
Finite configurations

Let s ∈ S be an arbitrary state. The s-support of a configuration c ∈ SZd is
the set

supps(c) = {n⃗ ∈ Zd | c(n⃗) ̸= s}
of cells not in state s.

Configuration c is s-finite if supps(c) is a finite set: all but a finite number of
cells are in state s.

Let us denote
Fs(d, S) = {c ∈ SZd | c is s-finite }.

Note that Fs(d, S) is countably infinite while SZd is uncountable.



Sometimes one state q ∈ S is identified as quiescent. The quiescent state q
must satisfy

f (q, q, . . . , q) = q.

(A cell whose neighbors are all quiescent becomes quiescent.)

If a quiescent state q is identified and fixed then the q-support of c is called sim-
ply the support of c and denoted by supp(c). Also, q-finite configurations are

called finite, and the set of finite configurations in SZd is denoted by F(d, S),
or simply by F when d and S are clear from the context.

The configuration in which every cell is in state q is called the quiescent
configuration.



If c is s-finite then G(c) is t-finite where t = f (s, s . . . , s).

In particular, in the presence of quiescent state q, finite configurations are
mapped into finite configurations. In this case we denote by

GF : F −→ F

the restriction of G on finite configurations.



Examples. In XOR CA we can name state 0 quiescent, in which case the
space-time diagram

depicts a time-evolution according to GF .

In Game-of-life the dead state is taken as the quiescent state.



Spatially periodic configurations

Let the dimension d and the state set S be fixed.

The translation τr⃗ by vector r⃗ ∈ Zd is the function

τr⃗ : S
Zd −→ SZd

that maps c 7→ c′ where c′(n⃗) = c(n⃗ + r⃗) for all n⃗ ∈ Zd.

(It is the global transition function of the CA whose neighborhood contains only
r⃗ and whose local rule is the identity function.)

Clearly for all r⃗, s⃗ ∈ Zd and k ∈ Z we have

τr⃗ ◦ τs⃗ = τr⃗+s⃗,

τ−1r⃗ = τ−r⃗, and

τ kr⃗ = τkr⃗.



For each dimension i = 1, 2, . . . , d we call the translation by one cell down in
dimension i a shift and denote it by σi. In other words: σi = τe⃗i for the i’th
coordinate unit vector

e⃗i = (0, . . . , 0, 1, 0, . . . 0).

Every translation is a composition of shifts and their inverses.

In the one-dimensional case the only shift σ1 is called the left shift and we
denote it simply by σ.



The following proposition states an elementary but important property of cel-
lular automata, based on the fact that all cells use the same local update rule:

Proposition. Let G be an arbitrary CA function and τ a translation. Func-
tions G and τ commute, i.e., G ◦ τ = τ ◦G:
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Proof.



A configuration c ∈ SZd is r⃗-periodic if

c = τr⃗(c),

i.e., c is invariant under the translation by r⃗.

In other words,
c(n⃗) = c(n⃗ + r⃗) for all n⃗ ∈ Zd.

A configuration is spatially periodic if it is r⃗-periodic for some r⃗ ̸= 0⃗.



A d-dimensional configuration is strongly periodic if it is r⃗i-periodic for some
linearly independent r⃗1, r⃗2, . . . , r⃗d ∈ Zd.

A strongly periodic configuration consists of a k×k×· · ·×k pattern, for some
k ≥ 1, that is repeated periodically in each of the d-dimensions of the space:

Proposition. If c is strongly periodic then there exists k ∈ Z+ such that c is
σki -periodic for all 1 ≤ i ≤ d.

Proof.



Let P(d, S) denote the set of strongly periodic elements of SZd, or if d and S
are clear from the context, we may simply use P .

Set P(d, S) is countably infinite.

In the one-dimensional case there is no difference between spatial periodicity and
strong periodicity. In two- and higher dimensional spaces there is a difference.



Example. A two-dimensional configuration (infinite horizontal stripe) that is
e⃗1-periodic but not strongly periodic:



Example. A strongly periodic configuration (infinite checker board):



Cellular automata preserve spatial periods of configurations:

Proposition. If G is a CA and c is an r⃗-periodic configuration then G(c) is
also r⃗-periodic.

Proof.



Cellular automata preserve spatial periods of configurations:

Proposition. If G is a CA and c is an r⃗-periodic configuration then G(c) is
also r⃗-periodic.

In particular, if c is strongly periodic then also G(c) is strongly periodic. We
denote by

GP : P −→ P
the restriction of G on strongly periodic configurations.



Finite configurations and periodic configurations are used in effective simula-
tions of cellular automata on computers.

Periodic configurations are often referred to as the periodic boundary con-
ditions on a finite cellular array.

Remark: Periodicity of a configuration may refer to temporal or spatial pe-
riodicity. I try to be careful and make clear which of the two I am talking
about.



Compactness

Let c1, c2, . . . be a sequence of configurations in SZd. The sequence con-
verges to a limit configuration c if

(∀n⃗ ∈ Zd) (∃k ∈ N) (∀i ≥ k) : ci(n⃗) = c(n⃗).

Such a limit (if it exists) is unique and we denote

c = lim
i→∞

ci.

In other words: if we look at any cell n⃗ and scan c1, c2, . . . then from some
moment on we always see the same state c(n⃗) in position n⃗.

Later we give the set SZd of configurations a metric. The convergence of
sequences under this metric is exactly this convergence concept.





A subsequence of c1, c2, . . . is a sequence

ci1, ci2, . . .

where i1 < i2 < . . . .

(So a subsequence is obtained by picking infinitely many elements of the se-
quence, preserving their relative order.)

Obviously every subsequence of a converging sequence also converges and has
the same limit.



The following theorem states the compactness of the configuration space:

Proposition. Every sequence of configurations has a converging subsequence.



The following theorem states the compactness of the configuration space:

Proposition. Every sequence of configurations has a converging subsequence.

Proof. In the proof we use the following simple special case of König’s
infinity lemma. Consider an infinite directed rooted tree where each node
has a finite number of children:

Lemma: The tree contains an infinite path down from the root.



Lemma: The tree contains an infinite path down from the root.

Proof of the lemma: If a node is the root of an infinite subtree, then it has
a child that is also the root of an infinite subtree (because the node has just
finite number of children).

So starting from the root one can move down the tree by always moving to a
child that is the root of an infinite subtree. This path is never blocked so the
path follows an infinite branch of the tree. □



Now we can prove our compactness proposition:

Proposition. Every sequence of configurations has a converging subsequence.

Proof. Let c1, c2, . . . be an arbitrary sequence in SZd.

Fix one t ∈ S such that ci(⃗0) = t for infinitely many i. (Such t exists since S
is finite.) Remove from the sequence all ci such that ci(⃗0) ̸= t. Thus we may
assume all ci satisfy ci(⃗0) = t.



For n = 0, 1, . . . , let
Dn = {−n, . . . , n}d,

that is, the (2n+ 1)× (2n+ 1)× · · · × (2n+ 1) size hypercube centered at the
origin 0⃗.
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Define the following infinite tree:

� Nodes at level n are patterns p : Dn −→ S such that for infinitely many i
we have

ci|Dn = p.

(Patterns that appear centered around origin in infinitely many elements of
the sequence.)

� The parent of a pattern x : Dn −→ A is the pattern x|Dn−1. Thus children
extend the parent pattern to a larger domain:

� The root is the unique node of level 0. (It is the pattern with state t at cell
0⃗.)



The tree is infinite so it has an infinite branch b. The infinite branch defines
a configuration c where the state in any cell n⃗ is the unique state put in that
position by patterns of the branch b.

There is a subsequence that converges to c: we pick indices i1, i2, . . . such that
for every n

� in < in+1, and

� cin|Dn is the level n node in branch b.

We then have that for all k ≥ n

cik|Dn = cin|Dn = c|Dn,

hence the subsequence converges to c. □



Our next proposition essentially states that all CA functions are continuous.

Proposition. Let G be a CA function and c1, c2, . . . a converging sequence of
configurations with limit c. Then also the sequence G(c1), G(c2), . . . converges
and

lim
i→∞

G(ci) = G(c).

Proof.



Our last proposition states that the sets of finite and strongly periodic configu-
rations are dense:

Proposition. Let c ∈ SZd and s ∈ S. There exist sequences

(a) c1, c2, . . . of s-finite configurations ci ∈ Fs(d, S), and
(b) p1, p2, . . . of strongly periodic configurations pi ∈ P(d, S)

such that c = limi→∞ ci = limi→∞ pi.

Proof.


