Wang tiles

We are interested not only single tilings but the sets of tilings that a fixed
protoset of tiles admits.

Questions like: do given prototiles admit any tiling of the plane; are there any
periodic tilings, etc.

We study these questions on a setup where the role of geometry has been min-
imized and the spatial relation of tiles is simple.

A Wang tile is a unit square tile with colored (i.e. labeled) edges.

A Wang tile set is a finite set of Wang prototiles.
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We tile the plane in the regular grid fashion without rotating the tiles. All
tiles are thus congruent to the given prototiles by translations only.

A tiling can then be represented as a function
f:7°—= A

where A is the set of prototiles and f(4, j) gives the tile at position (4, j) € Z.
Such functions are called configurations.

The matching rule is that the shared edge between any two neighboring
tiles must have the same color in both tiles. If the matching rule is satisfied
everywhere in a configuration then the configuration is a valid tiling.



Example. With
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we can tile:

. and since the colors on the borders match this square can be repeated to
form a valid periodic tiling of the whole plane.






The set of all configurations Z? — A is denoted by
A7
(In general, YX denotes the set of functions X — Y".)

Set AZ contains all assignments of tiles to Z2, includian the ones where colors
do not match. The set of valid tilings is a subset of A%,



Wang tiles provide a discrete abstraction of tilings that allows us to study
tilings using tools of discrete mathematics rather than geometry.

This is especially useful when investigating computational properties.

Although Wang tilings are on a square lattice Z? only, the computational prob-
lems on Wang tiles are as hard as on more general types of tiles.



Remark. Wang tiles fit our original definition of tiles as topological disks:
We can represent Wang tiles as “equivalent” polygons whose basic shape is a
unit square.

The middle of the north and east sides of each tile contain triangular ” bumps”
and the south and west sides have ”dents” that exactly fit the bumps:
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The bump/dent pairs are different in the horizontal and the vertical directions
(to disallow rotating the tiles), and they are asymmetric so that flipped and
non-flipped tiles do not match.

Moreover, each color has its own bump/dent shape that does not fit with any
other color.



Example. Using six different shapes of bump/dents we represent the three
horizontal and three vertical colors of our sample Wang tile set:
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Obviously tilings by the polygons and tilings by the Wang tiles are “the same”.




We call a configuration f : Z* — A

e (one-way) periodic if there exists (a, b) # (0,0) such that
V(w,y) € Z* : f((z,y)+(a,b)) = f(z,y)

(in other words, the tiling has non-trivial translational symmetry), and we
call any such vector (a,b) a period of the configuration.

e strongly periodic or two-way periodic if it has periods in non-parallel
directions. (So the symmetry group is a wallpaper group.)



Remark: if f: Z? — A is strongly periodic with non-parallel periods (a, b)
and (¢, d) then it is also periodic with the horizontal period

d(a,b) —b(c,d) = (ad — be, 0)
and the vertical period

a(c,d) — c(a,b) = (0,ad — be).

(Note that ad — bc # 0 as vectors (a, b) and (¢, d) are not parallel.)

In other words, a two-way periodic configuration has horizontal and vertical
periods: It consists of a periodic repetition of a square pattern, as in earlier our
example.



In the following we prove two preliminary lemmas:

(1) If a Wang tile set admits a one-way periodic tiling then it also admits a
two-way periodic tiling.

(2) If a Wang tile set admits valid tilings of arbitrarily large finite squares then
it also admits a tiling of the infinite plane.



One-periodic = two-periodic

Theorem. If a Wang tile set admits a tiling with a period, then it also admits
a tiling with two periods in non-parallel directions.

Proof. Let f : Z?> — A be a periodic tiling using a prototile set A, and let

(a,b) # (0,0)

be a period. By symmetry we may assume b > 0 and a > 0.

Extract a horizontal strip of height b from the tiling:

The infinite sequences of colors on top and bottom of the strip are the
same, with a horizontal offset a.



Consider blocks of tiles of size (a + 1) X b in the strip. There are only
finitely many different such blocks so some block B repeats with some block A
in between:
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Then the strip where blocks A and B repeat periodically is correctly tiled. It
has identical infinite sequences of colors on the top and on the bottom, with
offset a:




Thus we can stack copies of the periodic strip in top of each other with offsets
a, and obtain a valid two-way periodic tiling, with a horizontal period and the
non-horizontal period (a, b):

(a,)




All finite squares =— whole plane

Consider an infinite directed rooted tree where each node has a finite number
of children:

Claim: The tree contains an infinite path down from the root.

Proof: If a node is the root of an infinite subtree, then it has a child that is
also the root of an infinite subtree (because the node has just finite number of

children).

So starting from the root one can move down the tree by always moving to the
child that is the root of an infinite subtree. This path is never blocked so the
path follows an infinite branch of the tree.



Theorem. If a Wang tile set admits valid tilings of arbitrarily large finite
squares then it also admits a tiling of the infinite plane.

Proof. Forn=0,1,..., let
D,={-n,....,n} x{-n,....,n},
that is, the (2n + 1) x (2n + 1) size square centered at cell (0, 0).
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The assumption is that the set A of prototiles is such that every D,, can be tiled
correctly.



For each tile t € A consider the rooted tree such that:

e Nodes at level n are correct tilings of D,, with ¢ at the center cell (0, 0).

e The parent of a tiling = of D,, is x|D,,_1. Thus children extend the parent
pattern to a larger domain:

e The root is the unique node of level 0: it is the tiling of the single cell (0, 0)
with tile ¢.

One of the |A| many trees is infinite, so it has an infinite branch b. The infinite
branch defines a valid tiling of Z* where the tile in any position (x,y) is the
unique tile put in that position by patterns of the branch b.



Compactness
The previous reasoning is in fact a compactness argument.
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Let ¢y, ca, ... be a sequence of configurations in A%". The sequence con-
verges to a limit configuration c if

(V(z,y) € Z°) 3k) (Vi > k) : ci(z,y) = clz,y).

Such a limit (if it exists) is unique and we denote

c = lim c;.
11— 00
In other words: if we look at any cell (x,y) and scan ¢y, ¢, ... then from

some moment on we always see the same tile ¢(x, y) in position (x,y).

Later we give the set AL of configurations a metric. The convergence of
sequences under this metric is exactly this convergence concept.



A subsequence of ¢, cs, ... is a sequence
Ci1y Cigy « -

where 11 < 19 < . ...

(So a subsequence is obtained by picking infinitely many elements of the se-
quence, preserving their relative order.)

Obviously every subsequence of a converging sequence also converges and has
the same limit.



The following theorem states the compactness of the configuration space:
Theorem. Every sequence of configurations has a converging subsequence.
Proof. Let ¢, co, ... be an arbitrary sequence in AL

Fix one t € A such that ¢;(0,0) = t for infinitely many 4. (Such ¢ exists since
A is finite.)



Define the following infinite tree:

e Nodes at level n are patterns p : D,, — A with ¢ at the center cell (0,0),
such that for infinitely many ¢ we have
CZ" D, — P-
(Patterns that appear centered around origin in infinitely many elements of
the sequence.)

e The parent of a pattern x : D,, — A is the pattern x|p _,. Thus children
extend the parent pattern to a larger domain:

e The root is the unique node of level 0: it is the tiling of the single cell (0, 0)
with tile ¢.



The tree is infinite so it has an infinite branch b. The infinite branch defines
a configuration ¢ where the tile in any position (x,y) is the unique tile put in
that position by patterns of the branch b.

There is a subsequence that converges to c: we pick indices 71, 29, ... such that
for every n

® i, < 1i,.1, and

e ¢; |p, is the level n node in branch b.



Robinson’s aperiodic tile set

For a long time it was thought that any finite set of prototiles that admits a
non-periodic tiling must also admit a periodic one. This conjecture was refuted
by R.Berger in 1966 when he constructed a set of Wang prototiles that only
admit non-periodic tilings.

A finite set of prototiles is called aperiodic if

(i) it admits valid tilings, and

(ii) it does not admit any periodic valid tilings.

The first aperiodic Wang tile set by Berger contains 20426 tiles. (The main
point of his work was the undecidability of the domino problem, discussed later
in the course, and the number of tiles is irrelevant in that context.)



As our first example of an aperiodic tile set we take 56 Wang tiles due to
R.M.Robinson. This set will be also useful later in our undecidability proofs.

Instead of colors we use arrows to describe the matching rules between tiles.
In valid tilings arrow heads and tails in neighboring tiles must match. This for-
malism can be easily converted into a color-based matching simply by assigning
a different color for each orientation and positioning of arrows.
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