
Injectivity and surjectivity

Standard notations: Let g : A −→ B be a function.

� For any K ⊆ A we denote

g(K) = {g(k) | k ∈ K}.

� For any L ⊆ B we denote

g−1(L) = {a ∈ A | g(a) ∈ L}.

� For b ∈ B the set
g−1(b) = {a ∈ A | g(a) = b}

is the set of pre-images of element b.



Injectivity and surjectivity

Standard concepts: Function g : A −→ B is called

� injective or one-to-one if every element of B has at most one pre-image:

|g−1(b)| ≤ 1 for all b ∈ B,

� surjective or onto if every element of B has at least one pre-image:

|g−1(b)| ≥ 1 for all b ∈ B,

� bijective if it is both injective and surjective, i.e., every element of B has
exactly one pre-image:

|g−1(b)| = 1 for all b ∈ B,



A CA is called injective, surjective or bijective if its transition function
G is injective, surjective or bijective, respectively.

There exist several implications between injectivity, surjectivity and bijectivity
properties of functions G, GF and GP .



In the one-dimensional case d = 1:
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In the two- and higher dimensional cases d ≥ 2:
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First the simple implications:

Proposition. For any CA function G holds:

(a) If G is injective then also GF and GP are injective.

(b) If GF or GP is surjective then also G is surjective.

(c) If GP is injective then GP is surjective.

Proof.
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Proposition. For any CA function G holds:
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Corollary. Every injective CA is surjective, so injectivity is equivalent to
bijectivity.

Proof. G injective =⇒ GP injective =⇒ GP surjective =⇒ G surjective.
□



Reversible CA

A CA A and the function G it defines are called reversible if

� G is bijective, and

� the inverse function G−1 is also a CA function.

We call G−1 the inverse automaton.

The inverse automaton retraces the orbits backwards in time.



Example. d = 1, S = {1, 2, 3}, N = (0, 1), and the value f (a, b) is given by
the following table:

@
@
ba 1 2 3
1
2
3

1 1 2
2 2 1
3 3 3

State 3 does not change. Swap 1←→ 2 iff the right neighbor is 3.

Is reversible: G2 is the identity map, soG is its own inverse. It is an involution.

Note how the inverse rule gives c(n) based on G(c)(n) and G(c)(n + 1) even
though c(n) does not influence G(c)(n+1) in any way in the forward direction.



Example. Two-dimensional Q2R Ising model by G.Vichniac (1984).

Each cell has a spin that is directed either up or down. The direction of a spin
is swapped if and only if among the four immediate neighbors there are exactly
two cells with spin up and two cells with spin down:



The twist that makes the Q2R rule reversible: Color the space as a checker-
board. On even time steps only update the spins of the white cells and on odd
time steps update the spins of the black cells.
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Q2R is reversible: The same rule (applied again on squares of the same color)
reconstructs the previous generation.

Q2R rule also exhibits a local conservation law: The number of neighbors
with opposite spins remains constant over time.



Evolution of Q2R from an uneven random distribution of spins:

Initial random configuration with 8% spins up.



Evolution of Q2R from an uneven random distribution of spins:

After approx. one million steps. Notice the clustering.



Every reversible CA has to be bijective by definition. The converse is also
true: If G is bijective then every cell only needs to know states of finitely many
neighbors in G(c) to determine its state in c.

Proposition. Every bijective CA is reversible.

Proof. Based on compactness.



Because injectivity implies surjectivity we have:

G is injective ⇐⇒ G is bijective ⇐⇒ G is reversible



Because injectivity implies surjectivity we have:

G is injective ⇐⇒ G is bijective ⇐⇒ G is reversible

Corollary. If G is injective then GF is surjective.

Proof.


