Tilings and Patterns: Homework 8 (10.11.2025)

1. Determine if the Turing machine $M = (\{s, q, p, h\}, \{a, b\}, \delta, s, h, b)$ halts when started on the blank tape, where δ is given by

$$\begin{array}{lll} \delta(s,b) & = & (q,a,R) \\ \delta(s,a) & = & (h,a,R) \\ \delta(q,b) & = & (q,a,L) \\ \delta(q,a) & = & (p,b,R) \\ \delta(p,b) & = & (p,a,L) \\ \delta(p,a) & = & (s,a,L) \end{array}$$

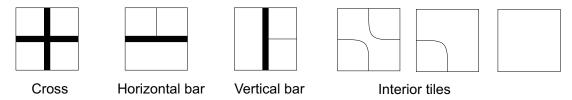
(Hint: Simulate the machine. Don't give up! But if you have done more than 50 moves you probably made a mistake...)

- 2. How many Wang tiles are in the set \mathcal{P}_M in the Section 5.2 of the notes, when constructed from a Turing machine M with n states (one of which is the halting state) and m tape symbols? Give the number as a function of n and m. What is this number of tiles for the Turing machine defined in the Problem 1 above?
- 3. Let A be a finite set of Wang prototiles that admits a valid tiling. Prove that A has a subset $B \subseteq A$ with the following property: B admits some valid tiling, and in every valid tiling with B every prototile in B is used infinitely many times.
- 4. Suppose a finite set of Wang tiles satisfies the following property: There exists a constant c such that, for every positive integer n, there are at most c valid tilings of the $n \times n$ square. Prove: the tile set only admits periodic tilings of the plane.
- 5. Using the construction in Lemma 5.5(ii), construct a set of Wang tiles that corresponds to the finite system (T, N, R) of allowed patterns where $T = \{0, 1\}$, N = [(0, 0), (0, 1), (1, 0), (1, 1)] and the patterns

$$R = \{(a, b, c, d) \in T^4 \mid a + b + c + d = 1\}$$

are allowed. (Every 2×2 block in a valid configuration must contain a single 1 and three 0's.)

- 6. Prove that the tile set you constructed in Problem 5 above only admits tilings that have the horizontal period (2,0) or the vertical period (0,2), or both.
- 7. Prove that the following six Wang tiles could be used instead of the tile set Q in the proof of Theorem 5.7 (Undecidability of the periodic tiling problem):



(The matching rule is that lines must continue uninterrupted across tile boundaries. There are two different types of lines: thick and thin.) Thick lines specify fault lines as in the notes.

More precisely, prove the following two facts:

- (a) For every $n \in \mathbb{Z}_+$ there is a valid, two-way periodic tiling where horizontal (and vertical) fault lines are spaced regularly at distance n from each other.
- (b) If a valid tiling contains at least two horizontal fault lines then it also must contain at least two vertical fault lines, and vice versa.