
The tiling problem
(aka the domino problem)

Now we turn to:

Tiling problem
Instance: A finite set T of Wang tiles
Positive instance: T admits a tiling of the plane

and prove its undecidability.

Again, an aperiodic tile set is needed in the proof. In our proof, this set is
Robinson’s tile set.



In contrast to Seeded tiling problem no specified seed tile is now required
to be used. The main problem is how to force the presence of the seed (=the
beginning state of the Turing machine) in every valid tiling.

By compactness, if it is possible to have arbitrarily large squares tiled without
the seed, then it is also possible to make the entire tiling without the seed.

Therefore the seed must be enforced inside all n× n squares for some n. This
on the other hand would seem to be contradictory to the possibility that tilings
with only a single seed tile may occur.

A solution is to partition the space using Robinson’s aperiodic tile set into
“nested boards”, each containing a piece of a valid tiling around a seed tile.



RecallRobinson’s tile set. We add further labels and matching rules to draw
the boards on tilings. Even after the added constraints the tiles still admit valid
tilings.

First we add a binary color on all side arrows. So each side arrow is either red
or green. The matching arrows in neighboring tiles must have the same color.

(1) On each cross, both side arrows have the same color.

(2) Side arrows of parity 1 crosses are both green.

(3) On each arm, possible side arrows at oppose edges of the tile have identical
colors. (So the color runs unchanged through the arm tile.)

(4) On each arm, possible side arrows at adjacent edges of the tile have opposite
colors.



By induction on n, we prove that the side arrows of the special (2n−1)×(2n−1)
squares can be colored in a unique way so that the tiling remains valid. In this
unique coloring, the colors of the (two) side arrows pointing out of the special
square are

(a) green if n is odd and

(2) red if n is even.



In the special squares, sequences of matching side arrows define colored squares:
the squares have corners at the crosses at the centers of the four quadrants of
special squares, and arms transmit the color between the corners.



We focus on red squares. They do not intersect each other, but they may be
nested inside each other.

The red squares have sizes 4n × 4n for n = 1, 2, . . . .

(This size is the distance between opposite edges. So there are (4n−1)×(4n−1)
interior tiles inside the square.)



Each red square S defines a board that contains those tiles that are in the
interior of S but are outside all nested red squares within S.

Note that there are nested boards within bigger boards.



• Each board has at the center a parity 4 cross with green side arrows. There
are no other tiles like this in the board. Thus the center cell of the board can
be identified.

• Tiles with red side arrows are on the boundary of a board. The position of
the side arrow identifies the inside and the outside of the board. (The side
arrow is on the outside half of the arm.)



A free column of a board is a vertical row of tiles inside the board that
runs across the board between the top and the bottom boundary without being
interrupted by another nested board.



Let us count the number of free columns inside a 4n × 4n board. Let us
denote this number by Fn. We need to know that Fn −→∞ as n −→∞.

We have a recurrence
Fn+1 = 2Fn − 1,

with the starting value F1 = 3. This easily leads to

Fn = 2n + 1.



We need each tile to know whether it is on a free column or not. This is done
using obstruction signals. Each tile may contain or may be without an
obstruction signal.

• An outer edge of a red border must emit or absorb a signal.

• The inner edge of the red borders may absorb but not emit a signal. Inner
edges can also be without an obstruction signal.

Here are the four possible combinations of obstruction signals on the upper and
the lower boundaries of a red square:



Obstruction signals are transmitted unchanged through the interior tiles of a
board. Let us prove the following properties:

• Tiles of a board that are on a free column do not contain a vertical
obstruction signal.

• Tiles of a board that are not on a free column contain a vertical obstruc-
tion signal.





Similar horizontal obstruction signals identify free horizontal rows of each
board:



Based on the presence or absence of horizontal/vertical obstruction signals, tiles
inside a board get classified into four classes:

(00) with horizontal and with vertical obstruction signal,

(01) with horizontal and without vertical obstruction signal,

(10) without horizontal and with vertical obstruction signal,

(11) without any kind of obstruction signal.

Each tile of board in a valid tiling knows its class within its board.



Tiles of type (11) are free, and they form a scattered (2n+1)×(2n+1) -square,
whose disjoint parts are connected by tiles of types (01) and (10):



Tiles of type (11) are free, and they form a scattered (2n+1)×(2n+1) -square,
whose disjoint parts are connected by tiles of types (01) and (10):



Let R be the fixed tile set constructed above, i.e., Robinson’s tiles with

• red/green coloring of the side arrows, and

• horizontal/vertical obstruction signals.



Next we prove that Tiling problem is undecidable by reducing into it the
Seeded tiling problem.

Let P be a given set of Wang tiles, and let s ∈ P be the given seed tile. Let C
be the set of colors used in P .

We construct an equivalent instance P ′ of the Tiling problem as follows: the
tiles are pairs (=sandwich tiles) (r, p), whose

• first component r ∈ R, and

• the second component p is a Wang tile over the color set C ∪ {b}, where
b ̸∈ C is a new ”blank color”.

The first layer tiles according to the local matching constraints of R described
above. The second layer tiles under the color constraints, as in Wang tiles.



The two layers are tied together by the fact that only certain types of pairs
(r, p) are allowed. We take in the new tile set P ′ only pairs (r, p) that satisfy
the following:

(a) If r is a free tile (no obstruction signal present in r) then p ∈ P .

(=The free area simulates the tiling by P .)



The two layers are tied together by the fact that only certain types of pairs
(r, p) are allowed. We take in the new tile set P ′ only pairs (r, p) that satisfy
the following:

(b) If r is on a free column but not on a free row then p is a tile

x

x

bb

where x ∈ C and b is the blank color.

(=These tiles transmit the color information between “neighboring” tiles in the
scattered free area.)



The two layers are tied together by the fact that only certain types of pairs
(r, p) are allowed. We take in the new tile set P ′ only pairs (r, p) that satisfy
the following:

(c) If r is on a free row but not on a free column then p is a tile

x x

b

b

where x ∈ C and b is the blank color.

(=These tiles transmit the color information between “neighboring” tiles in the
scattered free area.)



The two layers are tied together by the fact that only certain types of pairs
(r, p) are allowed. We take in the new tile set P ′ only pairs (r, p) that satisfy
the following:

(d) If r is not on a free row or column then p is arbitrary: any element of
(C ∪ {b})4 is acceptable.

(=Different boards are independent of each other. Between them anything
goes.)



The two layers are tied together by the fact that only certain types of pairs
(r, p) are allowed. We take in the new tile set P ′ only pairs (r, p) that satisfy
the following:

(e) If r is a parity 4 cross with green side arrows (=center tile of a board) then
p = s, the seed tile.

(=The center of the board contains the seed tile.)

These conditions make the board behave as if the free areas were contiguous
and the board then is like a connected square of size (2n + 1)× (2n + 1).



Let us prove that our sandwich tiles P ′ admit a tiling if and only if P admits a
tiling that contains a copy of the seed tile s:

⇐= Suppose first that P admits a tiling that contains s.



Let us prove that our sandwich tiles P ′ admit a tiling if and only if P admits a
tiling that contains a copy of the seed tile s:

=⇒ For the converse direction, suppose that the sandwich tiles P ′ admit a
tiling.



We have proved:

Theorem (Berger). The Tiling problem is undecidable.



Note: Classification of Wang tile sets into three parts:

A: Protosets that do not admit any tilings,

B: Protosets that admit some periodic tilings,

C: Aperiodic protosets.

We know that classes A and B are semi-decidable. Because of the undecidability
of the classes we must have that class C is not semi-decidable.

A ∪ B is semi-decidable as a union of two semi-decidable sets.

A ∪ C (=tile sets that do not admit a periodic tiling) is not semi-decidable.

B ∪ C (=tile sets that admit a tiling) is not semi-decidable.



The completion problem

Let P be a fixed finite set (of prototiles).

A finite pattern is an assignment p : D −→ P of tiles into cells of a finite
domain D ⊆ Z2.

We say that p is a sub-pattern of a configuration c : Z2 −→ P if

c|D = p.

The completion problem of tile set P
Instance: A finite domain D :⊆ Z2 and a finite pattern p : D −→ P
Positive instance: D and p such that there exists a valid tiling c : Z2 −→ P
that has p as a subpattern.



The completion problem is different for different tile sets. The tile set is fixed,
and the input is a finite pattern. For some tile sets the completion problem
is decidable. But we can prove that there are also tile sets whose completion
problem is undecidable.

The situation is analogous to the decision problem:

Halting problem of TM M = (S,Γ, δ, s0, sh, b)
Instance: A finite tape content f ∈ ΓZ

Positive instance: f such that (s0, 0, f ) ⊢ · · · ⊢ (sh, i, g) for some and i ∈ Z and g ∈ ΓZ

This is also decidable for some Turing machines M , but:

Theorem [Turing 1936]. There exists a TM M such that Halting prob-
lem of TM M is undecidable.

We call a Turing machine M universal if Halting problem of M is unde-
cidable.



Example. The following universal Turing machine (due to Y.Rogozhin) with
4 + 1 states and 6 tape symbols has an undecidable halting problem:

M = ({q1, q2, q3, q4, h}, {1, b, >,<, 0, c}, δ, q1, h, b),

and δ is given by the following table

q1 q2 q3 q4
1 (q1, <, L) (q2, 0, R) (q3, 1, R) (q4, 0, R)
b (q1, >,R) (q3, >, L) (q4, <,R) (q2, c, L)
> (q1, b, L) (q2, <,R) (q3, b, R) (q4, <,R)
< (q1, 0, R) (q2, >, L) h h
0 (q1, <, L) (q2, , 1, L) (q1, c, R) (q2, c, L)
c (q4, 0, R) (q2, b, R) (q1, 1, R) (q4, b, R)

where the item on column q, row x is δ(q, x).



Theorem. There exists a finite set P of Wang prototiles such that The
completion problem of tile set P is undecidable.

Proof. In the homework assignments.



Beyond aperiodicity: arecursive tile sets

Robinson’s tile set is aperiodic: no periodic tilings exist. Still, valid tilings that
are “simple” exist. Using the special 2n − 1 -squares one can algorithmically
construct bigger and bigger portions of a fixed valid tiling.

But there exist tile sets that only admit very complicated tilings: only tilings
that cannot be algorithmically constructed.



We call a configuration c : Z2 −→ T recursive if there exists an algorithm
that outputs c(i, j), when given arbitrary integers i, j as input. If no such
algorithm exists then c is called non-recursive.

Analogously, a tape content
f : Z −→ Γ

of a Turing machine is recursive if there exists an algorithm that returns f (i)
for any given input i ∈ Z. Otherwise f is non-recursive.



Any strongly periodic configuration c is recursive: The pattern of a fixed
n× n square period can be hard coded inside the algorithm as a lookup table.
The symbol in any position i, j is then

c(i, j) = c(i (mod n), j (mod n)).

Analogously every periodic tape content f : Z −→ Γ is recursive.

But there are of course many non-periodic recursive configurations also (e.g.
some valid tilings by the Robinson tile set).



Analogously to aperiodicity, we define the concept of arecursivity as follows:
Wang tile set P is arecursive if and only if

(i) it admits valid tilings, and

(ii) it does not admit any recursive valid tiling.

Clearly any arecursive tile set is aperiodic, but the converse is not true since
Robinson’s tile set is not arecursive. Arecursivity is a stronger property than
aperiodicity.



A simpler concept is a tile set with a seed tile such that any valid tiling that
contains a seed tile is non-recursive.

Theorem. There exists a finite set P of Wang prototiles and a seed tile t ∈ P
such that every valid tiling that contains t is non-recursive, and there are valid
non-recursive tilings that contain t.

The proof is based on an analogous concept on Turing machines:

Lemma. There exists a Turing machine M that halts when started on any
recursive initial tape, but for some non-recursive initial tape M does not halt.

Proof of the lemma is sketched in the notes. (We skip the proof here as it
is necessarily incomplete unless we dig deep into the topics of the “Automata
and Formal Languages” -course.)



Using the arecursive TM M of the lemma we construct a tile set as follows:

We take the machine tiles PM as before, except that the start tiles

s,bb b

that represent the initial empty tape are replaced by the tiles

s,xx x

for all tape letters x ∈ Γ and the initial state s ∈ S.



The new start tiles allow non-blank initial tapes. As the seed tile t we select
the start tile

s,a

where letter a is chosen so that there is an initial tape content f : Z −→ Γ with
f (0) = a such that M does not halt when started on tape f .

The new start tiles allow the horizontal row with t to contain any initial tape
content f with f (0) = a. The machine tiles then force the rows above to
simulate machine M . If M halts then the tiling becomes impossible.



We have: The tiles admit a tiling containing a horizontal row r of initialization
tiles ⇐⇒ the initial configuration of M represented by row r does not lead to
halting of M .

The tiles admit a valid tiling containing t: We choose an initial row
that represents a tape content f from which M does not halt.

The tiles do not admit a recursive tiling containing t: If the tiling
is recursive then the horizontal row containing t is recursive, so we would have
a recursive initial tape from which M does not halt, a contradiction with the
property of M



It is possible to modify Robinson’s tile set so that the seed tile restriction can be
removed. Robinson’s tiles form nested boards, and a simulation of the tile set
of the previous theorem is done on all boards, with the seed tile at the center
of each board.

Theorem. There exist arecursive sets of Wang tiles.

Proof. Skipped.

A main new problem in the proof: the tilings on all boards should
be central patterns of the same valid tiling around a seed tile. Otherwise, if
different boards are allowed to contain pieces of different tilings then a recursive
tiling can be easily built.

Solution: new signals that carry the information about the initial tape content
of the simulated TM between boards of different sizes, so that different boards
are forced to be consistent with each other.


