
Cellular Automata: introduction

A cellular automaton (CA) is a discrete dynamical system that consists of
an infinite grid of finite state nodes (cells) that change their states depending
on the states of their neighbors, according to a local update rule.

The system is synchronous and uniform: All cells change their state simul-
taneously, using the same update rule.

The operation is repeated at discrete time steps.



Cellular automata are used, for example,

� in physics as discrete models of physical systems,

� in computer science as models of massively parallel computation under
the realistic constraints of locality and uniformity,

� in mathematics as endomorphisms of the full shift in the context of
symbolic dynamics.



Cellular automata possess several fundamental properties of the physical world:
they are

� massively parallel,

� homogeneous (=uniform) in time and space,

� all interactions are local,

� time reversibility and conservation laws can be obtained by choosing
the local update rule properly.



Famous example: Game-Of-Life

GOL was invented by John Conway in 1970.

� Infinite checker-board whose squares (=cells) are colored black (=alive) or
white (=dead).

� At each discrete time step each cell counts the number of living cells sur-
rounding it, and based on this number determines its new state.

� All cells change their state simultaneously.



Each cell counts the living cells in the eight surrounding cells:

� If the cell is alive then it stays alive (survives) iff it has two or three live
neighbors. Otherwise it dies of loneliness or overcrowding.

� If the cell is dead then it becomes alive iff it has exactly three living neigh-
bors.

All cells apply this simple local update rule simultaneously. As the process
is repeated over and over again, a dynamical system is obtained that exhibits
surprisingly complex behavior.
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Game of Life was invented in 1970 by John Conway. Since then many interesting
”creatures” living in this universe have been identified. These include patterns
that remain unchanged (still life)
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Game of Life was invented in 1970 by John Conway. Since then many interesting
”creatures” living in this universe have been identified. These include patterns
that remain unchanged (still life), oscillate periodically (oscillators), glide
through space as they oscillate (spaceships), emit spaceships (guns), etc.



A typical snapshot of a time evolution in Game-of-Life:

Initial uniformly random configuration.



A typical snapshot of a time evolution in Game-of-Life:

The next generation after all cells applied the update rule.



A typical snapshot of a time evolution in Game-of-Life:

Generation 10



A typical snapshot of a time evolution in Game-of-Life:

Generation 100



A typical snapshot of a time evolution in Game-of-Life:

GOL is a computationally universal two-dimensional CA.
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Basic Definitions

Note: abbreviation CA refers to cellular automata (plural) or cellular
automaton (singular).

� Let d be a positive integer, the dimension. A d-dimensional cellular space
is the d-dimensional grid Zd. Elements of Zd are called cells.

� Let S be a finite state set. Elements of S are called states.

� A configuration of a d-dimensional CA with state set S is an assignment

c : Zd −→ S

of states to cells. It is a snapshot of all the states in the system of cells at
some moment of time. The state of cell n⃗ ∈ Zd is c(n⃗).

� The set of all d-dimensional configurations over the state set S is SZd. (Uses
the mathematical notation BA for the set of all functions from set A into
set B.)

� Most frequently we consider one- and two-dimensional spaces, in which
cases the cells form a line indexed by Z or an infinite checker board indexed
by Z2. The set of one-dimensional configurations is SZ, the set of functions
Z −→ S.



� A d-dimensional neighborhood vector is a tuple

N = (n⃗1, n⃗2, . . . , n⃗m)

where each n⃗i ∈ Zd and n⃗i ̸= n⃗j for all i ̸= j. The elements n⃗i specify
the relative locations of the neighbors of each cell: Cell n⃗ ∈ Zd has m
neighbors n⃗ + n⃗i for i = 1, 2, . . . ,m.
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N = (n⃗1, n⃗2, . . . , n⃗m)

where each n⃗i ∈ Zd and n⃗i ̸= n⃗j for all i ̸= j. The elements n⃗i specify
the relative locations of the neighbors of each cell: Cell n⃗ ∈ Zd has m
neighbors n⃗ + n⃗i for i = 1, 2, . . . ,m.

� The local update rule (or the local rule, the update rule, or simply
the rule) of a CA with state set S and size m neighborhood is a function

f : Sm −→ S

that specifies the new state of each cell based on the old states of its neigh-
bors: If the neighbors of a cell have states s1, s2, . . . , sm then the new state
of the cell is f (s1, s2, . . . , sm).
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� Local rule f : Sm −→ S.
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� Local rule f : Sm −→ S.

All cells use the same local rule, and the rule is applied at all cells simultaneously.
This causes a global change in the configuration: Configuration c is changed into
configuration c′ where for all n⃗ ∈ Zd

c′(n⃗) = f [c(n⃗ + n⃗1), c(n⃗ + n⃗2), . . . , c(n⃗ + n⃗m)].

The transformation c 7→ c′ is the global transition function

G : SZd −→ SZd

of the CA.
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All cells use the same local rule, and the rule is applied at all cells simultaneously.
This causes a global change in the configuration: Configuration c is changed into
configuration c′ where for all n⃗ ∈ Zd

c′(n⃗) = f [c(n⃗ + n⃗1), c(n⃗ + n⃗2), . . . , c(n⃗ + n⃗m)].

The transformation c 7→ c′ is the global transition function

G : SZd −→ SZd

of the CA.

Function G is our main object of study. Functions G that can be defined this
way are CA functions, or simply cellular automata.
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Remark: In our notation the neighborhood vector is ordered (=not a set,
but a vector) so that the local rule can be expressed simply as a function from
m-tuples of states.



� Neighborhood vector N = (n⃗1, n⃗2, . . . , n⃗m),

� Local rule f : Sm −→ S.

Remark: In our notation the neighborhood vector is ordered (=not a set,
but a vector) so that the local rule can be expressed simply as a function from
m-tuples of states.

An alternative way is to

� define the neighborhood as a finite subset N ⊆ Zd,

� take the local rule as a function f : SN −→ S.

In this notation the domain of f is the set of functions N −→ S, and each
such function carries the “order information”, i.e., it is known which state each
neighbor has.



Transformation G can be iterated, i.e., applied repeatedly, which produces a
time evolution

c 7→ G(c) 7→ G2(c) 7→ G3(c) 7→ . . .

of the system.

Here c is the initial configuration, and the sequence

O(c) = c,G(c), G2(c), G3(c), . . .

is the (forward) orbit of c.

By time we mean the number of applications of G, so Gt(c) is the configuration
at time t.



Transformation G can be iterated, i.e., applied repeatedly, which produces a
time evolution

c 7→ G(c) 7→ G2(c) 7→ G3(c) 7→ . . .

of the system.

Here c is the initial configuration, and the sequence

O(c) = c,G(c), G2(c), G3(c), . . .

is the (forward) orbit of c.

By time we mean the number of applications of G, so Gt(c) is the configuration
at time t.

A two-way infinite orbit is a sequence

. . . , c−2, c−1, c0, c1, c2, . . .

of configurations where G(ci) = ci+1 for all i ∈ Z.



In summary: To specify a CA one needs to specify the following items:

� the dimension d ∈ Z+,

� the finite state set S,

� the neighborhood vector N = (n⃗1, n⃗2, . . . , n⃗m), and

� the local update rule f : Sm −→ S.

We therefore formally define the corresponding CA to be the 4-tuple A =
(d, S,N, f ).



Example: The XOR cellular automaton

Let d = 1, S = {0, 1}, N = (0, 1) and f : {0, 1}2 −→ {0, 1} be

f (a, b) = a + b (mod 2).

Each cell changes its state by adding the state of its right neighbor to its own
old state modulo 2. This is the ”exclusive or” (xor) logic operation.
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A space-time diagram is a pictorial representation of an orbit.

For one-dimensional CA, the rows of a space-time diagram are consecutive con-
figurations. Time increases downwards. The space-time diagram of the forward
orbit of c fills the lower half plane, and the space-time diagrams associated with
two-way infinite orbits fill the whole plane Z2.



A space-time diagram is a pictorial representation of an orbit.

For one-dimensional CA, the rows of a space-time diagram are consecutive con-
figurations. Time increases downwards. The space-time diagram of the forward
orbit of c fills the lower half plane, and the space-time diagrams associated with
two-way infinite orbits fill the whole plane Z2.

More generally, a space-time diagram of a d-dimensional CA is a
(d + 1)-dimensional “drawing” where d dimensions represent space and the
additional dimension is used for time.



A configuration c is

� a fixed point of G if G(c) = c.

� (temporally) periodic if Gt(c) = c for some t ∈ Z+. Any t satisfying
Gt(c) = c is called a period of c and the smallest such t is the least
period of c.

� eventually fixed if there is n ∈ N such that Gn+1(c) = Gn(c), that is,
Gn(c) is a fixed point, for some n.

� eventually (temporally) periodic if there is n ∈ N and t ∈ Z+ such
that Gn+t(c) = Gn(c), that is, Gn(c) is periodic, for some n.

Same terminology for orbits: fixed point orbits, periodic orbits, eventually pe-
riodic orbits, etc.



By a phase space of G we mean the infinite directed graph whose vertex set

is SZd and there is an edge c −→ c′ iff c′ = G(c):

(a) (b) (c) (d)

(a) a fixed point, (b) a periodic orbit, (c) an eventually fixed orbit and (d) an
eventually periodic orbit.



A simple observation: IfG andH are CA functions, so is their composition
G ◦H . □



Neighborhoods

Let
N = (n⃗1, n⃗2, . . . , n⃗m)

be a d-dimensional neighborhood vector.

• For any n⃗ ∈ Zd denote

N(n⃗) = (n⃗ + n⃗1, n⃗ + n⃗2, . . . , n⃗ + n⃗m).

• For any K ⊆ Zd denote

N(K) = {n⃗ + n⃗i | n⃗ ∈ K and i = 1, 2, . . . ,m }.

In particular, the difference of N({n⃗}) and N(n⃗) is that N({n⃗}) is unordered
(a set) while N(n⃗) is ordered (a vector).

Clearly N = N (⃗0),



In the d = 2 case, the (a) von Neumann and the (b) Moore neighborhoods
are often used:

(a) (b)

c c
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c c

We generalize the Moore-neighborhood and call the d-dimensional neighborhood
Md

r containing all

(k1, k2, . . . , kd) ∈ Zd where |ki| ≤ r for all i = 1, 2, . . . , d

the radius-r neighborhood. It contains (2r + 1)d elements.



In the d = 2 case, the (a) von Neumann and the (b) Moore neighborhoods
are often used:

(a) (b)

c c

We also generalize the von Neumann -neighborhood and call the d-dimensional
neighborhood V d

r consisting of

(k1, k2, . . . , kd) ∈ Zd where
d∑
i=1

|ki| ≤ r

the radius-r von Neumann neighborhood.



The radius-12 neighborhood consists of all (k1, k2, . . . , kd) ∈ Zd where each
ki ∈ {0, 1}, and the radius-12 von Neumann -neighborhood consists of all
(k1, k2, . . . , kd) ∈ Zd where at most one ki is 1 and all others are 0.

In the one-dimensional case these are both the same (0, 1). The XOR CA uses
the radius-12 neighborhood.



Consider a CA with neighborhood vector N = (n⃗1, n⃗2, . . . , n⃗m) and local rule
f : Sm −→ S.

We call n⃗j a dummy neighbor if f (s1, . . . , sm) = f (t1, . . . , tm) whenever
si = ti for all i ̸= j. This means that the the j’th neighbor of a cell has no
effect on the next state of that cell, and hence n⃗j can be removed from the
neighborhood vector. We obtain an equivalent CA with m− 1 neighbors.

By removing all dummy neighbors from any CA we obtain an equivalent CA
that has no dummy neighbors. Obviously, this minimal neighborhood is unique:

Proposition. If A and B are equivalent CA (=define the same local function
G) and have no dummy neighbors then A = B (up to reordering the neighbors
in the neighborhood vector).



Elementary CA

One-dimensional cellular automata with two states and radius-1 neighborhood:

d = 1, S = {0, 1}, N = (−1, 0, 1) and f : S3 −→ S.

There are 256 elementary CA because the number of different local rules S3 −→
S is 28 = 256.

(Some of the 256 elementary rules are identical up to renaming the states or
reversing right and left, so the number of essentially different elementary rules
is smaller, only 88.)

Elementary rules were extensively studied and empirically classified by S.Wolfram
in the 1980’s. He introduced a naming scheme that has since become standard:
Each elementary rule is specified by an eight bit sequence

f (111) f (110) f (101) f (100) f (011) f (010) f (001) f (000)

where f is the local update rule of the CA. The bit sequence is the binary
expansion of an integer in the interval 0 . . . 255, called the Wolfram number
of the CA.



Example. Number 102 in 8-bit binary is

01100110

so the elementary CA with Wolfram number 102 has the local update rule

f (111) = 0, f (110) = 1, f (101) = 1, f (100) = 0,
f (011) = 0, f (010) = 1, f (001) = 1, f (000) = 0,

This CA is equivalent to the XOR CA. (The left neighbor is a dummy neigh-
bor.)



Example.

The 8 bit binary expansion of the decimal number 110 is

01101110

so the elementary CA with Wolfram number 110 has the local update rule

f (111) = 0, f (110) = 1, f (101) = 1, f (100) = 0,
f (011) = 1, f (010) = 1, f (001) = 1, f (000) = 0,

This CA is known as rule 110. It is famous as it is computationally universal
(Matthew Cook).



Wolfram experimented in the 80’s with elementary CA, and based on empirical
observations of their behavior on random initial configurations he classified them
into four classes. These are known asWolfram classes of CA. The definitions
are not mathematically rigorous.

Wolfram defined the classes as follows:

(W1) Almost all initial configurations lead to the same uniform fixed point con-
figuration,

(W2) Almost all initial configurations lead to a periodically repeating configura-
tion,

(W3) Almost all initial configurations lead to essentially random looking behavior,

(W4) Localized structures with complex interactions emerge.
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(W1) Almost all initial configurations lead to the same uniform fixed point con-
figuration,

(W2) Almost all initial configurations lead to a periodically repeating configura-
tion,

(W3) Almost all initial configurations lead to essentially random looking behavior,

(W4) Localized structures with complex interactions emerge.

Class 4: rule 110


