
A 14 tile aperiodic Wang tile set

A very different algebraic method of constructing aperiodic tile sets yields a set
with only 14 tiles.

(But even smaller aperiodic sets exist: E. Jeandel and M. Rao have an aperiodic
Wang tile set that contains just 11 tiles, and they proved that 11 is the smallest
possible size.)



Undecidable problems concerning tiles

Question: How can one determine if a given finite set of Wang prototiles
admits a tiling ?

This is an algorithmic question (looking for an algorithm to solve the prob-
lem).

More specifically, it is a decision problem: the desired algorithm

� takes an input, called an instance of the problem. (. . .given finite set of
Wang tiles. . . )

� should return the correct “yes” or “no” answer. (So “yes” if and only of
the tile set can tile the plane.)

It turns out that such an algorithm does not exist: any candidate algorithm
either gives a wrong answer for some tile sets, or gives no answer at all for some
instances. We say the decision problem is undecidable.



An algorithm can be formally defined in various, equivalent ways.

For our purposes it is sufficient to understand a (decision) algorithm to be a
computer program that takes some input and returns a “yes” or a “no”
answer on each input. We say that the algorithm solves a decision problem
if the algorithm returns the correct yes/no -answer on every instance of the
problem.

If such an algorithm exists then the decision problem is called decidable and
if no such algorithm exists then the problem is undecidable.



A semi-algorithm is a weaker concept than an algorithm: it is a computer
program that must halt and return “yes” if the input is a positive instance of
the problem, but it is allowed to run forever, without ever halting, on negative
input instances. (It may never return a wrong answer.)

If a decision problem has a semi-algorithm then it is called semi-decidable.
Clearly every decidable problem is also semi-decidable as an algorithm is also a
semi-algorithm.



Example. The following decision problem is semi-decidable: Does a given
Wang tile set admit any periodic tiling of the plane?

Periodic tiling problem
Instance: A finite set T of Wang tiles

Positive instance: T admits a periodic tiling of the plane

A semi-algorithm for the Periodic tiling problem:

For n = 1, 2, . . . do the following: Try all assignments

f : {1, . . . n} × {1, . . . , n} −→ T

of tiles to the n× n square. For each f check whether

� the square is correctly tiled (no mismatching neighboring tiles),

� the sequence of colors on the left border is the same as on the right border,
and the sequence of colors on the top border is the same as on the bottom
border.

If an assignment f is found that satisfies both conditions then halt and return
answer “yes”.



The complement problem of a decision problem is the problem where the
“yes” and “no” instances have been swapped.

Note that the complement of a decidable problem is also decidable: the same
algorithm works, just swap the answer

“yes” ←→ “no”

Example. The complement of Periodic tiling problem is the problem
whose positive instances are the tile sets that do not admit any periodic tiling.

If the complement of problem P is semi-decidable we also may say that the
negative instances of P are semi-decidable. Semi-decidability of P means that
the positive instances are semi-decidable.



Example. The complement of the following decision problem is semi-
decidable:

Tiling problem
Instance: A finite set T of Wang tiles
Positive instance: T admits a tiling of the plane

A semi-algorithm for the negative instances (tiles that do not tile the plane):

For n = 1, 2, . . . do the following: Try all assignments

f : {1, . . . n} × {1, . . . , n} −→ T

of tiles to the n × n square. If for some n none of the assignments is a valid
tiling of the n× n square, return “no” as there is no tiling of the plane.



Theorem. If problem P and the complement of P are both semi-decidable,
then P is decidable.

Proof. Run the semi-algorithms for P and its complement in parallel. Even-
tually one of them gives an answer.



Positive instances of Periodic tiling problem and negative instances of
Tiling problem are semi-decidable.

If there were no aperiodic tile sets, Periodic tiling problem and Tiling
problem would be the same problem. The problem would then be decidable!

(But there are aperiodic tile sets, and these fall in between the two semi-
algorithms: on aperiodic tile set both of our semi-algorithms do not halt but
continue forever on larger-and-larger n× n squares.)



Turing machines

In computation theory Turing machines (TM) are used as a possible formalism
for algorithms. Here, we use them as instances of a basic undecidable problem,
the halting problem of TM. This is a seed problem that we reduce to various
tiling problems to show that they are undecidable as well.

A Turing machine is an object with:

� a bi-infinite tape of cells indexed by Z,

� a finite set Γ, the tape alphabet, of symbols that are written in the tape
cells.

So the content of the tape is then a function f : Z −→ Γ where f (i) is the
symbol at location i. The set of possible tape contents is ΓZ.

Tape

f(0) f(1) f(2)f(-1) f(3)f(-2)



One element b ∈ Γ is specified as the blank symbol.

� A tape content is the blank tape if every cell contains b.

bbb b b b bb b

� A tape content is finite if the number of cells with a non-b symbol is finite.

bbbb b* * * *



Tape

Control unit

ia

q

i-1
a i+1

a

There is also a control unit, or a processor, that has access to one tape cell
at any time. The unit is in some state q that is an element of a finite state set
S.

TM operates at discrete time steps: depending on the

� current state, and

� the tape symbol currently in the accessed tape cell,

the TM may

� change its state,

� replace the tape symbol in the accesses tape cell, and

� change the accessed cell by moving the control unit one cell position to the
left or right on the tape.



The action is specified by the transition function

δ : S × Γ −→ S × Γ× {L,R}.

The interpretation of
δ(q, x) = (p, y, d)

is that if

� the current state is q, and

� the tape symbol at the current location i is x

then the machine

� changes the state into p,

� replaces x by y on the tape, and

� moves one position left (to position i− 1) or right (to position i+ 1) on the
tape depending on whether d = L or d = R.



A configuration of the TM is an element of the set

S × Z× ΓZ.

Configuration (q, i, f ) specifies

� the current state q ∈ S,

� the current position i ∈ Z on the tape, and

� the current tape content f : Z −→ Γ.

We can now define one move of the machine formally: Configuration (q, i, f ) is
transformed in one move into the configuration (p, j, g) if

� δ(q, f (i)) = (p, y, d),

� g(i) = y, g(k) = f (k) for all k ̸= i,

� j = i + 1 if d = R and j = i− 1 if d = L.

We denote this move by
(q, i, f ) ⊢ (p, j, g).



In the beginning of the computation the Turing machine is in one specific state
s0 ∈ S called the initial state, and another state sh ∈ S is specified as the
halting state.

The Turing machine halts when the control unit enters state sh.



In the beginning of the computation the Turing machine is in one specific state
s0 ∈ S called the initial state, and another state sh ∈ S is specified as the
halting state.

The Turing machine halts when the control unit enters state sh.

The Turing machine can be understood as a dynamical system where the trans-
formation ⊢ is applied repeatedly starting from the initial configuration (s0, 0, f )
where f is the initial tape content (usually blank or at least finite) until (if ever)
the machine reaches and halts in some configuration (sh, i, g), where i and g
can be arbitrary.

Note that if the initial tape content is finite then it remains finite at all times.
This means that configurations (s, i, f ) during the operation have finite repre-
sentations.



So, to specify a Turing machine one needs to provide six items. We say that a
Turing machine is a six-tuple

M = (S,Γ, δ, s0, sh, b)

where S and Γ are finite sets, s0, sh ∈ S and b ∈ Γ are elements of those sets,
and δ : S × Γ −→ S × Γ× {L,R} is a function.

Example. Consider the following TM

M = ({s, t, h}, {a, b}, δ, s, h, b)

where
δ(s, a) = (t, a, L)
δ(s, b) = (t, a, R)
δ(t, a) = (h, a, L)
δ(t, b) = (s, a, L)

(and the values of δ(h, . . . ) do not matter as h is the halting state.)

The operation of M from the initial blank tape:



Two basic decision problems concerning Turing machines:

Halting from blank tape
Instance: A TM M = (S,Γ, δ, s0, sh, b)

Positive instance: M such that (s0, 0, f ) ⊢ · · · ⊢ (sh, i, g) for some and i ∈ Z and g ∈ ΓZ,

where f is the blank tape.

The second problem is for a fixed TM M = (S,Γ, δ, s0, sh, b):

Halting problem of TM M = (S,Γ, δ, s0, sh, b)
Instance: A finite tape content f ∈ ΓZ

Positive instance: f such that (s0, 0, f ) ⊢ · · · ⊢ (sh, i, g) for some and i ∈ Z and g ∈ ΓZ

The first problem is undecidable. For some M the second problem is decidable,
but there are also such M (universal Turing machines) that the second problem
is undecidable:

Theorem [Turing 1936]. There exists a TM M such that Halting prob-
lem of TM M is undecidable.



Once we know one undecidable problem we use it as a seed to prove other
problems undecidable, using reductions.

Turing reduction. Let P be a decision problem that we know to be unde-
cidable. Let Q be another decision problem. This is how we prove that Q is
undecidable:

� Make the assumption that there exists an algorithm A that solves Q.

� Design an algorithm that solves P , using the hypothetical A as a subroutine.

Now since the algorithm to solve P does not exist, the hypothetical A cannot
exist either. Thus Q is undecidable.



Example. Let us prove that Halting from blank tape is undecidable.
Suppose the contrary: There exists algorithm A that solves it. Then we can
solve Halting problem of TM M by the following algorithm (for any fixed
machine M):

The input is a finite tape content f to M . We construct a Turing machine M ′

that has all the states and transitions of M and some new ones so that M ′

operates as follows when started in its initial state:

� writes to the initially empty tape the new content f ,

� returns to the position 0,

� enters the initial state of M .

The algorithm now calls the hypothetical algorithm A with input M ′, and
returns whatever answer A returns.

This algorithm correctly solves Halting problem of TM M because

M ′ halts on empty initial tape ⇐⇒ M halts on input f .



The reduction we made is an example of a many-one reduction (a restricted
kind of Turing reduction). All our reductions will be of this type:

Let P be a decision problem that we know to be undecidable. Let Q be another
decision problem. This is how we prove that Q is undecidable:

� Show how for any given instance x of problem P we can effectively (i.e.
algorithmically) construct an equivalent instance y of Q.

(Equivalent means that x is a positive instance of P if and only if y is a positive
instance of Q.)

Now any algorithm A to solve Q can be used to solve P by first converting the
input x to an equivalent instance y of Q, and calling algorithm A with input y.
Thus A cannot exist.

In our example: we constructed for a given finite initial tape content f a
new TMM ′ that halts on the empty initial tape if and only ifM halts on initial
tape content f .


