Metric on $A^{\mathbb{Z}^2}$

Define the distance of configurations $c \neq e$ as

$$d(c, e) = 2^{-\min\{\|(i,j)\| \mid c(i,j) \neq e(i,j)\}}$$

where we use the notation

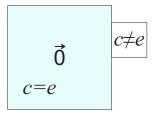
$$||(i,j)|| = \max\{|i|,|j|\}.$$

(And for c = e the distance d(c, e) = 0.)

This distance function is a <u>metric</u> on the set $A^{\mathbb{Z}^2}$.

$$d(c, e) = 2^{-\min\{\|(i,j)\| \mid c(i,j) \neq e(i,j)\}}$$

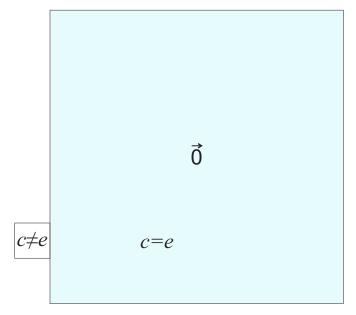
Two configurations c and e are close (i.e., d(c, e) is small) if c and e agree on a large region around the origin.



d(c, e) large if c and e differ close to $\vec{0}$.

$$d(c, e) = 2^{-\min\{\|(i,j)\| \mid c(i,j) \neq e(i,j)\}}$$

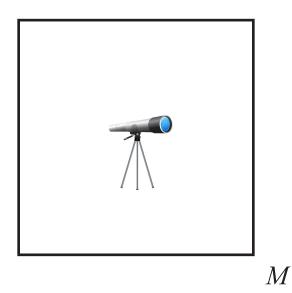
Two configurations c and e are close (i.e., d(c, e) is small) if c and e agree on a large region around the origin.



d(c, e) small if c and e agree in a large region around $\vec{0}$.

Finite set $M \subseteq \mathbb{Z}^2$ is an observation window that corresponds to a "measuring device". Two configurations c and e seem identical through the measuring device if $e_{|M} = c_{|M}$.

Finite set $M \subseteq \mathbb{Z}^2$ is an observation window that corresponds to a "measuring device". Two configurations c and e seem identical through the measuring device if $e_{|M} = c_{|M}$.



Larger window M means better accuracy of observation.

Recall the definition of a metric space: (X,d) is a metric space if $X \neq \emptyset$ is a set and

$$d: X \times X \longrightarrow \mathbb{R}$$

is a distance function that satisfies the following three conditions:

- (i) d(x,y) > 0 for $x \neq y$, and d(x,y) = 0 for x = y,
- (ii) d(x, y) = d(y, x),
- (iii) $d(x,y) \le d(x,z) + d(z,y)$.

For example: The set $X = \mathbb{R}^2$ with the usual Euclidean metric

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

is a metric space.

Many essential properties of the space can be proved using the axioms (i)–(iii) only.

(i) d(x,y) > 0 for $x \neq y$, and d(x,y) = 0 for x = y,

(ii)
$$d(x, y) = d(y, x)$$
,

(iii)
$$d(x, y) \le d(x, z) + d(z, y)$$
.

Let us prove that $X = A^{\mathbb{Z}^2}$ with the distance function

$$d(c, e) = 2^{-\min\{\|(i,j)\| \mid c(i,j) \neq e(i,j)\}}$$

is a metric space.

In fact: The space is an ultrametric as it satisfies the strong triangle inequality

(iii')
$$d(x, y) \le \max\{d(x, z), d(z, y)\}.$$

Let (X, d) be a metric space.

For every $\varepsilon > 0$ and $x \in X$ we denote

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \}$$

and call $B_{\varepsilon}(x)$ the (open) ε -ball with center x.

A set $U \subseteq X$ is **open** if

$$\forall x \in U, \ \exists \varepsilon > 0 : \ B_{\varepsilon}(x) \subseteq U.$$

A set is **closed** if its complement is open

A set is **clopen** if it is both open and closed.

Example.

• An open ball

$$B_{\varepsilon}(x) = \{ y \mid d(x, y) < \varepsilon \}$$

is open in the topology.

• A closed ball

$$\overline{B}_{\varepsilon}(x) = \{ y \mid d(x, y) \le \varepsilon \}$$

is closed in the topology.

$$U$$
 is open $\iff \forall x \in U, \ \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq U.$

Proposition. Let (X, d) be a metric space. Then

- (i) \emptyset and X are open,
- (ii) arbitrary unions of open sets are open, and
- (iii) intersections of finitely many open sets are open.

Proof.

Corollary. A set is open if and only if it is a union of open balls.

Proof.

Example. Let $X = \mathbb{R}$ and d(x, y) = |x - y|. This the the **usual metric** of real numbers.

- Open balls:
- Open sets:
- \bullet Closed intervals [a, b] are examples of closed sets.
- Set \mathbb{Q} of rational numbers is not open, not closed
- Clopen sets: \emptyset and \mathbb{R} .

- (i) \emptyset and X are open,
- (ii) arbitrary unions of open sets are open, and
- (iii) intersections of finitely many open sets are open.

Many properties of metric spaces can be proved using properties (i), (ii) and (iii) only.

Further abstraction: A pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a family of subsets of X is a **topological space**, family \mathcal{T} is called a **topology** on X, and sets in \mathcal{T} are called **open** if axioms (i), (ii) and (iii) are satisfied.

Thus the family of open sets of a metric space (X, d) forms a topology on X. It is called a **metric topology**. There are also topologies that are not metrizable, i.e., not defined by any metric.

Example. For any X, let \mathcal{T} contain all subsets of X. Then \mathcal{T} is a topology, the **discrete topology** of X.

The discrete topology is metrizable as it is defined by the discrete metric

$$d(x,y) = \begin{cases} 1, & \text{if } x \neq y, \\ 0, & \text{if } x = y. \end{cases}$$

This metric satisfies the (strong) triangular inequality

$$d(x,y) \le \max\{d(x,z), d(z,y)\}.$$

All singleton sets $\{x\}$ are open balls.

Example. For any set X let $\mathcal{T} = \{X, \emptyset\}$. Then \mathcal{T} is a topology, the **trivial** topology of X.

If $|X| \geq 2$ then \mathcal{T} is not defined by any metric:

Consistently with metric spaces we define:

A set is **closed** if its complement is open

A set is **clopen** if it is both open and closed.

By de Morgan's laws closed sets behave dually to open sets:

Proposition. Let (X, \mathcal{T}) be a topological space.

- (i) \emptyset and X are closed,
- (ii) arbitrary intersections of closed sets are closed, and
- (iii) unions of finitely many closed sets are closed.

Further terminology: Let (X, \mathcal{T}) be a top. space.

• $x \in X$ is **isolated** if $\{x\}$ is open. In the metric case:

- A space is **perfect** if it has no isolated points.
- Let $A \subseteq X$. The **closure** of A is

$$\overline{A} = \bigcap_{\substack{Fclosed\\ A \subseteq F}} F.$$

It is the smallest closed set that contains A:

$$F \text{ closed}, A \subseteq F \implies \overline{A} \subseteq F.$$

• Set $A \subseteq X$ is **dense** if $\overline{A} = X$.

• Dual to closure: The **interior** of A is

$$A^{\circ} = \bigcup_{\substack{Vopen \\ V \subseteq A}} V.$$

It is the largest open subset of A:

$$V \text{ open}, V \subseteq A \implies V \subseteq A^{\circ}.$$

• A set A is a **neighborhood** of point x if $x \in A^{\circ}$. Equivalently: there exists open U such that $x \in U \subseteq A$.

Denseness of a set is proved by showing that it has a non-empty intersection with every non-empty open set:

Lemma. A set $A \subseteq X$ is dense if and only if for every open $U \neq \emptyset$ it holds that $A \cap U \neq \emptyset$.

Proof.

Example. Consider \mathbb{R} and the **usual topology**.

- Every open ball contains infinitely many points so there are no isolated points. The space is perfect.
- \bullet The closure of \mathbb{Q} is \mathbb{R} , so \mathbb{Q} is dense in \mathbb{R} . The interior of \mathbb{Q} is the empty set.
- The closure of (0,1) is [0,1].
- \bullet \mathbb{Z} is closed, so it is its own closure.

Example. The **discrete topology** is far from perfect because every point is isolated.

Let $A \subseteq X$ and let d be a metric on X. Then d restricted to $A \times A$ is the **induced metric** on A.

Let $A \subseteq X$ and let \mathcal{T} be a topology on X. Then

$$\{V \cap A \mid V \in \mathcal{T}\}$$

is a topology on A, the **induced topology**.

Let \mathcal{T} be the metric topology defined by d on X. The topology that \mathcal{T} induces on A is the same as the metric topology defined by the induced metric on A.

Always, when considering a subset of a topological (or metric) space, the default is that we assume the induced topology (metric) on A.

Example. The metric induced by the usual metric of \mathbb{R} on subset \mathbb{Z} is

$$d(n,m) = |n-m|$$
 for all $n, m \in \mathbb{Z}$.

Then every singleton set $\{n\}$ is an open ball, and hence the induced topology on \mathbb{Z} is the discrete topology. The discrete metric

$$d(n,m) = \begin{cases} 1, & \text{if } n \neq m, \\ 0, & \text{if } n = m \end{cases}$$

defines the same topology.

Convergence of sequences

A topological space (X, \mathcal{T}) is **Hausdorff** if for every $x \neq y$ there are open U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \emptyset$. In other words, any two distinct points have non-intersecting neighborhoods:

Example. Every metric space is Hausdorff: For $x \neq y$ choose

$$\varepsilon = d(x, y)/2$$

and use

$$U_x = B_{\varepsilon}(x),$$

$$U_y = B_{\varepsilon}(y).$$

 $Metric \implies Hausdorff \implies Topology$

The trivial topology $\{\emptyset, X\}$ is not Hausdorff if $|X| \geq 2$.

In a Hausdorff space the singleton sets $\{x\}$ are closed: For every $y \neq x$ there exists an open set V_y such that $x \notin V_y$. The complement of $\{x\}$ is

$$\bigcup_{y\neq x} V_y,$$

thus open as a union of open sets.

A sequence x_1, x_2, \ldots converges to x if for every open neighborhood U of x there is $n \in \mathbb{N}$ such that $x_i \in U$ for all $i \geq n$.

In the metric setting: For every $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $d(x_i, x) < \varepsilon$ for all $i \geq n$.

Example. Under the trivial topology $\{\emptyset, X\}$ every sequence converges to every point!

Proposition. In a Hausdorff topology every converging sequence converges to a unique point.

Proof.

We denote the unique limit by $\lim_{i\to\infty} x_i$.

Base of a topology

A family $\mathcal{B} \subseteq \mathcal{T}$ is a **base** of topology \mathcal{T} iff every open set is a union of some members of \mathcal{B} .

Example. In a metric space (X, d) open sets are precisely unions of open balls. Thus the family

$$\{B_{\varepsilon}(x) \mid x \in X, \varepsilon > 0\}$$

of all open balls is a base.

Proposition. A family $\mathcal{B} \subseteq \mathcal{T}$ is a base of topology \mathcal{T} if and only if

$$\forall U \in \mathcal{T}, \forall x \in U, \exists B \in \mathcal{B} : x \in B \subseteq U.$$

Proof.

Compactness

Let \mathcal{T} be a topology on X, and let $A \subseteq X$.

A family $\mathcal{U} \subseteq \mathcal{T}$ is called an **open cover** of A if

$$A \subseteq \bigcup_{V \in \mathcal{U}} V.$$

A subfamily $\mathcal{U}' \subseteq \mathcal{U}$ of \mathcal{U} is called a **subcover** if it is also a cover of A.

Set $A \subseteq X$ is called **compact** if every open cover of A has a finite subcover of A. The topology is called compact if the whole space X is compact.

In other words: a topology is compact iff every family of open sets whose union is X has a finite subfamily whose union is X.

Example. In the usual topology of \mathbb{R}

$$A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_+\}$$

is compact:

On the other hand,

$$B = \{ \frac{1}{n} \mid n \in \mathbb{Z}_+ \}$$

is not compact: