images f̂(p⃗i) under
f̂ have also equal lengths and they are at 120◦ angles to each other. This implies that f̂ is a similarity
map, i.e., an isometry followed by scaling by some constant 1/c.

Using the fact (H2) that the area of the hat tile is 8/3 times the area of the chevron, we can even
conclude the value of the similarity factor to be c =

√︁
8/3. Indeed, if there arem translational transitivity

classes of hats in tiling T , then the area of the parallelogram with sides p⃗ and q⃗ is m times the area of
the hat tile. Based on T ′ then the area of the parallelogram with sides f̂(p⃗) and f̂(q⃗) is m times the area
of the chevron tile. As f̂ is a similarity with scaling c, the ratio of the areas of the parallelograms is c2,
while the ratio of the area of a hat to the area of a chevron is 8/3. This gives c2 = 8/3.

Finally we show that scaling by c =
√︁
8/3 is not possible. Note that the periodicity vector p⃗ of T

is a vector between two vertices of the underlying triangle grid formed by i-lines (as the translational
symmetry is also a translational symmetry of the underlying grid of kites, so it maps sharp ends of kites
to sharp ends – and the sharp ends are located at the vertices of the triangle grid.) On the other hand,
the corresponding vector p⃗′ = f̂(p⃗) in T ′ is a vector between two vertices of the triangular grid of the
chevron tiling. The triangles in the first grid have sides twice as long as in the second grid, so they can
be subdivided into smaller triangles to get the second grid. Both vectors p⃗ and p⃗′ are thus connecting
vertices of the same grid of small triangles. Due to the similarity scaling, the lengths of the vectors are
related by |p⃗|/|p⃗′| =

√︁
8/3.

Let us prove that the length ratio
√︁
8/3 is not possible between two non-zero vectors connecting ver-

tices of the same triangular grid. For the simplicity of notations, consider the grid of equilateral triangles
containing vertices (0, 0) and (1, 0). The vertices of the grid have coordinates i(1, 0) + j(1/2,

√
3/2) for

i, j ∈ Z. If d is the distance of such a vertex from (0, 0) then d2 = (i+ j/2)2 + (j
√
3/2)2 = i2 + j2 + ij.

Thus the squares of the lengths of vectors between vertices come from the set S = {i2+ j2+ ij | i, j ∈ Z}.
Elements of S are integers. Let us show that for any non-zero s ∈ S one has 8/3s ̸∈ S. If i is odd or j is
odd (or both are odd) then s = i2+ j2+ ij is odd. If i and j are both even then dividing both by 2 gives
that s/4 ∈ S. This means that any even s ∈ S is divisible by 4, and then s/4 ∈ S. Repeatedly dividing
any even s ∈ S by 4 one hence eventually reaches an odd number. In conclusion: The largest power of 2
that divides any non-zero s ∈ S is even, and therefore s ∈ S =⇒ 8/3s ̸∈ S.

This shows that |p⃗|2 = 8/3|p⃗′|2 is not possible, and we have the following:

Theorem 7.6 The hat tile does not admit any two-periodic tiling.

By Theorem 7.5 (the periodicity theorem), the hat tile does not even admit a one-way periodic tiling.
We skip the details of the proof that the hat tile admits a tiling. One can generate a tiling as follows.

Define first patch P of two tiles by attaching the hat tile and the flipped over variant of the hat (upper left
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patch on the figure below). Let Q be a patch consisting of a single hat tile (lower left patch). Then define
a substitution on patches P and Q that replaces each P and Q by super-P and super-Q, respectively
(upper right and lower right in the figure):

Both supertiles contain one copy of P , shown in red/pink in the figure, and several patches Q. None of
the patches are flipped over, so the red tile inherited from Q is the only tile of the super patches that is
a flipped over variant of the hat.

This substitution can be iterated, thus obtaining as a limit a tiling of the plane by hats. The following
picture shows the creation of the second level super-P patch:
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Note that the tiles in dark red are the only flipped over hat tiles. The fact that the hat tile does not admit
a periodic tiling (Theorem 7.6) can also be proved analogously to our previous substitution examples:
any valid tiling can be uniquely decomposed into super-patches. There are several cases to consider and
we skip the proof.

Some final remarks: Deforming the hat with scaling factors a ≥ 0 and b ≥ 0 on long and short edges
produces “equivalent” tiles that are also aperiodic, except when (i) a = 0, or (ii) b = 0 or (iii) b/a =

√
3.

In cases (i) and (ii) the long and short edges vanish, respectively, and in case (iii) the long and short
edges become equally long. In all cases deforming a tiling by the hat becomes a tiling by the deformed
tile, so all deformed tiles admit monohedral tilings. Conversely, in all cases except (i), (ii) and (iii) a
valid tiling by the deformed tiles is necessarily edge-to-edge in such a manner that long edges meet long
edges and short edges meet short edges. In this situation the inverse deformation can be done back from
the deformed tile to the hat. If the deformed tile would admit a periodic tiling, the inverse deformation
of this tiling would produce a periodic tiling by the hat, which by Theorem 7.6 does not exist. So the
deformed tile does not admit a periodic tiling.

Note that in cases (i), (ii) and (iii) the inverse deformation is not well defined on tilings. In particular,
in case (iii) the tile admits a valid tiling where two neighboring tiles meet with their “long” and “short”
edges against each other. In the periodic tiling below the “long” edges are shown red, short edges are
shown as light blue.

Note that there are several instances where a red edge meets a blue edge. In this situation the inverse
deformation breaks the tiling. So this periodic tiling, of course, does not provide a periodic tiling by the
hat.

Note that in the periodic tiling above both even and odd (=flipped over) variants of the tile are used.
It turns out (proof skipped) that the tile also admits a tiling using only the even variants, and that all
tilings using only the even variants are non-periodic! Using a standard bumps and dents construction
on the edges we can prevent the even and the odd variants from appearing in the same tiling. In this
construction the new shape of the edge is symmetric under a half turn so that the even tiles still match
with each other along their edges:
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This tile is thus aperiodic monotile in the following strong sense: it admits a tiling, no tiling involves
both even and odd variants of the tile, and there is no valid periodic tiling. The tile is called spectre (as
is any of the analogous variants where differently curved edges are used to prevent even and odd tiles
next to each other).

One more interesting observation can be made: The original kite grid is bipartite in the sense that
we can color red and color blue those vertices where edges meet at angles that are multiples of 120◦ and
multiples of 90◦, respectively, and each edge then connects a red and a blue vertex:

Thus, if we color vertices of the hat tile alternatingly red and blue, in any valid tiling by the hat the
meeting vertices have the same color. The same is then true on the deformed hat. Consequently, the
bumps and dents construction above can be simplified so that the new shape of the edge does not need
to be symmetric under a half turn, but instead the edges of the tile are alternatingly the shape and its
half turned variant:
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This tile has the same spectre properties: it admits a tiling, no tiling involves both even and odd variants
of the tile, and there is no valid periodic tiling.

The following picture shows corresponding patches using the deformed hat (left, including coloring of
the vertices), spectre with half turn symmetric edge shapes (middle) and spectre with the simpler edge
shapes that are not symmetric but alternate in consecutive edges (right).

7.5 Open problems

The aperiodic monotile “hat” discussed above is a 13-gon. A natural follow-up problem is to try to reduce
the number of sides. Quadrilaterals tile the plane periodically, so the smallest possible number of sides
on a polygonal aperiodic monotile is at least 5.

Open problem What is the smallest n such that there exists an aperiodic n-gon ? Does there exist an
aperiodic pentagon ?

It is known that an aperiodic n-gon cannot be convex : any convex polygon that admits a tiling
also admits a periodic tiling. This is clear for n ≤ 4 as all triangles and quadrilaterals tile the plane
periodically. Using Euler’s formula for planar graphs (v−e+f = 2 where v, e and f stand for the number
of vertices, edges and faces of the graph, respectively) it is fairly easy to see that no convex n-gon with
n ≥ 7 admit any tiling. Convex hexagons (n = 6) were analysed by K.Reinhardt in 1918: there are only
three “types” of convex hexagons that tile the plane, and they all tile periodically. Convex pentagons are
harder to analyse. There are 15 types that tile – the 15th type was discovered using a computer search
as late as in 2015. In 2017 M.Rao gave a computer-assisted proof that there are no more than 15 types
of convex pentagons that tile the plane. They all tile periodically.

The construction from Wang tiles to polygons with bumps and dents is clearly effective, which means
that it can be executed mechanically by an algorithm. Consequently, the undecidability results proved for
Wang tiles hold for polygonal prototiles as well. In decision problems whose input consist of polygons we
must use a finite way of representing the polygons. A natural way is to assume that the input polygons
are such that the vertices of the polygons have rational coordinates, and the encoding then is a list of
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consecutive vertices. The bumps and dents can be done with rational coordinates so we immediately get
the following undecidability results, corresponding to Theorems 5.7 and 5.8.

Theorem 7.7 The following decision problems are undecidable:

� ”Does a given protoset of polygons with rational coordinates admit a periodic tiling ?”,

� ”Does a given protoset of polygons with rational coordinates admit a tiling ?”.

Proof. Suppose an algorithm A exists for one of the given problems. Then we can solve the analogous
problem on Wang tiles: For the given Wang protoset we use the bump/dent construction to form a
protoset of polygons, and we give this protoset as input to the hypothetical algorithm A. The answer from
algorithm A tells whether the Wang protoset admits a (periodic) tiling. This contradicts Theorem 5.7 or
5.8.

It is not known if there exists a decision algorithm to determine if a given single polygonal prototile
admits a valid (periodic) tiling. Note that with Wang tiles the question is trivial, as for every k there are
only a finite number of non-isomorphic protosets with k tiles, and consequently the decision problems are
decidable. But there are infinitely many different polygons, so there is no trivial reason why there would
exist an algorithm to tell even if a single tile admits a tiling. The aperiodic monotile “hat” provides the
necessary pre-condition for undecidability.

Open problem Is the following decision problem decidable ?

� ”Does given single polygon with rational coordinates admit a tiling ?”

What about the same question restricted to pentagons ?

It has been shown by N. Ollinger that the tiling problem is undecidable among protosets that contain
5 polyominoes. (A polyominoe is a tile obtained by edge-to-edge attachments of any number of unit
squares to each other.) It has also been recently established that the problem remains undecidable for five
polyominoes even if only translations are allowed, that is, the tiles must be placed in the given orientation
(Y.Kim). On the other hand, the tiling problem is known to be decidable for single polyominoes if only
translations are allowed (Wijshoff, van Leeuwen).

In particular, Ollinger’s result implies the undecidability of the tiling problem among sets of 5 poly-
gons. This was recently improved to 3 polygons by Demaine and Langerman.

As a related question, consider the following problem by H. Heesch. Given a prototile t that does
not admit a tiling of the plane, the Heesch number of t is the maximum number of times the tile can be
completely surrounded by copies of t. More precisely, for a topological disk d ⊆ R2, a corona of d is a
collection C of tiles, all congruent to t, such that

1. the interiors of the elements of C are pairwise disjoint, and disjoint from d, and

2. d ∪
⋃︂
s∈C

s is a topological disk whose interior contains d.

In other words, tiles in the corona C surround set d completely. For example, the squares in the following
figure form a corona of the set d in the middle:
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We can define a second corona of d as a corona of the set that is the union of d and its first corona.
Inductively, a k + 1’st corona is a corona of the topological disk formed by d and its first k coronas. In
the Heesch problem we start with a single copy of t and form its 1st, 2nd, 3rd, etc. coronas. If the k’th
corona exists for every k then by Theorem 7.4 the entire plane can be tiled. But if t does not admit a
plane tiling then there exists the largest k such that the first k coronas exist. This k is called the Heesch
number of tile t. The following figure illustrates two coronas of a tile:

A regular hexagon with incoming arrows on three sides and outgoing arrows on two sides admits three
coronas:

(In the picture, the arrows are represented by bumps and dents.) Due to the imbalance in the number of
incoming and outgoing arrows, it is easy to apply the argument used earlier in the homeworks to conclude
that the full plane cannot be tiled by this tile.

At the present time the largest known Heesch number is six. This is is a tile reaching that number:
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Here’s a picture showing the maximum number of coronas :

[Bašić, Bojan – Smaller version of https://en.wikipedia.org/wiki/Heesch]

Open problem Does there exist number k such that the Heesch number of every tile that does not
admit a tiling is at most k ? If such a k exists, what is the smallest such k ?

Note that if the Heesch numbers are bounded by some constant k then there is an algorithm (at least in
any reasonable set-up such as edge-to-edge tilings by polygons where one can try all possible coronas) to
determine if a given single tile admits a tiling: To test if a tiling exists, all we need to do is to try all
possible ways of building k + 1 coronas. A valid tiling exists if and only if k + 1 coronas exist.
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