The periodic tiling problem
Recall the following decision problem.

Periodic tiling problem
Instance: A finite set T of Wang tiles

Positive instance: 7 admits a periodic tiling of the plane

We have seen the that problem is semi-decidable. Next we show that the prob-
lem is undecidable (which then implies that the negative instances are not semi-

decidable.)

The proof is a reduction from Halting from blank tape: For any given TM
M we construct a tile set that admits a periodic tiling if and only if M halts
from the blank initial tape.

As expected, an aperiodic prototile set will be needed in the construction.



Theorem. The problem Periodic tiling problem is undecidable.
Proof.

For any given Turing machine M = (S,I',9, s, h,b), we construct three layers
of tiles.

(i) First layer: we start with the same Wang set P); that simulates M as
before.

We add to these tiles the following halting tiles for every tape letter x € I
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Here A is the halting state. Now a tiling becomes possible even if the Turing
machine halts:the state component simply disappears from the configuration.
Using the third tile, the entire configuration can then disappear.



We also add the following tile
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to the start tiles of the Turing machine. This tile allows the same horizontal
row to contain several copies of the start configuration of the Turing machine.

With these tiles a periodic tiling becomes possible if the Turing machine halts
from the blank initial tape:

halt




(ii) Second layer: We take one fixed aperiodic tile set P. This can be, for
example, Robinson’s aperiodic tile set.



(iii) Third layer: A fixed set Q of four tiles:
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The black lines are called fault lines and these indicate places where a tiling
error is allowed on the aperiodic tiles of layer two. The fault lines continue across
tile boundaries so the lines cut through the plane horizontally or vertically:




Using the SF'T formalism we add further constraints on the third layer to force
the following property:

(*h*) If a tiling contains at least two horizontal fault lines then
it also contains at least two vertical fault lines.

To establish property (*h*) we make two versions of the empty tile B without
fault lines: one called red and the other one called blue, and add the following
local constraints on validity of tilings:

e The north neighbor of a horizontal fault line (tile H) must be a blue version
of B,

e The south neighbor of a horizontal fault line (tile H) must be a red version of
B

)

e The north neighbor of a horizontal row of three blue B’s is a blue B,

e The south neighbor of a horizontal row of three red B’s is a red B.

e T



These local constraints can be satisfied in 2n x 2n square patterns of fault lines,
for any n:




(*h*) If a tiling contains at least two horizontal fault lines then
it also contains at least two vertical fault lines.

Proof. If two horizontal fault lines at vertical distance n, and a gap of hori-
zontal length 2n without vertical fault lines

= a contradiction



We make an analogous red/blue coloring also for the perpendicular direction
(so the no-fault-line tile comes in four color combinations.) Then we also have

(*v*) If a tiling contains at least two vertical fault lines then it
also contains at least two horizontal fault lines.

Combining colorings: We have four versions of tile B (red/red, red/blue,
blue/red, blue/blue), yielding a set Q that satisfies:

(*) If a tiling contains at least two parallel fault lines then it also
contains at least two fault lines in the perpendicular direction.



Combining the three layers gives the final tile set
Py X P X Q.
Tiles are thus triplets (a, b, ¢).

Each layer has its own matching conditions as discussed above.
Next we add “inter-layer” local matching conditions that tie the layers together.
In tile (a, b, c):

(1) if ¢ contains a fault line then the tiling rule is not enforced on the second
layer b. The idea is to allow periodic tilings (even though P is aperiodic) in the
presence of fault lines.



Combining the three layers gives the final tile set
Py X P X Q.
Tiles are thus triplets (a, b, ¢).

Each layer has its own matching conditions as discussed above.
Next we add “inter-layer” local matching conditions that tie the layers together.
In tile (a, b, c):

(2) if ¢ contains only the horizontal fault line then the first component a must
be one of the start tiles




Combining the three layers gives the final tile set
Py X P X Q.
Tiles are thus triplets (a, b, ¢).

Each layer has its own matching conditions as discussed above.
Next we add “inter-layer” local matching conditions that tie the layers together.
In tile (a, b, c):

(3) if ¢ contains only the vertical fault line then the first component a must be




Combining the three layers gives the final tile set
Py X P X Q.
Tiles are thus triplets (a, b, ¢).

Each layer has its own matching conditions as discussed above.
Next we add “inter-layer” local matching conditions that tie the layers together.
In tile (a, b, c):

(4) if ¢ contains both horizontal and vertical fault lines then a must be




Consider a rectangle bordered by fault lines. Constraints (2), (3) and (4) force
the lower border to contain the blank tape and a single Turing machine in its
initial state s. The vertical fault lines are forced to contain the blank symbol
only (no TM state component), and thus Turing machine is never allowed to
reach a vertical fault line.



The construction of the tile set is now complete. The tile set can be effectively
constructed for any given Turing machine. It is enough to prove that:

TM M halts from the blank initial tape
<
the tile set admits a periodic tiling.

Proof. (=)

Suppose that M halts in n steps. Then the tiles admit a valid periodic tiling
with the horizontal and vertical period 2n:

e On the third layer the fault lines partition the space into squares of size
2n X 2n.



The construction of the tile set is now complete. The tile set can be effectively
constructed for any given Turing machine. It is enough to prove that:

TM M halts from the blank initial tape
<
the tile set admits a periodic tiling.

Proof. (=)

Suppose that M halts in n steps. Then the tiles admit a valid periodic tiling
with the horizontal and vertical period 2n:

e The second layer contains a correctly tiled 2n X 2n square, repeated inside
the squares between the fault lines. The tiling of the second layer fails on some
tiles along the fault lines, but that is allowed.



The construction of the tile set is now complete. The tile set can be effectively
constructed for any given Turing machine. It is enough to prove that:

TM M halts from the blank initial tape
<
the tile set admits a periodic tiling.

Proof. (=)

Suppose that M halts in n steps. Then the tiles admit a valid periodic tiling
with the horizontal and vertical period 2n:

e The first layer consists of the halting simulation of the Turing machine
M. The start of the simulation begins at the bottom of each 2n x 2n square.
The entire simulation fits inside the 2n x 2n square, because the machine halts
after n steps. The halting tiles allow the disappearance of the Turing machine
configuration before the next vertical line is reached. Hence a periodic tiling is
admitted.



TM M halts from the blank initial tape
<
the tile set admits a periodic tiling.

Proof. (<)
Suppose a two-way periodic tiling exists.

e Because P is an aperiodic set, there must be a place on the tiling where the
tiling in the second layer is incorrect. This is possible only if there is a fault
line in that location. Because the tiling is two-way periodic, this implies the
existence of infinitely many parallel fault lines. By property (*) this further
implies the presence of a rectangle bordered by fault lines.

e Consider the first layer of one such rectangle. The bottom is forced to contain
a (finite segment) of the start configuration of the Turing machine. The tiles in
Py torce the following rows to simulate the Turing machine moves one-by-one.
The Turing machine must halt before the simulation reaches the upper border
of the rectangle.



