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Balance in surjective CA

A configuration c is Garden-of-Eden (GOE) if it has no pre-images. A CA
has Garden-of-Eden configurations if and only if the CA is not surjective.

It turns out that all surjective CA have balanced local rules f : for all a ∈ S∣∣f−1(a)∣∣ = |S|m−1
where S is the state set and m is the size of the neighborhood.



The following example indicates how to prove this.

Example. Consider a non-balanced local rule such as rule 110 where five
contexts give new state 1 while only three contexts give state 0:

111 −→ 0
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 1
010 −→ 1
001 −→ 1
000 −→ 0

Let us show how this non-balance implies that 110 is not surjective.



Consider finite patterns where state 0 appears in every third position. There
are 22(k−1) = 4k−1 such patterns where k is the number of 0’s.

0 0 0 0
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A pre-image of such a pattern must consist of k segments of length three, each
of which is mapped to 0 by the local rule. There are 3k choices.

As for large values of k we have 3k < 4k−1, there are fewer choices for the red
cells than for the blue ones. Hence some pattern has no pre-image and therefore
the CA is not surjective □



Let us generalize the previous example.

A pattern
p = (D, g)

is a partial configuration with domain D ⊆ Zd and assignment g : D −→ S of
states to the domain.

We also denote g ∈ SD.

The pattern is finite if D is a finite set.

If τ = τr⃗ is a translation of Zd then the translated pattern τ (p) is defined in
the obvious manner: its domain is D− r⃗ and the state in n⃗ ∈ D− r⃗ is g(n⃗+ r⃗).

A pattern p1 = (D1, g1) is a subpattern of p2 = (D2, g2) if D1 ⊆ D2 and
g1|D1 = g2|D1.

Patterns p1 and p2 are disjoint if D1 ∩D2 = ∅.



Let G be CA function defined by CA A = (d, S,N, f ) where

N = (n⃗1, . . . , n⃗m).

Let p = (D, g) be a pattern, and let D′ ⊆ Zd a domain such that N(D′) ⊆ D,
so all neighbors of all cells in D′ are in D.

The local rule maps the pattern p = (D, g) in a natural manner into the pattern
p′ = (D′, g′) where

∀n⃗ ∈ D′ : g′(n⃗) = f [g(n⃗ + n⃗1), g(n⃗ + n⃗2), . . . , g(n⃗ + n⃗m)].

D
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The mapping p 7→ p′ is denoted by

G(D→D′)

(or simply by G when the domains D and D′ are clear from the context.)



A finite pattern without a pre-image is called an orphan.

So p′ = (D′, g′) is an orphan if G(D→D′)(p) ̸= p′ for all p = (D, g) with domain
D = N(D′).

Clearly any configuration that contains a copy of an orphan is a Garden-of-Eden
configuration. Also the converse is true:

Proposition. Every Garden-of-Eden configuration has a subpattern that is
an orphan. Hence, a cellular automaton is non-surjective if and only if there
exists an orphan.

Proof.



A technical result (Garden-Of-Eden inequality):

Lemma. For all d, n, s, r ∈ Z+ there exists k ∈ Z+ such that(
sn

d − 1
)kd

< s(kn−2r)
d
.

Proof. In the homework assignments.



Proposition (the balance property of surjective CA). Let

A = (d, S,N, f )

be a surjective CA, and letD,D′ ⊆ Zd be finite domains such thatN(D′) ⊆ D.
For every pattern p′ = (D′, g′) the number of patterns p = (D, g) such that

G(D→D′)(p) = p′

is s|D|−|D
′| where s = |S| is the number of states.

Proof.



The balance property states that surjective CA preserve the uniform prob-
ability distribution of configurations.

As will be discussed later in the class, uniform randomness means that for every
finite domainD ⊆ Zd, all finite patterns on domainD have the same probability
1/s|D|.
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By the balance property of a surjectiveG, if c is drawn uniformly randomly then
alsoG(c) is distributed uniformly randomly: For eachD, all finite patterns with
domain D are obtained by G from the same number of patterns with domain
N(D). Since all these patterns have equal probabilities of being in c, all patterns
with domain D have equal probabilities of appearing in G(c).
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So starting a surjective CA from uniformly random initial configuration will
produce nothing but white noise!



A special case: the local rule table of a surjective cellular automaton is balanced.

Corollary. In surjective CA

|f−1(a)| = |S|m−1

for all a ∈ S, where m is the size of the neighborhood and

f−1(a) = {(s1, . . . , sm) | f (s1, . . . , sm) = a}.

Proof. Balance property with D′ = {⃗0}. □



Example. Balance in the local rule is not sufficient to guarantee surjectivity.

Elementary CA 232 (the majority CA) has a balanced rule table:

111 −→ 1
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 1
010 −→ 0
001 −→ 0
000 −→ 0

However, the balance fails on patterns of length two: Any word of length four
that contains at most one state 1 is mapped to 00, and so 00 has at least 5
pre-images of length four. (The balanced number of pre-images would be 4.)

So the majority CA is not surjective.


