
Metric on AZ2

Define the distance of configurations c ̸= e as

d(c, e) = 2−min {∥(i,j)∥ | c(i,j)̸=e(i,j)}

where we use the notation

∥(i, j)∥ = max{|i|, |j|}.

(And for c = e the distance d(c, e) = 0.)

This distance function is a metric on the set AZ2
.



d(c, e) = 2−min {∥(i,j)∥ | c(i,j)̸=e(i,j)}

Two configurations c and e are close (i.e., d(c, e) is small) if c and e agree on a
large region around the origin.
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c=e

c≠e

d(c, e) large if c and e differ close to 0⃗.



d(c, e) = 2−min {∥(i,j)∥ | c(i,j)̸=e(i,j)}

Two configurations c and e are close (i.e., d(c, e) is small) if c and e agree on a
large region around the origin.

0

c=ec≠e

d(c, e) small if c and e agree in a large region around 0⃗.



Finite set M ⊆ Z2 is an observation window that corresponds to a ”measuring
device”. Two configurations c and e seem identical through the measuring
device if e|M = c|M .

M



Finite set M ⊆ Z2 is an observation window that corresponds to a ”measuring
device”. Two configurations c and e seem identical through the measuring
device if e|M = c|M .

M

Larger window M means better accuracy of observation.



Recall the definition of a metric space: (X, d) is a metric space if
X ̸= ∅ is a set and

d : X ×X −→ R
is a distance function that satisfies the following three conditions:

(i) d(x, y) > 0 for x ̸= y, and d(x, y) = 0 for x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y).

For example: The set X = R2 with the usual Euclidean metric

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2

is a metric space.

Many essential properties of the space can be proved using the axioms (i)–(iii)
only.



(i) d(x, y) > 0 for x ̸= y, and d(x, y) = 0 for x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y).

Let us prove that X = AZ2
with the distance function

d(c, e) = 2−min {∥(i,j)∥ | c(i,j)̸=e(i,j)}

is a metric space.

In fact: The space is an ultrametric as it satisfies the strong triangle in-
equality

(iii’) d(x, y) ≤ max{d(x, z), d(z, y)}.



Let (X, d) be a metric space.

For every ε > 0 and x ∈ X we denote

Bε(x) = {y ∈ X | d(x, y) < ε}

and call Bε(x) the (open) ε-ball with center x.

A set U ⊆ X is open if

∀x ∈ U, ∃ε > 0 : Bε(x) ⊆ U.

A set is closed if its complement is open

A set is clopen if it is both open and closed.



Example.

� An open ball
Bε(x) = {y | d(x, y) < ε}

is open in the topology.

� A closed ball
Bε(x) = {y | d(x, y) ≤ ε}

is closed in the topology.



U is open ⇐⇒ ∀x ∈ U, ∃ε > 0 : Bε(x) ⊆ U.

Proposition. Let (X, d) be a metric space. Then

(i) ∅ and X are open,

(ii) arbitrary unions of open sets are open, and

(iii) intersections of finitely many open sets are open.

Proof.

Corollary. A set is open if and only if it is a union of open balls.

Proof.



Example. Let X = R and d(x, y) = |x− y|. This the the usual metric of
real numbers.

• Open balls:

• Open sets:

• Closed intervals [a, b] are examples of closed sets.

• Set Q of rational numbers is not open, not closed

• Clopen sets: ∅ and R.



(i) ∅ and X are open,

(ii) arbitrary unions of open sets are open, and

(iii) intersections of finitely many open sets are open.

Many properties of metric spaces can be proved using properties (i), (ii) and
(iii) only.

Further abstraction: A pair (X, T ) whereX is a set and T is a family of subsets
of X is a topological space, family T is called a topology on X , and sets
in T are called open if axioms (i), (ii) and (iii) are satisfied.

Thus the family of open sets of a metric space (X, d) forms a topology on X . It
is called ametric topology. There are also topologies that are not metrizable,
i.e., not defined by any metric.



Example. For any X , let T contain all subsets of X . Then T is a topology,
the discrete topology of X .

The discrete topology is metrizable as it is defined by the discrete metric

d(x, y) =

{
1, if x ̸= y,
0, if x = y.

This metric satisfies the (strong) triangular inequality

d(x, y) ≤ max{d(x, z), d(z, y)}.

All singleton sets {x} are open balls.



Example. For any set X let T = {X, ∅}. Then T is a topology, the trivial
topology of X .

If |X| ≥ 2 then T is not defined by any metric:



Consistently with metric spaces we define:

A set is closed if its complement is open

A set is clopen if it is both open and closed.

By de Morgan’s laws closed sets behave dually to open sets:

Proposition. Let (X, T ) be a topological space.

(i) ∅ and X are closed,

(ii) arbitrary intersections of closed sets are closed, and

(iii) unions of finitely many closed sets are closed.



Further terminology: Let (X, T ) be a top. space.

• x ∈ X is isolated if {x} is open. In the metric case:

• A space is perfect if it has no isolated points.

• Let A ⊆ X . The closure of A is

A =
⋂

Fclosed
A⊆F

F.

It is the smallest closed set that contains A:

F closed, A ⊆ F =⇒ A ⊆ F.

• Set A ⊆ X is dense if A = X .



• Dual to closure: The interior of A is

A◦ =
⋃

V open
V⊆A

V.

It is the largest open subset of A:

V open, V ⊆ A =⇒ V ⊆ A◦.

• A set A is a neighborhood of point x if x ∈ A◦. Equivalently: there exists
open U such that x ∈ U ⊆ A.



Denseness of a set is proved by showing that it has a non-empty intersection
with every non-empty open set:

Lemma. A set A ⊆ X is dense if and only if for every open U ̸= ∅ it holds
that A ∩ U ̸= ∅.

Proof.



Example. Consider R and the usual topology.

• Every open ball contains infinitely many points so there are no isolated points.
The space is perfect.

• The closure of Q is R, so Q is dense in R. The interior of Q is the empty set.

• The closure of (0, 1) is [0, 1].

• Z is closed, so it is its own closure.

Example. The discrete topology is far from perfect because every point is
isolated.



Let A ⊆ X and let d be a metric on X . Then d restricted to A × A is the
induced metric on A.

Let A ⊆ X and let T be a topology on X . Then

{V ∩ A | V ∈ T }

is a topology on A, the induced topology.

Let T be the metric topology defined by d on X . The topology that T induces
on A is the same as the metric topology defined by the induced metric on A.

Always, when considering a subset of a topological (or metric) space, the default
is that we assume the induced topology (metric) on A.



Example. The metric induced by the usual metric of R on subset Z is

d(n,m) = |n−m| for all n,m ∈ Z.

Then every singleton set {n} is an open ball, and hence the induced topology
on Z is the discrete topology. The discrete metric

d(n,m) =

{
1, if n ̸= m,
0, if n = m

defines the same topology.



Convergence of sequences

A topological space (X, T ) is Hausdorff if for every x ̸= y there are open Ux

and Uy such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅. In other words, any two
distinct points have non-intersecting neighborhoods:

Example. Every metric space is Hausdorff: For x ̸= y choose

ε = d(x, y)/2

and use
Ux = Bε(x),
Uy = Bε(y).

Metric =⇒ Hausdorff =⇒ Topology

The trivial topology {∅, X} is not Hausdorff if |X| ≥ 2.



In a Hausdorff space the singleton sets {x} are closed: For every y ̸= x there
exists an open set Vy such that x ̸∈ Vy. The complement of {x} is⋃

y ̸=x

Vy,

thus open as a union of open sets.



A sequence x1, x2, . . . converges to x if for every open neighborhood U of x
there is n ∈ N such that xi ∈ U for all i ≥ n.

In the metric setting: For every ε > 0 there is n ∈ N such that d(xi, x) < ε for
all i ≥ n.

Example. Under the trivial topology {∅, X} every sequence converges to
every point!

Proposition. In a Hausdorff topology every converging sequence converges
to a unique point.

Proof.

We denote the unique limit by limi→∞ xi.



Base of a topology

A family B ⊆ T is a base of topology T iff every open set is a union of some
members of B.

Example. In a metric space (X, d) open sets are precisely unions of open
balls. Thus the family

{Bε(x) | x ∈ X, ε > 0}
of all open balls is a base.

Proposition. A family B ⊆ T is a base of topology T if and only if

∀U ∈ T ,∀x ∈ U,∃B ∈ B : x ∈ B ⊆ U.

Proof.



Compactness

Let T be a topology on X , and let A ⊆ X .

A family U ⊆ T is called an open cover of A if

A ⊆
⋃
V ∈U

V.

A subfamily U ′ ⊆ U of U is called a subcover if it is also a cover of A.

Set A ⊆ X is called compact if every open cover of A has a finite subcover of
A. The topology is called compact if the whole space X is compact.

In other words: a topology is compact iff every family of open sets whose union
is X has a finite subfamily whose union is X .



Example. In the usual topology of R

A = {0} ∪ {1
n
| n ∈ Z+}

is compact:

On the other hand,

B = {1
n
| n ∈ Z+}

is not compact:


